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The theory of extremal graphs without a fixed set of forbidden subgraphs is well developed .

However, rather little is known about extremal graphs without forbidden subgraphs whose
orders tend to x with the order of the graph . In this tiote we deal with three problems of this
latter type . Let L be a fixed bipartite graph and let L+E' be the join of L with the enipty
graph of order rrt . As our first problem we investigate the maximum of the size e(G") of a
graph G" (i .e . a graph of order n) provided G";6L+Et'n l, where c>0 is a constant . In our

second problem we study the maximum of e(G") if G" o6 K.2(r, cn) and G" ;z5 K'. The third

problem is of a slightly different nature . Let C'(t), be obtained from a cycle C ° by multiplying

each vertex by t . We shall prove that if c > 0 then there exists a constant f(c) such that if
G' ;6 C'(t) for k = 3, 5, . . ., 21(c)+ 1, then one can omit [cn -] edges from G" so that the
obtained graph is bipartite, provided n > nr,(c, t) .

Our notation is that of [1] . Thus G" is an arbitrary graph of order n, Kt' is a
complete graph of order p, EP is a null graph of order p (that is one with no
edges), C"' is a cycle of length in, G,(n	nr ) is an r-partite graph with n,
vertices in the ith class, Kr (n„ . . . , nr ) is a complete r-partite graph . C" (t) is a
graph obtained from C"' by multiplying it by t, that is by replacing each vertex by
t independent vertices . We use H'", S'", T-, U- to denote graphs of order m
with properties specified in the text . We write JAI for the cardinality of a set A,
I G I for the order of a graph G and e(G) for the number of edges (the size) of G .
The set of neighbours of a vertex x is denoted by F(x) and d(x)=I1'(x)J is the
degree of x. The minimum degree in G is S(G) .

Let Jw be a family of graphs, called the family of forbidden graphs. Denote by
EX(n, j~) the set of graphs of order rt with the maximal number of edges that does
not contain any member of .. The graphs in EX(n, J; ) are the extremal graphs of
order n for ~. Write ex(n, .1W) for the size of the extremal graphs : ex(n, . ) = e(H),
where H E EX(n, d) . The problem of determining ex(n, :~_) or EX(n . ) may be
called a Turán type extremal problem . We shall prove some Turán type extremal
results in which the forbidden graphs depend on n. The first deep theorem of this
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kind was proved by Erdős and Stone [81 in 1946 . This theorem is the basis of the
theory of extremal graphs without forbidden subgraphs (see [1, Ch . VI]) . Consid-
erable extensions of it were proved by Bollobás and Erdős [2] and by Bollobás,
Erdős and Simonovits [3] .

For fixed r and t the extremal graphs EX(n, K,(2, r, t)) were studied by Erdős
and Simonovits [7] . Our first aim in this note is to describe EX(n, .K,(2, r, cn)),
where r -_ 2 and c > 0 . In fact, we prove the following somewhat more general
result .

Theorem 1 . Let L be a bipartite graph . Put

q(n, L)=max{n,n,+ex (n,, L)+ex (n,, L) : n,+nz = n},

	

(1)

There exist c > 0 and n o such that if n > no and

e(G") > q(n, L),

	

(2)

then G" contains an I_+Et"'J . If in addition for every m there exists an extremal
graph S`" e EX (in, L) with maximum degree < ; cm, then

ex (n, L + Et`") = q(n, L)

	

(3)

and every extremal graph U" E EX (n, L+Et`") can he obtained from an S"' E

EX (m, L) and an S" - `" c EX (n - in, L) as S"' + S" - "' .

Remarks . (i) If L K,(2, r), then the maximum degree of any S"' EEX (m, L) is
o(m) and the same holds if L is not a tree, but there exists a vertex v E L for
which L - v is a tree. Thus Theorem I gives

ex (n, K 3 (2, r,[cn]))=q(n, K,(2, r)) .

