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A MEASURE OF THE NONMONOTONICITY
OF THE EULER PHI FUNCTION

HARrROLD G. DIAMOND AND PAUL ERDOS

1. Introduction. Let f be a real valued arithmetic function
satisfying lim,.. f(n) = +<o. Define another arithmetic function
F = F; by setting

Fi(m) = #{5 <n: f(5) = f)} + #{7 > n: f(5) = F(m)} .

The size of the values assumed by the function F' provides a meas-
ure of the nonmonotonicity of f. In particular, F' is identically zero
if and only if f is strictly inereasing.

Here we shall take f to be @, Euler’s function, and study the
associated function F,, which we henceforth call F.

We shall show that F(n)/n is asymptotically representable as a
function of @(n)/n. Then we shall prove that F(n)/n has a distribu-
tion function. We shall study max,., F'(n) and min,., F(n) and in-
vestigate conditions on ¢(n)/n which lead to large and small values
of F(n)/n.

We express our thanks to Professor Carl Pomerance for a number
of helpful comments and suggestions, and to Dr. Charles R. Wall
for his unpublished data on the density function of Euler’s function.

2. An asymptotic formula for F, For 0 Za, b < <o, let
D(a, b) = £{n = a: p(n) = b} .
We have
#Hi <nipld) = p)} = n — O(n, p(n)) + £{7 < n: p(4) = @(n)} ,
57 > n: p(§) < p(n)) = B(c2, p(n) — B(n, p(m)) .
Thus
F(n) = n + @(, p(n)) — 20(n, p(n)) + £{7 < n: p(j) = p(n)} .
It is known that
D<o, y) = Cy + O(ye™ ™) ,
where I denotes the constant {(2){(3)/L(6) ~ 1.9436 [1]; and
O, y) = xg(y/x) + O(ye " ™%7) ,

where ¢ is a continuous, increasing function on [0, 1] which is de-
termined by a contour integral [2].
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Moreover, g is strictly concave, as we now indicate. We have
from [2, Eq. (12)] that

(0) ag'(@) = gla) — D), 0<a=1.
Here

D.(a) = lim %#{n Zz:ip(n) < an}.

It is known that this limit exists and defines a continuous funection
of a (cf. [6, Ch 4],[7, §5]). Clearly D, is nondecreasing. In fact,
it is known to be strictly increasing on (0, 1) [8, pp. 319, 323].

If we integrate the differential equation for g and use the fact
that ¢(1) = 1, we obtain

gla) = a + a:SLt‘Z L(E)dt ,
and differentiating again, and differencing, we get for 0 <u<v =1
¢ — g = — D) + LD,w) - | tDy(tyat
= —{‘rap,) < (D.w) - Dy < 0.

Thus ¢ is strictly concave on (0, 1).
Noting that
#Hi < nip(j) = p(n)} = @(co, p(n)) — @(=0, p(n) — 1)
= Ofp(me= ™) ,

we have

Elw) g 4 cole) _g(2®) 1 ofel) -

If we set
(1) h(u) =1 + Cu — 2g(u)

and enlarge the error we obtain the asymptotic formula
(2) T — Wpmym) + 0.

Below is an approximate graph of h. Note that h is strictly
convex.



A MEASURE OF THE NONMONOTONICITY OF THE EULER PHI FUNCTION 85

Figure 1

3. A distribution function.
THEOREM 1. F(n)/n has a continuous distribution function.

Proof. Let h, denote the minimal value of h and u, the point
at which the minimum is achieved. Let h* denote the branch of
the inverse function of h which maps [k, 1] onto [0, w,], and let B**
denote the branch which maps [k, { — 1] onto [u, 1]. Also, let
h**@) =1 for L —1 < a=<1. Note that »* and h** are well de-
fined, even at wu,, on account of the striet convexity of h.

Since D, and h are continuous, for h, = @ <1 we have
D (h**(e)) — D,(h*(a)) = lim %#{n = h¥(a@) < p(n)/n = h**(a)}

= lim l#{n = x: Mep(n)/n) = a},

z—soa 0

a continuous function of @ which vanishes at a = h, and equals 1
for @ = 1.

