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ABSTRACT

Let |8 =n, m(n ; El,zz,k) respectively m'(n,ﬂl,i, k)

denote the cardinality of the largest family of subsets Ai c 8

satisfying iAiI = k (respectively lAiI < k) and IAi n A | = 2, or

'A

a)

b)

¢

1 2
In this paper we prove

mn,0,8,,k) < (‘2‘), m'(n,0,8,,k) S (’2‘) + n+l ; equality, iff k = 2;

23

m(n,0,%2,,k) s n, if £2 I/ k, with equality for an infinity of n.

2’
For n = no(k) we show that:
n-%

n-4%

- 1 1 1 .
a) m(nl,ﬂl,iz,k) < { J, m'(n,£1,£2,k) < [ J + (n El) + 1 ;

2 2

2
2

1
k-2

n-% n-4
b) more exuactly, m(n,ﬂ.l,f.z,k) < T(_‘:i'—l-

}] with equality for an

infinity of n.
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Let integers 0 s 21 < 22 < k <n be given. Denote by

M(n,%, ,%,,k) any maximal system o ={Ai} of different sets such that

1Aum A, 1s o, AL = k( Ajea), IA'i n Ajl = L8 (‘51"\;] e a, i #3), (0
K
b)’ m(n!'ﬂ'llﬂ'zik) = |M(nl£1l2'2’ k)l » (2)
by M‘(n,zl,zz,k) any maximal system o = {Ai} such that
& - . . U
IAU'E:':i | < n, IAiI s k( Aiea), IAi n Ajl 11,22( Ai'Aj €a, i £ 3 ")
€0
and by m'(n,Rl,Rz,k) = IM(n,ﬂl,Rz.k)l. 2")
Let & > 0 be a given integer. The kernel of the system
u = {Ai} is the intersection K(a) = n Ai . keﬂ ):7 2. s (3)
A.eo
i
system @ is an R-gtar, if
IK(@)| 2 & . (4)

system a is a A-system, if

all sets Ai\K(a) are disjoint . (5)



Assume first £1 = 2, = L. Then Ryser proved the following

(in other terms) Theorem 1 ([81)
m(nlg’lﬁ'! k) sn » (6)

n'(mn,%,%, k) sn+1, (6")

cquality holds, if there exist an (n,k,R)-design.

In fact, it was also shown in Theorem 1 of [8], that if

Wt {A LAy, ..M ) satisfies | U A =, |Ai n Aj] = 2(Y1 $i<j sn)

122 n i=1
then it is either (n,k,R)-design or a A-design, A = &. Theorem 1 is a

. , de. .. . ; ;
peneralization of the hTUIJn—ETdOS'S Theorem (case & = 1), which in turn

is u poneralization of Fisher's inequality for (b,v,r,k,A)-design., Deza

proved (in other terms)

CTheorem 2(021)

There is an 1r(k,2) such that
r(k,t) s k% -k +1,
n > Lir{k,2)(k-4) => n{n,2,%,k) > r(k,8) =>

-7
=> any M(n,%,%,k) is a A-system => m{(n,%,8,k) = [%:%J

n - Lic(k,)-1 => m'(n,8,8,k) > r(k,r) =>

=> any M'(n,%,%2,k) is a A-system => m'(n,%,8,k) = n-2+1

(7)

(8)

(&")



wlli

For 2 = 1 and infinitely many 4{(7) is best possible. We
obtain from L1J, [2] and (7] that
k2-k+1 2z max(2+2, (k-2)2 + k-2+1) 2 r(k,%) 2 max (2+2, q2+q+1), (9)

where q = max q*, such that q* < k-2 and PG(2,q*) exists. The function

r(k,2) and several generalizations of it were considered in detail in [3].