It also gives information on the structure of the extremal graphs .
(ü) Theorem I states that q(n . L) is an upper bound for ex (n, L+Et`")A

lower bound for ex (n, L+Et"' 1 ) can be obtained by observing that if S"' E

EX (n, L), then S'" + E" - "' L + EL-, 1 , So

ex (n, L + Et"' 1 ) : max {n,nz +ex (n,, L) : n, +n z = n} .

	

(4)

In some cases, for instance if L consists of independent edges, (4) is sharp .
(iii) The essential part of Theorem I states that a graph G" not containing an

L + El`"l can not have more edges than S" +S" - ", where S" E EX (p, L), S" -" E

EX (n -p, L) and p is suitably chosen . It is unfortunate that S" + S" - " may
contain an L +E"I and we need an additional condition to exclude this
possibility .

The proof of Theorem 1 is based on five lemmas .

Lemma 2 . qln+1,L)-q(n,L)_-n/2_

B . Bollobás. P. Erdős M. Si-.-i". E . Szehaerédi
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Proof. Let q(n, L)= n,n2+ex (n„ L)+ex (n 2 , L), where n, ~,nz. Then

q(n+1, L)--(n, +1)n,+ex (n,+1, L)+ex(nz,L)?q(n, L)+n/2 .

The next lemma is an immediate consequence of Lemma 2 and the straightfor-
ward Lemma V .3.2 of [1] .

Lemma 3. Given c,>0 there exists c z >0 such that if e(G")>q(n,L) then G"
contains a subgraph G" satisfying p-c,n, e(GP) >q(p,L) and S(G")>( -c,)p.

Lemma 4. There exists a constant cL >0 such that if S(G") (Z-i )n and00

K = K 3(9r, 9r, 9r) - G", where r=ILI, then G" contains an L+E with t-c i ,n .

Proof . Put H = G" - K. Since at least 27r • 141,,0n - (27 r) 2 edges join K to H, at
least >'',n vertices of H are joined to at least llr vertices of K. Let cL =20 . 2- '' .
Then H contains t-CLn vertices that are joined to the same set of at least 11r
vertices of K . The subgraph of K = K,(9r, 9r, 9r) spanned by this set of vertices
contains a K,(r, r) so K,(r, r)+E` c G" . Since L - K,(r, r) we have L+E'(--
G " . O
The first part of the next lemma is a weak form of Theorem V .2 .2 in [1], the

second part is an immediate consequence of the first part .

Lemma 5 . (i) If G = G,(m, n) does not contain a K,(s, t) whose first class is in the
first class of G then

e(G) < t "mn 1- "' +sn .

(ü) Given d and R, there exist r > 0 and n0 such that if n -_ n0 and if in
G = G,(n, n, . . . , n) at least (1 - E)n - edges join any two classes then G contains a
K,(R, R, . . . , R) .

The last lemma needed in the proof of Theorem 1 is a slight extension of some
results proved by Erdös and Simonovits [5, 6, 10].

Lemma 6 . Given c, 0 < c < 1, and natural numbers d and R, there exist M = M(c,
(1,R), S = 8(c, d, R)> 0, and n0 = n(c, d, R) such that if n > n( ,, e(G")>
(1 - 1/d-S) n2 and then the vertices of G" can be
divided into d classes, say A,, A„ . . . , A,,, such that the following conditions are
satisfied .

(i) In;-n1d J < cn . where rt;=lA, l .
Oil The subgraph Gi = G"[A,] of G", spanned by Ai , satisfies

e(G;)< cnI

(iii) Call a pair tx, y} of vertices a missing edge if x anti y do not belong to the
same class A, and xy is not an edge of G". The number of missing edges is less titan
cn' .
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(iv) Let B i be the set of vertices in Ai joined to at least cn vertices of the same class
A i . Then JB;J<M.

Roof . Let M„ = R and choose natural numbers M, < M, < . . . < Md such that
M;/Mj,, < z . Put M = Md . Pick -1 such that 0 < 71 < (zc)~`.

