
PROBLEMS AND RESULTS IN COMBINATORIAL ANALYSIS

P . Erdős

I gave many lectures by this and similar titles, many in fact in

these conferences and I hope in my lecture in 1978 I will give a survey

of the old problems and describe what happened to them . In the first

part of this paper I discuss some new problems in Ramsey theory and in

the second part I discuss some miscellaneous old and new problems .

My paper : "Problems and results in graph theory and combinatorial

analysis" in Proc . Fifth Brit . Combinatorial Conference, Univ . of Aberdeen,

1975(Congressus Numerantium XV,Utilitas Math .,169-192)contains many

problems and a fairly complete list of my combinatorial problem papers .

Denote by f2r) (n,a) the smallest integer for which it is possible

to split the r-tuples of a set S, ISI = n into k classes, so .that for

every S1cS, IS1 I e fkr) (n,a) every class contains more than a 5
1

r-tuples of 3
1

(0 <_ a < k) . The reader I hope will forgive the somewhat

clumsy notation - perhaps mistakenly I feel that this is the best way to

state the results and problems . For a=O f(2) (n,0) is the familiar

Ramsey function, the smallest integer

	

t=f(2) (n,O) for which there is

a graph on n vertices which does not contain a complete subgraph or

independent set of size i (I realise that this is a somewhat unusual way

of formulating the well-known Ramsey theorems) . It is well-known that

(1)

	

log 2
log n < f(2) (n,0) < 2log 2 log n

and more generally

I .

(2)

	

c
1
(a) log n < f(2) (n,a) < c2 (a)log n

The lower bound in (1) and (2) is given by the probabilistic method (see

P . Erdős and J . Spencer [11) .

Thus no great mysteries remain for the case r=2 (there are similar

formulas for k>2) . It would of course be very desirable to obtain an
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asymptotic formula for f(2) (n,a), but no doubt this is very difficult -

even a=0 seems hopeless at present . (This is the Ramsey case and I often

offered and still offer 100 dollars for the proof of the existence of the

limit

	

(2)
f2 (n,0)/log n and another 100 for the value of the limit, and

also offer 100 dollars for a constructive proof of the lower bound of (1)

and (2) .) It is not difficult to obtain inequalities for c 1 (a) and
Zc 2 (a), both tend to infinity if a } 2 and it would not be too difficult

to obtain rough estimates how fast they tend to infinity . The important

thing is to observe that the order of magnitude of f(2) (n,a) is log n

for every k and every 0 5 a < k.

This situation changes radically for r > 2

	

Denote by log r n

the r times iterated logarithm . Hajnal,Rado,and I proved [2]

(3)

The

c1 (r,k)logr-1 n < fkr) (n,0) < e 2 (r,k)lo
g(r-2)

n .

probability method only gives

(4)

	

fkr) (n,0) < c2(r,k)(log n) 1/r-1 .

We are quite sure that in (3) the lower bound gives

order of magnitude . In fact Hajnal proved this for k ? 4 .

A completely new situation develops if a is close to 1
2

(respectively k) . For simplicity we mostly restrict ourselves to r=3,

k=2 wherever possible . Let G(3) (n,[an31) be a three-graph (uniform

hypergraph with r=3) of n vertices and [an 3 ] triples . I proved [3]

that it always contains a k3 (t,t,t) with t=[c3(log n) 1/2 ] where

k 3 (t,t,t) has 3t vertices which are divided into three disjoint sets

JAI = IBI = ICI = t and its t3 edges are (x,y,z) xeA, yEB, zEC . The

probability method easily gives that this theorem is best possible apart

from the value of e3 and in fact the method easily gives that one can

divide the triples of G(3)(n,(3)) into two classes so that every k3 (t,t,t)

for t > e 3 (log n)
1/2

contains a triple from both classes .

Further I proved [4] that if we divide the triples of a G(3)(n,(3))

into two classes there always are two sets IAI=IBI=[eg(log n)
1/2 ]

so

that all the triples (x,y,z), xeA, yeA, zEB are in the same class .

Apart from the value of c 4 the result is best possible .

