Some Extremal Problems in Geometry V

Paul Erdos and George Purdy

Continuing our work of [3] we obtain lower bounds on the number of

simplices of different volumes and on the number of hyperplanes determined
, . k . . k-1 .

by n points in E ', not all of which lie on an E and no k of which lie
on an Ekﬁz. We also determine the minimum number of triangles t determined
by n noncollinear points in the plane and discuss what values of t can be
achieved.

L. M. Kelly and W. O. J. Moser [4] proved a number of results that

we use in this paper. They proved that if n points are given in the real

projective plane, with no more than n - k points collinear, and if

(1) n > l/2{3(3k—2)2 + 3k-1}

then the number of lines t containing two or more of the points satisfies
(2) t > kn - 1/2(3k+2) (k-1).

The result is therefore true in the euclidean plane also. Putting k = [c /B],
2
we see that (1) holds for n sufficiently large if ¢ < 2/27, and for such

c, we have

(3) t 2_cn3;2 + 0(n),

the requirement that n be sufficiently large now being redundant. Kelly
and Moser also show that if ty is the number of lines containing exactly

i of the points, then



(4) tg T3+ ] (aed)e,
i>4
i i >
Adding t, + t3 to both sides of (4) we obtain 3 max(tz,t3) > 2t2 + t3
3 + t2 + ty + t, + ... =3+ t. Consequently,
(5) max(t, t,) > 1 + lt
2,3 — 37

This useful inequality first appears in P.D.T.A. Elliott's [2] as (6).

In [3] we proved the following

Theorem 1. Given n points in Ez, not all on a line, the number of different

areas determined by the triangles formed from these points is at least

3/4 ; § s
cn , where ¢ is a positive absolute constant.

Here we prove the following:

: ; o w3 .
Theorem 2. Given a set S of n points in E°, no three on a line, not all on

3/4

a plane, there are at least c¢n distinct volumes among the simplices.

Proof: Fix a point P of S and project the remaining points of S from P
onto a plane T, obtaining n - 1 distinct projected points. Suppose that

there is a line in T containing at least % n points of S. By theorem 1

3/4

there are cn different areas among the triangles, and fixing a point

3/4

Q of S not on the plane yields cn different volumes. We may therefore

suppose that no line of T contains more than n/2 points, and by (3)

3/2

3/2 i . L . . ;
there are at least cn connecting lines in M. These give rise to cn

planes through P containing three or more points of S. Let ﬂO be one

of these planes. Let ﬂl,...,ﬂs be the connecting planes parallel to ﬂo,

and let

€+l""’ﬁr be the planes parallel to 7. containing one or two

0



3/4

points of S. We may suppose that r < en for any € > 0. To see this,

pick a point Xi from m, for 1 < i < r and 3 points A, B and C from 7

i 0’
The simplices XiABC determine at least r/2 different volumes. Hence we may

s
indeed assume r < a:n:i/4 for any positive £. Now y \ﬂi| Zn- 2f:n3ﬂ' > %n .
i=1

and by a well-known inequality

s (|, | 3 3 3 3/2
y I 1 > E i, 3 > cn. > el = &n
- \13 - 6 \2s ) o S2 __E2n3/2 E:2

i=1
Taking the triples from all the cn3/2 parallel families, we obtain
(n) 5 cn3!2cn3fz _ cn3
3/ — 2 z *
= £

which is impossible if £ is sufficiently small, and the result follows.

Remark. Erdos has made the following conjecture: There exists a constant
¢ > 0, independent of n and k so that if there are given n points in the
plane, no n - k on a line, then the points determine at least ckn lines.

If true, this conjecture with k = n/2 together with the proof of
theorem 2 implies the existence of at least cn distinct volumes.

In Ek we have

k-2
Theorem 3 Given n points in Ek, k > 3, no k on an E and not all on an

Ek-l, the k-dimensional simplices with those points as vertices have

ak k - 2
] i s =3 (84 = — b > -
at least dkn distinct volumes where K e =1 and dk 0

To prove this we need the following

Lemma 1. Given n points in Ek, no k on an Ek—z, not all on an Ek”l, there

k- L ) :
are at least c,n l distinct hyperplanes containing exactly k points.



Proof. If k = 2 this follows from a result of L. M. Kelly and W. 0. J. Moser

[4] stating that n noncollinear points in the plane determine at least

n ; . .
%r lines with two points. Let k > 2 and use induction on k. Let P be one
of the points, and project the other n - 1 points from P onto a hyperplane

H. No three points are collinear, and so H has n - 1 distinct points, not

k-2 -
all on an E , and no k — 1 on an Ek 3. By the induction hypothesis H

k-2 _k-2
n

contains c E spaces with exactly k - 1 points. When joined to

k-1
P these become the same number of hyperplanes through P having exactly k

points on them. If we do this for the n choices for P, each hyperplane is

counted k times. Thus we get

k-1
Ck-1" k-1
K K

hyperplanes as claimed.