By Lemma 5 (ü) we can choose s, 0 < s < c, and n, such that if N= [?In], n -- n,

and in H= G,,(N, N, . . . , N) at most en 2 edges are missing between any two
classes then H contains a K,(R, R, . . . , R) .
The above mentioned theorem of Erdös and Simonovits (see Theorem VA .2 in

[1]) implies that there exist n„-- n, and S > 0 with the following properties. If G"
is as in our lemma and A,, Az , . . . , Ad is a partition with the minimal number
of missing edges (cf . condition (iii) of the lemma) then (i), (ü) and (,iii) hold .

Suppose (iv) fails, say IB, I > M. Then by the minimality of the partition each
vertex of B, is joined to at least cn vertices in each A i . Since

M,+,cn > (Tin)'

	

n'-""x +Mi n,

repeated applications of Lemma 5 (i) imply that there are sets B C- B,, A j c- A i ,
i = 1, 2, . . . , d, such that 1B1= R, JÁ i I = N and each vertex of B is joined to each
vertex of A = U d A i . Now it follows from (iii) and the choice of e that G[A]
contains a K,(R, R, . . . , R) . Hence G[A U B] contains a Kd+ ,(R, R, . . . , R). El

Proof of Theorem 1. It is easy to see that if G, H are graphs containing no L and
no KZ(1, cm/2), then G + H contains no L+Et"" 1 . Hence the second assertion of
Theorem 1 is trivial . To prove the first assertion assume indirectly that G"
contains no L+EE`" 1 and e(G") > q(n, L) . We shall show that this is impossible if
c > 0 is sufficiently small . By Lemma 3 and Lemma 4 we may and will assume
that S(G")=(Z-' r- ')n, R = gr, and G" K3(9r, 9r, 9r). Applying Lemma 610
with d = 2, we obtain a partition (A,, AZ), satisfying (i)-(iv) of Lemma 6 . For the
sake of convenience in the sequel a subset H of the vertices of G" and the
corresponding spanned subgraph may be denoted by the same letter . Clearly, if m
is the number of missing edges, then

e(G")=e(A,)+e(A,)+n,n,-m,

	

(5)

where ni = JA i 1 . Trivially, if neither A, nor A, contain L, then

e(G"),ex (n,, L)+ex (n, L)+n,ny - q(n, L) .

Thus L -A, may be assumed .
Let us assume that A,-B, contains a subgraph L„ isomorphic to L . To each

x e L. we find'n(l -,r- ') or more vertices in A,-B, joined to this x : since x is
joined to cn or less vertices of A,, it is joined to at least ( --0r-')n- ;'onr-'
vertices of A,. Thus at least n,-r - nr - ' > 5n vertices of A,-B, are completely
joined to L,,, yielding an L + E` for t = [,'n] . This proves that L Z A i - B i . Hence

e(A j )_ e(A ; --B,)+JB i I n i Eex (n i , L)+JB,J ni .
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Now we fix some constants and give the basic ideas of the proof . The details are
given afterwards .
We fix a constant T such that JB, I _ T (i = 1, 2) . Lemma 6 guarantees the

existence of such a T. A constant c,, > 0 is fixed so that for a; = r 2T- `c,_ we have
a, < (10 T)-2 . Given a set We A,, denote by F(W) the set of vertices of A .,_ i not
joined to at least one vertex of W . Observe that if W has at least c,_n vertices,
then F(W) represents each L -A 3 _ i , for otherwise there would be an L com-
pletely joined to W and therefore L+E`L" - G" and we are home . Thus we may
assume that F(W) represents all the L's in Aj ._ ;. Let

ki =1 (e(A,)-ex (n i, L)) .
n i

Clearly, to represent all the L's in A; we need vertices, the omission of which
diminishes e(A i ) by at least e(A,)-ex (ni , L), hence we have to omit at least ki
vertices : F(W) has at least ki vertices . This is the basic idea of the proof, but this
in itself will not be enough . We shall prove the existence of a set Q i of O('1)
vertices in Ai such that the number of missing edges incident with this Q i is at
least kani +z5 n7` 1 if L c A;. We have already checked the case, when no L occurs
in A, and A2 . Let us consider the case, when A, n L but A Z L. By (5) we have

e(G") _ ex (n,, L)+ k, n, +ex (n, i L)+ n, n,- (k, n, + 25,T ) < q(n, L) .

