Since K is convex and contains no points of A; in its intenior, K is bounded by the tangents to D a:
a,b,a+b; that is, K is bounded by the sides of the triangle A. Hence K C A, and 8(K) <8(,)=
2V3.

To complete the proof of our result, we notice that no closad, convex, proper subset of the
equilaterz] triangle has the same minima! width as the triangle, For, no such subset can contain all
three vertices of the triangle, and removal of any vertex of the triangle decreases the minimal width,
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A Property of 70

PauL Erpos
Hungarian Academy of Sciences

It is well known (see, e.z., [3]) that 30 is the largest integer with the property thut all smaller
integers relatively prime to it are primes. In this note 1 will consider a related situation in which the
corresponding special number turns out to be 70, (For a while I believed 30 to be the key figure i the
new context,loo, but E. G. Straus showed me that the correct value was indeed 70.) Fuollowing the
proof of this special property of 70, I will mention a few related problems, some of which seem to me
to be very difficuit. 1 hope to convince the reader that there are very nany inteicsting and new
problems left in what is euphemistically called “clementary™ number theory. Although these problems
are easy to comprehend, their soluiions will undoubtedly require either remarkable ingenuity or
exiensive application of known techniques.

Throughout this paper we will be studying sequences of positive integers related o a given integer
n. The basic sequence {4,372 begins with ay=n: once aay,....u;_, are known, 4, is chosen to be
the smallest integer greater than g, _; that is relatively prime to the product aya, - - - a, . Clearly each
prime greater than 2 1s an .. Moreover, each g, greater than 2” is a prime. TaE 1 contains
examples of the sequences {a, } corresponding to certain integers n.

5
THEOREM 1. 70 is the largest integer for which ali the ay (for k = 1) are primes or powers of primes.

Proaf. 1 will try to make the proof as short as possible; thus it is not as elementary as it might be.
We begin with the difficult but useful result [S] that for x > 17/2, there are at least diree primes in the
interval {x,2x). Hence. for n =177 =289 there are at least three primes in the intervil W03,
Furthermore, at least one of these primes does noi divide » since their product exceeds n/* /8 (which
in turn is greater than n). Thus, 1f p, is the greatest prime satisfying py << #*'? and p,{n we know that
py>1n'/2, Also, for r>>289, there are at least three primes in (2n'/2 n/4) since n- 16n1/2. At least
one of these three primes does not divide # since their product exceeds 4n. Hence, if ¢, is the least
prime satisfying ¢, > n'/2 and g,{n.q, < n/4 < pt

238 MATHEMATICS MAGAZINE



a; that are

n non-prime &, fim) not prime powers
3 P 0
4 3 0
5 323 1 6
6 5 0
7 2,375 0
B 357 0
9 2:57 ] i0
0 37 i 21
1 435572 i 12
12 702 0
15 2473113130 0
18 527115132172 0
22 52,38, 75135172199 0
24 5273112132 172198032 0
30 7R 115,132 172,194,232 292 0
3l 20.3-11,5:7,11%, 132, 192,232, 292 2 33,35
a6 TR3-17,5-11,132, 192,292 312,372, 412, 432 2 51,55
700 93,115,135 172,197,232, 297 312,372, 417,437, 474,53, 59° 612,677 0
7 2%.32,7-11,5-17,132.198 .. 672 3 72,77,85
97 2.7 3%11,5-23,13%, 177,193,292, ..,972 3 98,99, 115
272 3-7-13,5%11.19%.232.2¢2 2712 2 273,275

SAMPLE SEQUENCES generated from integers n by counting upwards from n, omitting every integer that
contains a prime factor in commeon with any previous terms in the sequence. Since every prime larger than n
will automatically be included, we record here saly the pon-prinie numbers (hat occur in the sequences. (No
nen-primes occur beyond n’—as observed in the text—so our record terminates before that point.) The
column headed “14)" records the number of members of the sequence that are neither privae nor a power of
a prime. Those numbers for which f{n) =0 have the property that all members of the sequence are primes or
pewers ol prime; they are 3,4,6,7.8,1Z,15,18, 22, 24,30,70. Ut is proved in the asccompanying article that no
other numbers have this property.