Remarks. The example of k - 1 skew lines with E%I points on each shows
that the hypothesis of no k points on an Ek_2 is necessary. Dirac [1]

proved the existence of one such hyperplane when k = 3.

Proof of Theorem 3. Project the system from one of the points P onto

a hyperplane H. Then H has n - 1 points, not all on an Ek-Z‘ and no k - 1

3

_ k-2 i :
on an Ek . By lemma 1 there are at least c distinct E spaces in

k-1" k=2

H containing exactly k - 1 points. This leads to the same number of Ek—l

spaces through P containing exactly k points, and no two of these

hyperplanes are parallel. Let HO be one of these, let Hl,...,HS be the

connecting hyperplanes parallel to HO’ and let Hs+l""’Hr be the hyperplanes

parallel to H, containing fewer than k points. We may suppose that

0



a
r € En k for any fixed € > 0. To see this, pick a point Xi from Hi for

1 <i<r and k points yl,...,yk from 20. The 51mp11ﬁ:5 Xin...Yk determine
at least -% different volumes. Now ; |Hi| > n - keén L %11 if € is
i=1
sufficiently small, and by a well known inequality
s (|, | K k k=0 (k=1)
5 ity s (Jl_- K )k. 5 fn cn _ &n
: = 1 e 1 e { - i
4 k k! \2s Sk 1 (enak)k 1 ck 1
Taking the k-tuples from all the Ck-lnk- parallel families, we obtain
od nk_zcnk‘ak(k-l)
(n) k-1
k/— k-1 2
€
which is a contradiction if ak = EE% and € is sufficiently small. The

theorem follows.
s k-2 |
If the condition of no k on an E is dropped, then we can only
prove the following:

k-
Theorem 4. Given n points in Ek, not all on an E l, there are at least
€

c,n distinct volumes, where Ek = 3(3k—2)_1.

Proof. If k = 2, this follows from theorem 1. Let k > 2 and use induction

£
k- . =
on k. If there is an E 1 containing m points we get cm volumes,

; n ; o -1
otherwise we get at least-a volumes. Putting m = n , where a = (1 + ek—l)
gives

£ £
;i) k-1
mln(a, cm ) 2 cn , and the theorem follows.

and the theorem follows.

It seems natural to ask the question: Given n points in space, no

three on a line, not all on a plane, how many planes do they determine? We



are able to answer this question by the following:

Theorem 5. Under the above conditions at least (ﬁ;l) + 1 planes are determined,

provided n > 552.

Remark. The example of n - 1 points on a plane and one point off the plane
shows that the result is best possible.

We need the following lemma:

3
Lemma 2. Given n points in E”, no three on a line and n - 2 on a plane

at least 2(“;2) - [E%%] planes are determined.

Proof. Let 7 be the plane with n - 2 points and let P and Q be the other

9 )planes. It is enough to

two points. The points of m and P determine (n
show that Q can lie on at most E%;ﬂ of these. Firstly, suppose that the

line PQ is parallel to m. The m planes through P and Q intersect T in m

parallel lines generated by the n - 2 points, and so m < [?%g]. Secondly,

suppose that PQ intersects 7 in a point A. Since no three points are

collinear, A is not one of the n - 2 points on 17, and so the number of

planes through P and Q is again at most E%;%

Proof of Theorem 5. If n - 1 points are coplanar, then {E%%] + 1 planes
are determined. We suppose that there is a plane T containing at least
n - 7 and at most n — 2 of the points. Then by lemma 2 the number of

planes determined is at least 2<n—?> - [E:Z] » and this is greater than

2 2
(ngl) + 1 for n > 23.

We may therefore suppose that at most n - 6 points are coplanar. From

one of the points P we project all of the points onto a fixed plane T.



Since no three points are collinear the plane 7 contains n - 1 points,
and at most n - 7 of them are collinear. It follows from (2) and (5)
that there are at least %11— 22 lines in 7T containing either two or

three projected points, provided n > 552. Hence there are at least -%n -22
planes through P having four or fewer points on them. There are n choices

for P, and each plane is counted at most four times in this way. Hence

7

the number of planes is at least 3

(

% n ~22), and this is greater than
(n;l) + 1 for n > 55.

We next show that you get nearly as many planes if you restrict yourself

to planes containing only three or four points.