If A, D L, A 2 L, then the number of missing edges is estimated

/

by the sum of
the missing edges incident with Q, and Q2 minus the number of missing edges
between Q, and Q,, which is only O(1) . Hence

ne(G")_~ ex(n i , L)+kivi - kivi +25T1 +O(1)<q(n,L) .
i (

This completes the sketch of the proof .
Let us see now how the argument above can be made precise . Recall that

L -- A, . Let L,_ . ' L,,, . . . be subgraphs of A, isomorphic to L. For any
W = W, - A Z and W -z W,, I W,J -_ a, n, I Wj - cr,n, F(W) represents all the LP 's,
among them L„ hence for at least a, n - c,.n vertices of W, there exists a vertex in
L, not joined to it . Hence there exists an x, c L, and a W2 W,, I WJ--a,n, such
that x, is not joined to W~, at all . If x, does not represent all the L„'s, we may
assume that x,14 L 2. Iterating this argument we find an x, e L, not joined to a
W, c W2 at all, where I WjJ --a, n, and if x,, x2 do not represent all the L,,'s, we
define xj and W, in the same way .

Generally, if xE, and Wpr , are already defined, we check whether the set
Xp ={x	xp} represents all the L -- A, . If it does or if p =2 T, the procedure
stops, otherwise we find an Ln„ and an xp,, in it and a

W,12'-W.111 Wp+2I 7 ap+2n
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so that x„,, is not joined to W.12 at all . At the end of the procedure we have an
X = X„ and a W'= W,,, not joined at all to each other .

Let B'- B, be the class of vertices of degree at least n- i ;;n7 ' in A, . Let D
be the set of vertices of A 2 joined to B' completely . D is relatively large . Indeed,
by the minimum property of the partition (A,, A2) -any x c B' is joined to at least
n(-`,_-,=„T-') vertices of A 2 , hence at least n(''+s)-Tn(~ T- '+ E) vertices of A ;
are joined to B' completely . Thus ID I-3n if £_2'0;T-1 .

Now we define another procedure, in each step of which the above procedure is
applied to a set W; c A, yielding a pair of sets W ; and X; not joined to each other
at all: 4WJ-a,n, ~Wj j-c'Ln, {XjJ--2T. Let

W,=D (JDJ-a,n),

W,=D-U W: until (WiJ<a,n,

then

Wi -A,-U W; .

The corresponding sets in A, are X	X,. The procedure stops if for W, _
A 2 - U i , ; Wi we have JWJ < a,n. By J Wíj-cLn this will happen for some
j--_c,`, Let X _ U Xj. Clearly, IXI _ 2T(e,. = O(t) . We shall show that there exist
at least k,n,+ 2'S nT 'missing edges joining X to A 2 . This will coin plete the proof .

We need a lower bound for the number of missing edges joining a W; to X: this
lower bound is JX,j . By the definition of D, if W; c D, then each vertex of
Xi - A, - B' has degree --I'n in A, . These vertices represent all the L's
in A,, hence they represent at least k, n, edges :

k, n,
'ki+ 6T'

,n IOT

if n is sufficiently large, e sufficiently small and k =6 . If k,_6, we use IXJ .1,
I TJ 7 1 (which can be assumed) . Thus

JX;j-k,+
1
7'

again . In the other case, when W; D, we use a weaker lower bound . Since
I W;J ? cL n and no x e X; is joined to W~, such an x is joined to at most n,-cLn
vertices of A,, and consequently, to at most n,- cLn -' n -co + en vertices of
A,, we obtain now that

1X,~-k,+k,c,_-k, .



m =2'-r-'crn+o(n) .
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Thus the number of missing edges incident to X can be estimated from below by

3\k'+6TJ+6
k,-(a,+ s)n/k,

+ 6T)

Here the third term stands for the vertices not belonging to any W, and for the
difference between n 2 and Zn. If e is sufficiently small, T large, then by k, :c-::T and
a, <(I0T) we obtain that at least k,n,+25 nT- ` missing edges are between X
and A, . Thus the proof is complete. 1]

Remark . Theorem 1 can be generalized to higher chromatic numbers, that is, an
analogous theorem holds for L + K,-,(r, . . . , r, cn) . The proof of this generalization
is essentially the same as for the particular case considered above .