Tasize 1.

Now consider p;¢,. If it is one of the a;’s, then the property stated in our theorem—-namely, that
all @, are primes or powers of primes—is satisfied for # »289. If not, then there must be an g, with
n<a < pag; and (g, p,9;) > 1. We only have to prove that this ¢; must have at least two distinct prime
factors. If this does not hold, then 4, would have to be a power of p; or a power of ¢ Clearly it
cannot be a power of g, since g{ >p,q,. However, it cannot be a power of p,, cither, since p{ < 1 and
pi>pig; (because pf > g,). Thus all g, corresponding to n >>289 are primes or powers of primes. The
same conciusion holds for 70 << 2 < 289, and may be verified by direct computation.

By more complicated methods, we can prove the following related result:

THEOREM 2. For all sufficiently large n, ar least one of the a;’s is the produci of excctly two distinet
primes,

I shall not give the proof since it is fairly complicated and uses deep results in analytical number
theory. Although I was fairly sure that this result held for every n greater than 70, and thus
strengthened Theorem 1, I could not prove this. Recently C. Pomerance found a proof of Theorem 2
for n greater than 6000; he also observed that the result fails for n=272 (see TaBLE |).

The following conjecture, related to Theorem 2, seems very difficult. Denote by p(x), the least
prime factor of x. Then for sofficiently large n, there are always composite numbers x satislying

n<x-<n+p(x) (n
The inequality (1) is a slight modification of an old conjecture that J. L. Selfridge and I proposed in
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[2]. In fact, I expect that for sufficiently large n there are squarcfree x's satisiying (1) which have
exactly k distinct prime factors. I am sure that this conjecture is very deep. It would of course imply
Theorem 2 since the integers x satisfying (1) must be a,’s corresponding to the given value of n.

] wish now to state a few simple facts and pose some difficult problems about our a,’s. We have
already noted that each prime greater than # is an @, and that each g, greaicr than n? is prime. Let p
be a prime less than # and let a(n,p) be the least g which is a multiple of p. It is easy to see that
a(n,p)< p®*1 where p® <n<p®*!, for if none of the @, <p®* 1 are multiples of p, then p**' is an a,.

Denote by f(n) the number of those @, which are not powers of primes. Clearly, f(n) < m(n'/?)
(where #(x) denotes the number cf primes < x) since each such a;, must have a prime factor
exceeding »n'/2 (1f n'/2 < p, then p? is an @, and so no @, can equal pr for p < ¢). I do not have any
good upper or lower bounds for fin). I conjecture that f(n)>n""2"% for n>nye). 1 am not sure
whether im,_, .. f(n)/7(n'/?)=0.

Denote by P(n) the largest prime which is less than x. Tt is not difficult to show that the largest a,
which is not a prime is just #%(n). On the other hand, I cannot determine the largest a; which is not a
power of a prime. In fact, I cannot even get an asymptotic formula for it and, in fact, have no guess as
to its order of magnitude. It may be true that if » > aye) and « 1s not o power of a prime, then
a, <(1+¢e)n. Pomerance informs me that he can prove this, and in {act Peaney, Pomerance and | are
writing a longer joint paper on this subject.
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Rencontre as an Odd-Even Game

MicraeL W. CHAMBERLAIN
U.S. Nacal Academy
Annapolis, MD 21402

in [3], Schuster and Philippou looked at some nonintuitive aspects of four examples of games that
end with either an odd or an even integer. Their analysis of how one should bet in these “odd-even”
games is simplified by the statistical independence which is inherent in the Bernoulli and Poisson
probability models. We consider here an interesting variation of what is sometimes called the
Matching Problem as an example of an odd-even game based on sampiing without replacement. The
Matching Problem was first published in 1708 by Montmort under the name “Treize”, later became
known as “Renconire”, and can be stated as follows:

Two equivalent decks of different cards are each put into random order and then compared

against each other. If a card occupies the same position in both decks, then a maich has
occurred. What is the probability of no matches?
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