Theorem 6. Given n points in EB, no three on a line, not all on a plane,
; 2 . .
the points determine at least %11 - cn planes having three or four points

on them.

n_

Proof. If n - 1 points are coplanar, then ( 21) planes through three
points are determined. If at most n - 6 points are coplanar, then the
result follows from the proof of theorem 5. Suppose that there is a plane
T containing at least n - 7 points and at most n — 2 points. Let P

and Q be two points not on 7. From the proof of lemma 2 we see that there

. (n-=7 n-7
are at least 2 | 2 8 planes through P or Q. There are at most

five other points, and each can be on at most n - 7 planes. Hence

the number of planes tihrough three or four points is at least

2(“;?) = —“—;3} - 5a-7),

and this is greater than -%nz -cn for suitable c.



P. D. T. A. Elliot proves in [2]

Theorem 7. Let S be a set of n > 3 points in the plane, not all on a

line. Then S determines at least (n;{) distinct triangles.

Elliott's proof seems only to be correct for n > 16. Here we

present a simpler proof which is true for n > 3.

Proof of Theorem 7. Let ki’ 1 <i <r, be the number of points on the

ith line of the r lines determined by S. Then -El C;? _ (2) and the

number of triangles t is l

r (k
\

1.
:);1 2) (n - k).

re
!
|

i

If n - ki > 3 for all i the theorem follows. Suppose n - ki =1
(n—Z
2)

We may therefore suppose that n - ki = 2 for some i. There is a line with

for some i. Then there is a line with n - 1 points on it and t

n - 2 points on it. The worst case occurs when the two points not on the
: ; . : -3
line are collinear with a point on the line, and t = 2(’n2 ) + 3(n+3).

This is greater than or equal to (nEZ) for n > 3, and the theorem follows.

Remarks. The above proof does not use the fact that the n points lie in

a plane. In fact the same argument proves the following theorem about sets:

Theorem 8. Let ISI =n be a set, and let 2 < IA <n, 1 <k <m be

A
a family of subsets so that every pair (x,y) of elements of S is contained

in one and only one of the Ai. Then the number t of unordered triples

(x,v,z) so that x, y and z do not lie in the same Ai satisfies tji(n£l>.



Remark. The method of theorem 7 can also be used to show that n noncoplanar

points in E3, no three of which are collinear determine at least (n3

l) simplices.

It seems natural to ask what values of t between (;) and (11;]_) can be

achieved in the plane. We have
e I
Theorem 9. If cn < m 5(3), where ¢ is a certain constant, then there

exist configurations of n points in the plane with exactly m triangles. To

prove this we need

8/3

Lemma 3. Every integer t<(g) - cn can be written in the form

where Z Otini < n, ni > 3 and the Oti are positive integers.
i

Proof. Let n, be the largest integer such that t> (r;l) . We then have

1 3, (M n° 8/3 -1/3,1/3
—g(nl - 2)" < (3> < t< 5 -~ . Hence ny - 2 < n(l-6cn ) <
n(l—2cn~l/3), or n; <2+ n - 2cn2‘(3 <n - (:1‘12';3 for ¢ sufficiently large.

n n_+1 n n n n
1 1 1) _ 1 . 2 (1
Also t—(3) <( 3 )—(3) —(2) . Let n, be defined by(3)_<_t (3)<

n,.+1 n n n
( 23 ) . Then %{n2-2)3 < ( 32)i o ( 31) ‘ ( 21) & T/5tpoen B2,
n2—2 < 31/3n2/3(1—cn_1/3)2/3 < 31/3(r12/3 - 2/3-::111/3). Thus n, <3
ny nz n2+1 n2 n2
for ¢ large enough. Thus ¢t - (3) - (3) < ( 5 ) -l 4] = ( 2) <
2/3 n n n n.,+1
3 4/3 ; 3 1 2 3
Tn/ . Letn3’oedef1nedby(B)it—(S) —(3)-((3)

n n 2/3
Then %—(n3—2)3 & _( 1) _( 2) T2 s

1/3 2/3
n

Ny < 2+ 2114;‘95 41‘14"‘9.

3 3 2 ’



n n n n,+1 n
_ _ _ _ _ 1 _ 2y _ 3 3 _ 31 =
POt 3y =By SOy el o < ¢ (3) (3) (3)<(3 ) (3)

n, 8/9 4 n,
< i = =
2 8n"'". Then putting n, 3, we have t izl a, ( 3 and Z uini “=n

for n 3_n0. Taking ¢ sufficiently large will force n 2'n0.

Proof of Theorem 9. Let ai and ni be given by lemma 3. Place the

points so that there are ai lines having n, points on them, with the

points in general position otherwise. The number of triangles is then

n n:i.
) - gc,,im ,
and the result follows from lemma 3.

The proof of theorem 9 can be modified slightly to show

1
Iy

Theorem 10. If cn < m’K( ) , where ¢ is a certain constant, and

w 3

n ; T
m %(3) - ri, where the ros 1 < i < k are certain integers, then there
. g i 3 ; ;
exists a configuration of n points in E*, no three of which are collinear,

which determine exactly m planes.
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