Our second theorem concerns ex (n, Kj, KZ (r, [cri])) and, more generally, ex (n,
C `t), K,(r, [cn])) . An interesting feature of the result is that the value does not
really depend on j and t.

Theorem 7 . Let j, r, t he natural numbers, let k = 2j + 1 and let c > 0 . If e(G"))
cn2 and G" does not contain a. C'(t), then G" contains a K,(r, nt), where

Proof. We shall show first that if instead of a C'(t) (and so a fortiori a C') we
prohibit all odd cycles, then G" contains a K2(r, in) with

m =2 2- ' c'n+o(n),

but if F > 0 then G" need not contain a K,(r, m') with

m'=(2''-'c'+E)n+o(n) .

(This will show that the value of m given in the theorem is as large as possible and
that the main thrust of the theorem is that the condition "G" is bipartite" can be
replaced by the much weaker condition "G" does not contain a C'(t)" without
decreasing the value of m we can guarantee .)

The first assertion is an immediate consequence of Lemma 5 . Instead of the
second we prove the following stronger assertion .

Let n be even and let G" be a random subgraph of K,Q'n, n) obtained by
taking ap edge of K,(zn, ;n) with probability 4c. Then, with probability tending, to
1, G" has err'+o(n`) edges and if t = t(G") is the maximal number for which G"
contains a K,(r, t) then, again with probability tending to 1, we have

t=2'r 'c'n+o(n) .
In order to prove this assertion, we denote by A and B the two classes of

K,(,-'n, ;n), We say that a vertex x E B forms a cap with a set U if U- A, I UD = r
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and x is joined to every vertex in U. The expected number of vertices forming a
cap with a given r-set in A is 2 2 -1c`n and the variance of the event that an x E B
forms a cap with U is d o' = 4c(l -4c) . By the well known Bernstein inequality for
binomial distributions (see p . 387 in [9]) the probability that U is joined to more
than 2 2" c'n + n'`l 3 or to less than 2 - ' - 'c'n - n-'/ 3- vertices x E B completely is
O (exp (- c,n'i 3 )) . Hence with probability tending to 1 on each U there is a
K2 (r, t) for t = 2'' - ' c'n - n" but on no U for t = 2Z ' - ' c'n + n`/ 3 , since

(n)
. O(exP (c ' n 113 ))=0(1) .

r

A similar application of Bernstein's inequality yields that I e(G")-ell

	

n5 / 3 with
probability tending to 1 .

Exactly the same argument gives that if G" is a random subgraph of K„ of size
[cn]' (or is obtained from K" by choosing each edge with probability 2c) then G"
will contain a K,(r, t) for t ~ 2'c'n - n' l3 with probability tending to one, but for
t = T c'n + n-" only with probability tending to 0 . This shows that prohibiting the
odd cycles results in an increase of the constant from 2'c' to 2'' -' c' and that the
main point of our theorem is that the same result can be obtained by prohibiting
just one odd cycle .

The proof of our theorem is based on the following result of Szemerédi [11] .

Lemma 8 (Uniform Density Lemma) . Given two subsets U, V of the vertex set of a
graph G", denote by e(U, V) the number of edges joining U to V and put

d(U
V)=e(U, V)

lUilVi

There exists for a given constant 0 > 0 an integer M(/3) such that for any G" the
vertices of G" can be divided into disjoint classes V	Vk for some k < M(f3) so
that IVi I=I V I If ISO, iA0, 1V,1_On if i=0, 1, . . .,k and for all but Ok' pairs
(i, j) the following condition holds .

(*) Whenever U,- V,, U, c- VI and IU;I>01VJ,IUi {>01Vl, then

Jd(U,, U;)-d(V;, Vi)J<R' .