Given ¢ > 0 we have

Hmi#{n = h(q’}—(m) =a— a} = lim l#{n = x F(n) = a}
g I n FET n
éliml#{néx:ﬂﬁéalél i#j-néx h(ﬂ)ga+e}
g—c0 0 n J' [ { n

It follows that if h, < @ < 1, then
Dy(@) = lim %#{n < % < a} = D,(**(@)) — D,(h*()) .

Further, D, (@) =0 for @ < h, and Dg(a@) =1 for @« > 1. Thus F(n)/n
has a continuous distribution funection.
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4. Upper estimates, We shall exploit the observation, based

on the graph of &, that F(m)/n is near its largest when o(n)/n is
near 0.

LEMMA 1. For all large x there exists an integer mn, = n,(x)
such that © —zlog™ e < m, <2 and

(3) @(n,)/n, ~ e 7/log log & ~ min gp(m)fm .
1=m=zx

Proof. Let p, denote the +th prime (in the usual order) and
P(r) the product of the first » primes. Choose ' = »'(x) to be the
largest integer for which P(»') < x/log x. The prime number theorem
implies that

>, logp ~p,,

and hence, by an easy calculation, p, ~ log x.
Set n, = [2/P(»")]P(r"). Then 2 — P(»') < m, = 2 and
(1) < II (1 = l) g O e OO i
Ny PR P log p,. logloga
It is known (cf. [5, Th. 328]) that

min @(m)/m ~ e77[log log @ .

THEOREM 2. As ©-— o=,

max Fi(n) = o — (Ce™

n=z

+ o(1))z/log log @ .

Proof. Let a, (presently to be specified) be a small positive
number such that h(a) < h(e,) <1 for a, < @ < 1. Suppose first
that o(n)/n =®,. Then there exists an ¢ > 0 such that F(n) <(1 —¢&)n
for all sufficiently large n and if 2 is large, F(n) < (1 — &)z for all
n = x and satisfying o(n)/n = a,.

For small positive values of @ we use the approximation

g(a) = Ca + Ofexp (—exp 1/(ka))} ,

which holds for some absolute constant &k [2, Lemma 4]. If we
combine this estimate with (1) and (2) we obtain

m: ) | — n , —viogn
(4) = 1—i€ = + O{exp( exp}@(n))} + O(e Ne

The function @+—1 — {a + ¢ exp {—exp 1/(ka)} is decreasing for small
positive @. Choose @, to be positive but so small that the function
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is decreasing for 0 < a < «, and h(a,) > { — 1.
Now for o(n)/n < a, we use the inequality

p(n)n = (677 + o(1))/loglogz, 1l=n=uwx,
to obtain the bound
F(n)=x{l — (Ce 7 + o1))/logloga}, 1=n=u=x.

The o(1) term tends to zero as x — <o (independently of n).
On the other hand, taking #, as in the lemma yields

F(n,) = nfl — (Le7 + 0(1))/10g log x}
= z{l — (Le77 + o(1))/log log =} .

Define a sequence {n;} of “new highs” of F by the condition
F(n) < F(n,) for all n < n,.

We note for later use that @(n,)/n, ~ e 7/loglog n, as k— co.
We can see this by noting first that @(n,)/n, — 0 by the first para-
graph of the proof of Theorem 2. Then we write (4) with n = n,
and Theorem 2 with o = n, and equate the expressions to obtain

1820 q 4 o)) + O™ =1 - S o)
Ny log log n,

Theorem 2 has two immediate consequences.
COROLLARY 1. F(n) < mn for all sufficiently large w.

COROLLARY 2.

Ny — N = o(nfloglog ), k—— = .

Proof. For n, = x < n,,, we have
max F(n) = F(n,)

or

1 G +o)) _ m‘l _Cem+o1))
log log 2 log log n, !

Let @ — m;,,— to obtain the corollary.

REMARK. The size of n or =, plays a vital role in the two
corollaries. The first corollary is false for small » as the examples
F(13) = 13 and F(73) = 75 show.