In this paper we consider the case Ly < Ay From now on we

assume L&, < R&,., It is evident that

1 25
m(an'llg'z’ k) = m(n"ﬂ‘la 0, 22"21: k"gl)s (10)
m'(nl 11, 12, k) = m(n-ﬂ.l, o, 22-21, k-f.l) 5 (10')

since for example if a = {hi} = M(n—zl, 0, 2,72, k—£1}
and lhl = 21, AN (uAi] = @ then
A.ea
i

|{Ai u A} = m(n, 2 k)

1° %20

heza and Erdos proved the following (this is inversion of (10), (10') and

peneralization of Theorem 2).
Theorem 3 (141)

Let 0 = Ql < 22 < k < n. There are s(k) and s'(k), such that



i,

22-9,, 41
w i, E], 22,k) > ___EfL‘ﬂ n + s(k) => any M(n,il,ﬁz, k) is an E;star =>
(11)
z§-£2+1
=> nc(n.zl,ﬂz,k) = max (T_ n + s(k), m(n-JLl,D,,Q.z—Rl,k-ﬂ.l)),
m'(n,El,Ez,k) > {23—221--1) nt s'{k) => any M‘(n,zl,zz,kj is an f%-star =>
(11")
= = 2-- - o, — i
> :il'(ﬂ,ﬂ.l,f,z,k) max ((.?.2 2.211)11 +s'(k), m'(n 2.1,0,£ J?.l,k 21)).
Assume now El = 0, 22 =4 > 0,
Theorem 4, Let 0 < & < k < n. Then
w(n,0,8,k) = (‘;J for k = 2, (12)
n2
m(n,[),.e,ﬁ) s [R_J for k > 2,
In [n-2]1
n(n,0,2,k) s |} {'f-‘nT“ for n > & + r(k,8) (k-1), (13)
m{n,0,8,k) = K (k-2) for the case £|k and
; k n kck non ;
n = fU(kla)’ ‘.q']n’ E- 1 I e - 1 » 2(2‘ = 1) | i(g = 1) »
m(n,0,%,k) £ n if &4 k, (14)

m(n,0,4,k) = n Berf v [ n Where v is an integer, Mﬁﬁ’:exists a

(v, k, #)-design.
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In fact, equality (12) is trivial, because m(n,0,%, 2) =
m(n,0,1,2) = I{Ai:IAii = 2} = (2). It is easy to see that M(nj0,1,k*)
is a patrwise balanced design PBD[k*, n *]. R.M. Wilson proved in [9]

that a PBD LK4n# exists if n* > £5(k*), k*In*, k*(k*-1) | n*(n*-1).

In this case, we have m(n*, 0, 1, -J%;iij . Now we take a
g-multiple of PBD [k*, n*] and put =n = &n*, k = 2k*. We obtain
P e S T
Bl 1
Wl 0: k) & m(n*,0,1,k*) = L& . Alm-l)
k Kk k(k-2)
7 - B

for n* = 3 > £,0%), ie. m> & £5(k/2). If also n > 2 + r(k,2)(k-2) Yoo Ui
then we have equality in (13). We obtain second inequality (14) by taking
n/v (v,k,2)-designs aj = {Aij}’ 1 £ j < n/v, such that

| — < 1 4 .
(mijl) n (U Aijo) P for 1sj, <j,sn/v);
A.. ed, A.. €d,
M o Jy M2 d2 He
It is evident that m(n,0,2,k) 2 |a1| n/v = n. Now we will prove upper

bounds (12), (13), (14). Let any M(n,0,2,k) = a = {Ai} be given. We have

la|k = nm(n,e,2,k) and so |a| = [ELEL&igéklE ] . (15)

Now inequality (12) follows from (15) and (6) of Theorem 1; inequality

(13) follows from (15) and (8) of Theorem 2.

To prove (14), assume thdt there exists M(n,0,%,k) = {AIAZ,...,Ab},

b
b » n. Let irlAi = {xl,xz,...,xn}.
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befine n *x b incidence matrix N as follows:

I if x. e A,
= i i

(n..) where b, =
. 1) 0 if x, €A,
1 J

=
i

1}

Cleuarly, N]N (bij), where
kK if i = j
b.. = 40 if [A.0A, |
1) i ]
% if IA.nA. |
1]

L

i3 : . T . :
Since N is n *x b matrix and b > n, NN is singular. Hence there

exists a rational vector (yl, y?,...,yb)T such that
T T
NN(Y s Ypoueea¥p) = 0. (16)