Let us turn now to the main body of the proof of Theorem 7 .
(A) Let e(G") = cn' and let 0>0 be an arbitrarily small constant, much

smaller than c. Applying the Uniform Density Lemma to G" we obtain the
classes V,, V	Vk . Let nl = I V; J (i = 1, . . . , k). Instead of G" we consider a
graph G' of n - I Vol vertices, obtained from G" - V by omitting all the edges

(i) joining vertices from the same V, (i = 1, . . . , k) ;
(ü) joining a V, to a V for an "exceptional pair", that is, (*) does not hold ;
(iii) joining a V, to a V, when d( V, V) < 01/2 .
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If 13 is sufficiently small. Therefore instead of proving Theorem 7 for G" it is
sufficient to prove it for G' . Hence we may and shall assume that G'= G" .

(B) Let R' be the graph whose vertices are the classes V, (i = l, . . . , k) and
V; is joined to Vi in R k if there exists an edge (u, v) in G" joining V, to V ;. We
prove that R k does not contain a triangle (K3 ) . Let us assume that V,, V, and
V, from a triangle in R k. Put

U -` ={xc V3 : d(x, V,),a},

Ü- JXE V,: d(X, V,)<t3} .

For any x c U= V,- U`- U'' there exist a U,,, and a U,,_, in V, and V,
respectively, joined to x completely, where Hence the number of
edges joining U,,, to UZ ,,, is at least

(Rnl)2(R'l'-R)> p'tn' .

This is a lower bound on the number of triangles on x, with the other two vertices
in V, and V2. Hence the total number of triangles (K 3 's) of form (x, y, z), x E V3 ,
yE V,, ze VZ is at least (I-2)3)t3'm' : by (*) IU'l~ Jam, IU 1 'J -_t3m. A theorem
of Erdös [4] asserts, that if in an r-uniform hypergraph H of n vertices there are
at least cnr --1 r - " it hyperedges, then H contains a subgraph of the following form :
C,	Cr are vertex-disjoint t-tuples and we take all the r-tuples ( = hyperedges)
of form (x	xr ), x; E Ci for i = 1, . . . . r. Applying this theorem to the system
of K's obtained above we get a G, - V, (i = I, 2, 3) with IC, I = t and such that
each K' of the form (x, y, z), x E C3 , y c- C,, z e C, belongs to G" . Thus
K,(t, t, () = C3 (() , G" . This contradiction proves the assertion of (B) for k = 3 . In
the general case we apply the theorem with kt instead of t and observe that K3(kt,
kt, kt)

	

(1k ( t ) , again completing the proof of (B) .

(C) Now we fix a c, e (0, c) and assume indirectly that

e(G")=cn - ,

	

G" ;6C'(0 and G" K.,(2"-'c ;n, r) .

Let d;=d(V„ V- V,), where V is the vertex set of G" . We may assume that
d, = max d; = d . Let us permute the indices of V, so that V,	V,+ , are the
classes joined to V„ the others are independent of it . Clearly, V	Vt , , form
a set of ins independent vertices . Hence

k
e(G")~

	

(d,n)m+(d,n)m~fdn)(n-al .

	

(6)

Clearly,

and

n-fan --I G'`-_n,

0 ` e(G") - e(G') -_ 2t3'i`n'



where

a=l ,, U V,I=(s+I)nt.
Isis+

To obtain an upper bound of d in terms of a, we apply Lemma 5 to the bipartite
graph determined by the classes U,,i,s+, V, (=first class) and V, (=second
class) . We find that

G"z)K2(r,t) with t=(1-o(1))d'n'a ") .

	

(7)

By the assumption G" K2(r, 2 Z' - ` c,n) and by (7)

drn'- ' a -`-' -"_ (1 +0(1))2` .-, c i-

	

(g)

Let us assume that d>2c, (this will be shown later), From (8) and cr < ;dc, we
obtain d < (1 +0(1)) 4c,(a/ n ) • This and (6) yield

cn'-e(G`)_dn(n-a)_(1+o(1))n2 •4c, a I1

	

J
n\

_c,n.2 ,

which is a contradiction

	

\

.
To prove d > 2c, observe that "essentially, do is the maximum degree" :

cn`_e(G")= I Y d(V,, V-- V,)m(n-tit) _ kin • d(n-in)=A(n-ni) .