The proof of Theorem 2 implies that ¢@(n,)/n,— 0 as k- eo.
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500 (the limit of the calculation). The explanation of this anomaly
(apart from the effect of the error term) is as follows. Let u, be
the number in (0, 1) for which i(u,) = £ — 1 (ef. (Fig. 1)). It appears
from (4) that u, ~ .03. Simple estimates show that o(n)/n > .03
for all m < ¢*. Thus for n of modest size, the largest values of
h(p(n)/n) occur for ¢(n)/n near 1.

We conelude this section by establishing a lower bound inequality

for n.,, — M.

Numerical computation shows that the n,’s are primes for all n, <

THEOREM 3. For any € > 0

Mpsr — Ny > My =, Jo— co .

Proof. Given ¢ >0 and n,, let p* = p*(k) denote the largest
prime such that [[,-,-» = n,. The prime number theorem and
simple estimates imply that p* ~ logn,. We shall show that at
most ep*/log p* primes p = p* fail to divide n,. Similar estimates
apply for m,,, and thus n, and n,,, have at least w(p*) — 2[ep*/log p*]
prime factors in common.

Let w be an integer such that

n(w) = w(p*) — 2[ep*/log p*] .
Then we have

B—M=lp=I2 Il »*.

pEw pPEPY w<p=p*
Also,
2 logp = (log p9[a(p™) — n(w)] = 2ep™ ,
and so
Misy — Ny = —%_ exp [—2ep*] = ni * .
2p*

We introduce the integer

N=[mgr L.

p<p*

Since N = n, we have F(N) = F(n,). We can estimate F(N) and
F(n,) because of the special form of N and n,. Also, N is not much
smaller than n,. These facts will enable us to show that

Hp < p*: p fn} = ep*llog p* .

Let v denote the number of primes p < p* such that ptn,.
We suppose that v > ep*/log p* and shall deduce a contradiction.
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At most v + 1 prime divisors of %, (counting multiplicity) can exceed
p*, as we now indicate. Suppose that there were at least v + 2
prime divisors of n, exceeding p*. For each of the v primes p, < p*
with p, t n. associate a prime p; > p* with pi|n,. Each of the p"’s
can be used at most as many times as it occurs in the factorization

of n,. We have
n, >n' =m, III D,/ ;

further ' is divisible by each prime not exceeding p* and by at
least two primes exceeding p*. Thus n, > 2’ > p**[[,<,. ». On the
other hand the definition of p* implies that =, < 2p* [[,<,. », con-
tradicting the last inequality.

Let y and z denote composite numbers sueh that =(p*) — z(y) = v,

n(z) — w(p*) = v + 1. Then
P =p (-5 (-5 L)

M »spe Dy ping
2 -Gl 0= -

Letting v = yp*/log p*, ¢ <7 =1, we have
n(y) = n(p*) — v = 1 — 7 + o(1))p*/log p* ,
and so ¥ = (1 — % + o(1))p*. Similarly z =1 + » + o(1))p*. Thus

(- %)11 (L= %) = %(1 + O(e™ 7))

Differentiation shows that, for fixed ¢, the function

N— log* g
log ((1 — n)g) log (1 + 7)q)

is increasing for 0 < 7 < 1. Thus

(log p*)* o (log p*)*
(log y)(logz) — log ((1 — &)p*) log (1 + &)p*)
> {1 e+ &2+ O(Sa)}_ljl jiB= &2 + 0(53)}—1
log p* { log p*

s! 63 52
Z14 2o+ 0(S o+ 2.
log p log p log® p*

Thus

JL-3) - ) E s
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provided that % is sufficiently large and ¢ sufficiently small. It

follows that
)= (1 ) 03,

We have @(N)/N ~ ¢ 7/log log N because of the form of N, and
@(n)/n, ~ ¢ 7/log log n, by the argument following the proof of
Theorem 2. It follows from (4), that for some a > 0,

F@ _ 1 ¢2®) o ofexp (—log" ))
2 a
holds for = N and z = n,.

We combine the formulas for F(n,) and F(N) with the bound
we obtained for @(n,)/n., the inequalities

?uzNZ[ﬁ" lHp>m— 1 pgm(l—-&-)

<p* <p* %
pq‘pJ p<p p<p
and @(N)/N = [],<,-(1 — p™") to obtain

p*
<N{1-¢ I (1-2) - cexp(~log" M)} < F() ,
p<p* D
where ¢ is a positive constant. This inequality is impossible, since
the n,’s are the new highs of F. It follows that at most ep*/log p*

primes p = p* fail to divide =, and hence our lower bound for
Nyin — M holds.