Now by choosing (YI’YZ""’yb) suitably we can assume that YysYgreesYy

are integers and if Yi » Y, seeeny; are the nonzero integers among these,
i

1 2 2

then

Belells Vi o ¥ sor ey ) 21,
i, i, i,

Now {rom (16) we have kyi + RCZyj) =0, 1i=1,2,...,b (17)

where terms in the sum Zyj are those for which bij = 2,

lHence from (17), E[Ryi for each i, in particular,

Bl By 5] % 1,8,0e 0. Since cod. (Y. » ¥Y: seeesY. ) =1 we have
.lj 3’ ll 12 12

a contradiction and so &|k.
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Theorem 5. Let 0 < £ < kK < n. Then

n' (n,0,2,k) (2) +n+1 for 2=1, (18)

il

m'(n,0,2,k) = 9 < (;) +n+1 for n=4,k=3, % =2,

a
[

n(n-+l J+ Aol < (2) +n + 1 otherwise;

and m'(n,0,%,k) = [ e

m'(n,0,2,k) < [Eiﬁi%illj +n+1 for n>28 +1r(k,2) - 1. (19)

In fact, the proof is analogous to the proof of Theorem 4. But

" I
instead of (15) we have |al| <« l o (Elfaﬁ;k)

M'(n,0,8,k) = a = {Ai} because denoting a* = {Ai € a:lAil 22 + 1), we

] +n+ 1 for (15")

obtain

la*| (R+1) s nm'(n,%,2,k) ,

la*] 2 la] - m'(n,0,0,8)

Now we return to the general case.



o Js

Theorem 6. Let 0 = Ly < By < k s n. Then

n—ﬁl gr——
m[n,il,kz,k) 3 ( 2 ) for n 5 k + Vk° + 2s(k,R) , (20)
! n—El 5
w' (k4 0,,K), S (5 7)) + (n-2)) + 1 for n < (E%-£2+1) + J(z%—zz+1) 28" (k, 1)
(20")
o [(n—zl) [[n-ﬁz)] i
m[n,ﬁl,ﬂz.k) < (k'ﬁl) (k"gz) for n 2 no(k,m) " (21)

'(n—ﬁlj (n—ﬁz 1)]
m'(n,ﬂ.,ﬁz,k) 5 zé - £1*'1 1 + (n—Rl) + 1 for n =% no(k,ﬂ) 3 (21")

m(n,ﬂl,ﬁz,k) < n for 22—21 [ k—Rl, nz no(k,z) ” (22)

In fact, (20), (21), (22) follow from Theorem 3 and Theorem 4,
applied to the case m(n-ﬁl, ml—zl, 22-21, k—ﬂl). Similarly, we obtain

(20"), (21').

This paper was initiated by the following problem of R.Lemmon

comununicated to P.Erdos by A.Stone:

Lstimate f(mn,%, k) = min | U Ai | if there exists a family AI,A,,...,Am
1™

i=
such that |Ail = k(1 s i sm), ]Aj n Aj[ = 0,8 (1 £1i<j s m). A.Stone

and R.Lemmon considered f£(m,2,k) for small n ; it is easy to show that

£, 0,k) 2 mk - z(g) with equality for m = k/¢ + 1, if & | k).



<] R

The tollowing problems are still open:

1) Does m(n,ml,ﬂz,k) g (2) hold for Rl > 0 and all n (not only for

the case n 2 no(k) as in Theorem 6) 7 This is a conjecture of Erdos

and Lovasz ;

2) loes a maximal system a = {Ai} of subsets of an n-set such that
IA_1|=k(V Ay € @), (Ainz\j)=0, R0 2s (VY A, Aj ea, 1#3)

contain at most (2) sets? Also, it would be interesting to find analog

of equality (13) for this case.

3) Find an analog of (14) for m'(n, 0, &, k) ; we proved only

m'(n, 0, 2, k) sn for 2 > k/2 ,



(1.

(2]

L3.

L4l

[5]

[ 7]

18]

RN
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