(9)

Until now (3 and c, were independent, now we may agree that 0 is chosen
depending on c, and it is so small that 1 --(~ > (c,/c) . This, (in/n) < 0 and (9) yield
the desired inequality d > 2c, . O

Remark. The method used to prove Lemma 6 and the method used to prove that
K3 does not occur in the graph R' are equivalent : both can be used in both cases .
The proof becomes slightly shorter if we consider only the case t - 1 .

"theorem 9 . Let t be a natural number and let c > 0 . Then there exists an n„ such
that if n > n„ and G" Z C-(t) for m = 3, 5, . . ., 21(c) + l , where 21(c) + 1 > c- `,
then G" can be made bipartite by the omission of not more than en` edges .

Remark. Theorem 9 is sharp, apart from the value of l(c) which is probably
O(c - `) . This 1(c)=O(c '"') would be sharp if true . To see this put n=(21+3),
and G" = C2"(m ) . If c = ( 21+4) ' then more than cn'- edges must be omitted to
turn G" into a bipartite graph and C" does not contain C' if k is odd and smaller
than 21+3 .

Proof . Our proof consists of two parts . We shall give two versions of the second
part .

cs. v.• . . . •nds, r' . órnö ., M. Suno . .wuq E . Smrr .cr~ni



Part L Let c'< c be fixed . We shall say that the edges are regularly distributed,
if for every partition V(G") = A U B we have d(A, B)-2c' . If we have an
arbitrary G", we shall find a G'" in it, in which the edges are regularly distributed
and h(G"')=cnt2, m > n~ also hold, where h(G) denotes the minimum number of
edges one has to omit to change G into a bipartite graph . Therefore it will be
enough to prove the theorem for the case, when the edges are regularly distri-
buted and this will be just Part II . Let us assume that the edges are not regularly
distributed in G", V(G") = A U B and d (A, B) < 2c' . Clearly,

h(G")< h(G[A])+h(G[B])+d(A, B) IA IIBI,

therefore we may assume that

h(G[A])> c JAI' +(c --c') JA JJ Bj .

	

(10)

Hence

'IA I'>(c-c') IA II BI,

that is, IA I > c" IBI for c" = 4(c - c') . This also shows that IA I > ( I + c") 'n . Fur-
thermore, by (10),

l1(G[A1)>c, IA 1 2 for e,=c4-(c-C') IBII .

Put G„ = G", cc, - c, G, = G[A] and repeat the step above until either we arrive at
a G; in which the edges are regularly distributed or to a G J with -,/n or less
vertices (and use always ci = c; - (c - c')) . It is easy to show that if n is sufficiently
large, then Gi cannot go below Jn, otherwise c, > I would occur . Hence the
procedure will always stop with a graph Gi in which the edges are regularly
distributed . This was to be proved .

Part II (First version) . (A) We start with a graph G" for which h(G") ? cn 2 , fix
a c" < c and then a C' E (c", c) and a p > 0, which is much smaller than c" . Using
the first part we may assume that the edges are regularly distributed . We may
repeat part (A) of the proof of Theorem 7 replacing e( ) by h( ) and c by c' .
Then we may assume that G'= G", but have to decrease c' : replace the original
condition by condition h(G")7c"n 2 . How we define the graph R k as in the
beginning of (B) of the proof of Theorem 7 .