5. Small values of F'(n)/n. We have shown in §2 that F(n)/n ~
h(p(n)/n). The function h attains a minimal value h, at an interior
point %, of (0,1), as we presently shall show. The point w, is unique
by the strict convexity of h. Thus F(n)/n is, asymptotically, near
its minimal value h, when @(n)/n is near u,.

Numerical data suggest that u, is near 1/2 and h, is near 1/3.
We shall show that .473 < u, < .475 and .321 < h, < .324.

LemMA 2. R'(0) = —C, (1) = L.

Proof. We have by (1) that A'(u) = { — 2¢'(w). The estimate
(cf. [2], Lemma 4)

g(u) = Lu + Ofexp (—exp 1/(ku))}
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implies that ¢'(0) = , and hence h'(0) = —{. Equation (0) implies
that ¢’(1) = 0, and hence h'(1) = L.

Thus the minimum of k is achieved in the open interval (0, 1).

We shall now establish a formula which will lead to estimates
for ¢(1/2). This will be useful because of the close connection be-
tween ¢ and h and the proximity of u, to 1/2.

LEMMA 3.

g(1/2) = i

m[.rt

(G- ol3))- (% ~o(5))

o
o(35)) -

tnr“c

{
1
(5~

iy
(=]

Proof. We estimate _
#{n = 2:nodd, p(n) = ¥},

a problem closely related to the main theorem of [2]. The generating
function

F(s, z) Z"n_“rp(n)
= TT{L + 570 — DL+ " 4 p& 4 o)

= H {1 —p™* + p7%p — D} + 2)

1 s, 22 + 2)

was used in [2], and the funetion g was represented by

12440 H (1 z z)
= N B P , 02a=s1.
008) = omi Sl o slg “

The formula is valid at the end points by uniform convergence of
the integral.

We delete the even integers and write

Fi(s, 2) = él n'p(n)"*

n odd

= TG %G + =2 ]

The functions F'(s, z) and F (s, z) have the same singularities in the
region

{(s,z2)eC x C:Res + z >0},
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because any singularity of the new factor (1 — 2 *)/(1 —27*° + 27)
is cancelled by a zero of [] (s, z), and the new factor has no zeros
in this region.

It now follows, mutatis mutandis, that

gu(a) = hm —#{fn < x: nodd, p(n) < az}

—eea

SU'Z{I-V n (1 z, z) az(l <D 2:)—1032
273% -t (1l — )

- zmS;w H%l—_%)z_){(%) — (&) + (&) e
= g(a/2) — g(a/4) + g(e/8) —

If we note that g,(1) =1/2 and sum the series {/4 — /8 + /16 —---
we obtain the lemma.

Now g is concave and g(g) ~ (e as ¢ > 0. Thus the series in
the formula for g(1/2) is alternating with terms decreasing to zero,
indeed at a geometric rate. To further exploit our formula we
must first estimate D.(¢) for ¢ near 0.

LEMMA 4. D,(t) <128, 0 <t < 1.
Proof. By Chebychev’s inequality

ﬂ#{ﬂm‘f”(ng} S IS8T,

u.';f'(‘flzzm 224 (’D(ﬂ')

and we estimate the last sum by writing

(njp(n))® = (L+B)(n) ,

where = denotes multiplicative convolution and S8 is a nonnegative
multiplicative function satisfying B(p)=(p*—(p—1)")/(p—1)}, B(p*)=0
for all primes p and all exponents a = 2.

Thus

Now
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S 3p° —3p + 1) 1)®
-y i+ 2
Eak'y pip—1p U p

4 8 _ 3
=C(2)"H{l+ 6p' + 4p ?p p+1}.
» P

It is easy to check that for all p =3

6p' +4p' —3p* —p + 1 < Tp'.
We have

va i+ (e )+ F)0+ Pllew { g}

and

72p‘“<75 t-dt = .035 .

pall

Thus v < 12, and D,(t) satisfies the claimed bound.

We combine the last two lemmas with numerical data of Charles
R. Wall [10] on the density function D, to obtain upper and lower
estimates for g(1/2).

LEMMA 5.

% + 5 00154 < g(1/2) <% + % — .00075 .

o3 [

Proof. The alternating series representation of ¢(1/2) leads to
the inequalities

2 % G -odD) -G -3+ G @)
ssms d e $- (S o) (£ - D))
The differential equation (0) has the solution
(5) wlg(u) =€ — S:Dp(t)t"gdt .

The constant is evaluated here by noting that ¢’(0) = {. The integral
converges at zero by the preceding lemma. Thus we have

—k
2K _ g(27H) = 2~ g“ D.(t)t~dt .

It follows that
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(G o)~ (G~ o)) + (G~ (o)

igif; @ i lsus d_t | E 1/16 ‘E
£ DS+ 2\ D+ 1egn D%

We estimate the three integrals from above, using the bound of the
preceding lemma for 0 =< ¢ < .007 and the upper bounds of Wall for
007 < t = .25. We obtain the upper bound .00154.

Similar treatment of

gl -5~ 45
leads to the lower bound .00075.

LEMMA 6. (Main formula.)
2D,(1/2) — 1 + /6 + 2R — Sl"zt--ldag(g) ,
where 00075 < R < .00154.

Proof. We have by (5)

9w) _ gA/2) _ ("5 pvi-2de
- L S D.(t)tdt .

2

From (1) and the fact that 2'(u,) = 0 we get g'(u,) = /2. Combining
this with (0) we obtain

gu) = ul/2 + De(u,) .
This expression, Lemma 5, and the preceding integral yield

D, (u,)

_1+5 1oR= rsDF(t)t‘zdt .
Uy b g

Integrating by parts we get the desired expression.

THEOREM 4. u, > .473 and h, < .324.

Proof. Starting from Lemma 6, we write

2D, %) - % + 2R = {S” + [ lean,

AT L]

l 1 —
= ={D(5) — D(A99)) + o (D(-499) — Dy(498))

1 (o ok — D
4o 4 R{Dy(-m) — D(.A475)} + e {D(.475) — D, (w,)} ,
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Note that this inequality is valid regardless of whether u, = .475
or not.
We rearrange terms, isolating D,(u,):

Dyw)) — 1 _ € _ 1 .1
s ST g S (.499 .5)‘0"('499)

1 1

R (E - m)ﬂp(.ms) ,

If we use the upper estimate for R and the lower estimates of [10]
for D.(.475), + -+, D,(.499), we find that D,(u,) > .3380.

The stated inequalities follow at once from this bound. First,
we have from [10] that D,(.473) < .3362, and thus u, > .473. Next,
it follows from Equations (0) and (1) that h, = 1 — 2D.(w,). Thus,
hy, < .324.

We also have bounds for u, and h, in the opposite directions.
THEOREM 5. u, < .475 and h, > .321.

Proof. Using Lemma 6 again, we write

470 }‘

2D¢(%) —1+ % L 2R = {S i S t1dDy(2) .

ity }

This time we express the first integral as an upper Riemann-Stieltjes
sum and sum by parts to obtain

i D.(.5) 1 |
tdD.(t) < Ze - D.(.499)
S; of) = 499 +(.498 .499) 5(:499)
+ oo (o — oD 476) — DeATO)
A75 476 475
Thus
475
where
1=1-% _op+ (L _1\p, s o B Ny
6 <.499 .5) KB (.475 .476)D"( L

We estimate I from above by wusing the upper bounds for
D,(.476), -+, D, (.500) from [10] and the lower bound for R from
Lemma 6. We obtain the inequality

(6) S'mt“dDP(t) S — 145,

)]

D,(.475)
475
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from which both assertions of the theorem will follow.
The bound D,(.475) = .33969 from [10] implies that

imrwpgw>.mms>o
and hence wu, < .475.
Next, since u, > .473, we obtain from (6)

1 D, (.475)
—{D.(.475) — D, = e L T145 .
_473{ o ) o(Ue)} = 475

This inequality and the bound D,(.475) < .34166 from [10] yield
D,(u,) < .3394. Thus, we finally obtain #, = 1 — 2D,(u,) > .32L1.