(13) We prove that if n is sufficiently large and R' - C', then G" D C'(t), where
t is fixed, but arbitrarily large . Exactly as in the proof of Theorem 7, we can prove
that G" contains at least c, n' cycles C', where c, > 0 is a constant . Applying the
theorem of Erdös on hypergraphs [4], we obtain j sets X	with JX,,I -

T-j-, such that if x, E X	E Yr, then some Permutation (x; , . . . , x,,) is a
cycle of G" (we consider here the hypergraph whose hyperedges are the j-sets of
vertices of j-cycles in G") . Unfortunately the cycles will riot determine a C( T),
since the permutation i,, . _ . , i, may differ from j-tuple to j-tuple . However . let us

H__1 graphs wj,,_ large forbidden subgraphs 3 9
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Clearly,

Hence for any fixed (3 > 0 we can find a 1„= 1,(c,13) such that

V - U B;
<,
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apply the Erdös theorem again, now to the hypergraph whose vertices are in
X, u Xz u . . . U X; and the hyperedges of which are some cycles of G" of form
(x ;	x, , ), x, e Xs , where we choose only one permutation i,, . . . , i,, for which
the number of cycles is at least T'/j! . If T is large enough, we obtain j subsets
Y; c X; such that whenever x; E Y„ then (x ;	x; , ) defines a cycle in G" and
~Y,~=t. Thus we obtained a C'(t)c G" .

(C) Clearly, the only thing to prove is, that R k C2 s1 ' for some 2s+ I -- (c') - ' .
If e .g . V	V, define a shortest odd cycle in R k , by the assumption that the
edges are regularly distributed in G", there must be a V., q > j, which is joined to
at least 2c' j of the classes V	Vi, If V,, is joined to a V; and Vi , for some i'
farther from i than 2, then the arc V,Vg V,- will create a shorter odd cycle. Hence
either C' c R' or 2c"j g 2, and, consequently, j - (c') - ` .

Part II (Second version) . The difference between the two proofs is above all,
that here we shall not use the Uniform Density Lemma .

(A) By the first part we may assume that the edges are regularly distributed .
Let A, be an arbitrary set of %/n vertices . By d(A,, V-A,) . c' (where V is the
vertex set of G") and by Lemma 5 we can find a B, c A„ for which JB, I = T = t',
and a set B, V-A, for which I B,J -- bit with b = (c')T, so that B, and BZ are
completely joined . B; is recursively defined :

Bj =
111{x

: xr U B, and +. U Bi l>c , },
i<,

B; = Bi - U Bi .
,<,

< On

Omitting all the edges between U,,, B,, and the rest of the graph we omit at
most 6n = edges . If now we omjt all the edges (x, y) for which x E B,, y E B,,,, for
some i and p then we change the graph into a bipartite one . Hence there exists a
pair (i, p) for which at least Wit [3n 2)/12 edges were omitted between B ; and
B,,,,, . Hence there exists a K,(T, T) joining B, to B„,, in the sense that the first
(second) class of it is contained in Bi (B,,,,,) . Let these classes be denoted by D,
and E,+,, respectively . If D, is already defined, D j , can also be defined as
follows : JDi I =T we find t vertices in D, and 2T vertices in B, _, joined to each
other completely . By Lemma 5 this can be done if n is sufficiently large . The class
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D,-., contains T of these 2T vertices, E,-, is obtained from E, in the same way,
but here we have to choose the T vertices outside of D,-, . Finally we obtain a
Czi+2V- '(t) in G", whose classes are E„ in B,, E„ . . , E;, Zp , Di , D; . .-„1 _ . ' D2 in
this cyclic order. This proves the theorem, except for the upper bound on the
length of the cycle, which is very similar to that of the first version . We only

sketch it here ; if we already know the existence of a C2"'(t) for any t and s -- 1„

then we take a CZ sI'(t'-) for some very large t and find t vertices outside joined to

the same c'(2s + I)t' vertices of this subgraph . If t is sufficiently large, at least

c'(2s+ 1) classes are joined to each of the considered t vertices by t or more

edges . Thus we can find a shorter C""' (t) if 2s +I > (c') - ' . 0

Remark . With essentially the same effort we could prove the existence of a

C` (y cn, t, cn, t, cn, . . . , t, cn, t) instead of the existencee of a C` (t), where

Ck(nt l , . . . , nt k ) is the graph obtained from the cycle C' by replacing its ith

vertex by m; new independent vertices . In other words, we can guarantee that

every second class of our graph contains cn vertices .
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