6. Lower estimates for F. The sequence F(n) tends to infinity
with n, since

F(n)/n ~ hipn)/n) = hy, > 0.

In this section we are going to establish

THEOREM 6. As x> o=,

min F(n) ~ hx .

n>E

This estimate follows easily from the following

LEMMA 7. Let ae(0,1) and let ¢ >0 be given. Then there
exists an X (depending on ¢ and @) such that for each x = X, the
interval (x, ® + ex] contains an integer j with |p(j)/j — | < e.

Proof. The argument proceeds in two steps. First we obtain
some integer j, (not necessarily in (x,  + ex]) composed of at least
two distinet prime factors, for which |@(j,)/j, — @] <e. Then we
show that a suitable multiple of j, lies in (x, * + ex] and satisfies
the same ¢ estimate.

Let @ =a, Let q, be the smallest prime p, for which 1 —
P>, Set a = a(l —q;)™" and j, = q,. Repeat the foregoing,
choosing ¢q, to be the smallest prime p, exceeding ¢, for which
1—p'>a. Let 5,=qq, and a, =1 —¢;")"'. f1>a >1—
¢/(a + €), we can stop here. Otherwise we continue until we obtain
an integer j, = q.q, -+ - ¢,, * = 7(@, ¢), such that

a=p(j)i.<a+e.

This is possible to achieve since 1 —p;'—1 as v and
21 =p)=0.
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Set j, = 7* and consider the sequence {7%¢i¢%:a,b=0,1,2,3, ---}.
Clearly
PINNI* = p(3*¢ia)/(5*¢1q?) -
It suffices to show that for each large x the interval (x, x + ex]
contains some ¢%q}, a, b = 0.
It is well known that the sequence {¢'qi: a, b€ Z} is dense in the

positive reals for ¢, g, distinct primes. Choose ¢ >0 and —b <0
such that 1 < ¢ig;" <1 + &. Given x, set

s = |(log «)/(log ¢,9,)] ,
t = [(log ¢.q.)/(log q5¢:")] + 1,

and a, = qi"*g ", (0= k= 0).
We have

a, = (QLGE)“ =z < (Qqu)s-I.l < a,
and
1 <ap/ae=qig;" <1l+e¢
Thus there exists some ke[l, ¢] such that @ < ¢j"*"gi™ < x + eu.
Finally, we must insure that the exponent s — kb = 0. This we

do by noting that a, b, and ¢ depend only on ¢ and are fixed, while
s— o= with a.

LEmMA 8. Given ¢ > 0 there exists an X = X(¢) such that for
each x =X the interval (x, x + ex] contains an integer 7 with
Mep(9)/5) < hy + 2¢.

Proof. Since h is convex and differentiable we have

A (@)| = max {|R'(0)], ()|} =C, 0=x=1.
The mean value theorem and Lemma 7 imply that there exists an

integer j in each far out interval (z, @ + ex] such that

| k(p(2)/3) — k| =C <%,

Proof of Theorem 6. On the one hand,

min F(n) = min (nh(p(n)/n) + O(ne"™")}

n=x

= xhy, — cxe” %% = b + o(x) .

On the other hand, for given ¢ > 0 and all sufficiently large z there
exists an integer m such that
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r<mz=a+exr, hpm)m)<h + 2.
For this integer m we have
F(m) < (hy + 28)m + cme "™€™ |
and hence
min F(n) < F(m) S (k, + 26)(& + ca) + 2owe™ 7
| = hax + o(x) .

Let {m,)7 , be the sequence of discontinuities of x:— min,., F(n).
(Set m, = 2.) We can deduce from Theorem 6 the following

COROLLARY 3. m,,/m,—1 as k— oo,

Proof. For m, = x < m,,, we have

min F(n) = min F(n) .

nmy e E

Thus h,m, ~ by, Let @ — my, —.

7. General arithmetic functions., We conclude by showing that
rather general arithmetic funections + possess an associated mono-
tonicity measuring function F' = F. Our argument is related to
one oceurring in |[4]. It appears unlikely that there are general
analogues of our numbered theorems in §§ 3-6 which are valid with-
out more specific arithmetic information.

It is convenient to estimate the two components of F' separately.

Let
Fi(n) = #{lm < n:¥(m) = y(n)},
Fy(n) = #{m > n: y(m) = y(n)} .

In both cases we assume that «+ is positive valued and that +(n)/n
has a distribution function Dy.

THEOREM 7. Let o+ be as above. Then, as n — ==,
(7) Fm) = )| 1= Dy}t dt + o) .
Further, assume that there exist positive numbers ¢ and o such that

( 8 ) #{?n' € (x, 213] qﬁ‘(m)fm < u} = cx,yl-l-a

holds for all ye(0,1) and all x = 1. Then
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in)/w g
(9) Fyn) = q,ir(‘n)g Dy)t=dt + o(n + (n)) .
t=0

REMARKS. A. It is a simple consequence of hypothesis (8) that
there exist at most a finite number of integers » for which (n)
assumes any one value. Also, (8) implies that the integral in (9)
converges at the origin.

B. For application to the Euler @ function, the estimate

3% (myp(m)) < n

(ef. [4]) guarantees that (8) holds with 0 = 1. Condition (8) is
vacuous for the sum of divisors function o, since g(n) = n for all
n = 1.

C. Can we replace the equal sign in (7) or in (9) by “~” and
drop the o-term? This is not generally permissible for (7) as one
can see by the case in which Dy(a) = 1 for some finite a, J(n)/n = «,
and there exists at least one integer m < % such that +r(m) = (n).
The conjecture is also generally false for (9) as well, as we can see in
the case where D,(t) > 0 for all £ > 0. By Remark A there exists an
infinite number of integers n for which Fy(n) = 0, and for these =
the asymptotic relation would fail.

Proof. We shall show that (9) holds. The proof of (7) is similar
but simpler, and is omitted.

Proof. We introduce a partition of (n, ). Let ¢ >0, KeZ*
with ¢eK > 1 and let n' = n + (n). Write

(n, o) = li}l(n 4+ (2 — Len', n + ten’| U (n + Ken/, o) .
For the finite intervals we use the following estimates, which
are valid for 1 = a2 <y < co:
#{m e (x, y]: y(m) = ma(n)/y}
def
< £'= #me (@, yl: (m) < y(n))
=< #me(x, y|: y(m) = mip(n)/x},
and hence
(¥ — ©)Dy(p(n)fy) + o(y) = & = (¥ — 2)Dy(yp(n)/x) + o(y) .

If we set

5 = n’ 3% Dy(y(w)(n + ien’))
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and

Fya, b) = #{m e (a, a + bl: y(m) = ¥(n)},
then we obtain

> + Ko(Ken') = Fy(n, Ken')
= 3 + en'Dy(y(n)/n) — en’Dy(yr(n)/(n + Ken'))
+ Ko(Ken') .

Now >} is an approximating sum for the Riemann integral

i sn'S:;D,y(np'(%)/(ﬂ + ten’))dt

iny/n
= | Dy(s)sds ,

s=Vin)/lntKen')

and since the integrand in the first expression is monotone, we get
|[I — 3| <en'. The hypotheses on +(n)/n imply that

Dy() S Cy*, 0<y<l1.
Thus

Wim/ (-t Ken') o C W(n) Fl C -
(ttdr s L N £ O _
So Dy()t7dt = F} (n 4 Ke:n') =3 (Ke)

Combining these estimates we find that

F(n, Ken') = v(n)r‘mm(t)rzdt
+ O(en') + Ko(Ken') + O((Ke)™*n') .
Now we treat the unbounded interval. For each # = 1 we have

Fy(z, ) = #{m € (», 2x]: y(m)/m = (n)/x}
= Ca(y(n)fx)y ™ .
Thus

Fyn + Ken', =) = Cyp(n)*(n + Ken') (L + 278 4 477 4 +++)
L P(n)(Ke)™" .

It follows that
Ae{n)/n
Fm) =y Dyttt at
+ O(en’) + K*o(n') + O((Ke) n') .

If we first choose ¢ small and then K so large that (Ke)™ is small,
we obtain the desired asymptotic.
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