Observe that a G(3f (n,[an3]) a <
6 does not have to contain such a

the correct



configuration - here the splitting of all the triples into two classes was

strongly used . I am unable to decide the order of magnitude of the value

of the largest t for which there are two sets IAI=IBI= t so that all

the triples of AuB which meet both A and B are in the same class .

It is quite possible that the right order of magnitude of t here is

loglog n .

Both these results easily imply that there is an absolute constant

ő <
2

so that for every a > 6

(5)

	

c5 (a) (log n)
112 < f(3)

(n,a) < c 4 (a)(log n) 112

The lower bound is (3), the upper bound was obtained long ago by Spencer

and myself [5] . To see this observe that the existence of a k 3 (t,t,t)

all whose triples are in class, say I, implies that if IAI=IBI=ICI= t

are the vertices of our k 3 (t,t,t) the distribution of the triples

cannot be "too uniform" in all 7 sets A,B,C, AuB, AuC, BuC, AuBuC . The

simple verification can be left to the reader . This proves (5) . Further

a similar argument easily gives (ö < , a > ő) .

(6)

	

c5(d,k)(log n) 1/2 < f(3) (n,a) < c4(ő,k)(log n) 112

Let us now assume for the moment that

3)(7)

	

o 6loglog n < f2(n,0) < 07loglog n

has already been proved (in fact at the moment by Hajnal this is known only

for k ? 4 thus what we say at the moment only applies for k ? 4) .

f(3) (n,a) is for a=0 of the order of magnitude loglog n . For some a=ö,

0 < ő < 2 it becomes of order of magnitude (log n) 1/2 and it follows

from the probability method that for ő < a <
2

this is the correct order

of magnitude . Clearly

	

(3)
f2 (n, a) is for fixed n anon-decreasing

function of a and it would be very interesting to determine where the

jump occurs (from loglog n to (log n) 1~2 ) and if the jump occurs in

several stages . If I can hazard a guess - completely unsupported by

evidence - I am afraid that the jump occurs all in one step at 0 and for

0 < a < 2 f23) (n,a) grows continuously, It would of course be more

interesting if several jumps would occur, perhaps for r > 3 where
(r)

	

1/r-1f2 (n,a) has to grow from logy-1 n to (log n)

	

there is more



chance for this but I know nothing and hope one of my readers will be

more successful . In any case I offer 300 dollars for the clearing up of

this mystery, or for any substantial progress in this direction .

There is another older problem of mine on hypergraphs which also

shows the increase of complication from r=2 to r > 2 and which I now

restate. Let G(r) (ni;m i) , n, < n 2 < .
.-

be an infinite sequence of

r-uniform hypergraphs . The edge density of these hypergraphs is said to

be a if a is the largest number for which for every T there is an
U .

ni which contains a subgraph G r) (ui;v i ) u i > T, vi > ( a+o(1))( Z) •
r

The theorem of Stone and myself [6] shows that for r=2 the only

possible values of a are 1 - k, k=1,2, . . .,m . I proved in [31 that for
r

r > 2 if a > 0 then a ? rr. First of all I conjecture that there is

a constant er < 0 so that r if a > r!/rr then a > r
rr

	

r+ e . Next try

to determine for every r all possible values for the r density of a

family of r-uniform hypergraphs . It seems certain that this set is

countable but our work with Brown and Simonovits ([7] most of which is

still unpublished) seems to indicate that a complete answer to this

question will not be easy .

Some of these questions could be investigated for the subgraphs of

other graphs than the complete graphs e .g . it is easy to see that the

edge density of subgraphs of the complete bipartite graphs is either 0 or

1 but perhaps there are other classes of graphs (or hypergraphs) where non

trivial statements can be made about the edge density of subgraphs . The

graph of the n-dimensional cube seems a natural candidate - unfortunately

I do not believe that there are interesting and non trivial theorems here,

perhaps a reader will be more successful than I . The n-dimensional cube

has 2n vertices and n2
n-1

edges . Let G be a subgraph having

c n 2n edges - is there an a so that there is a k-dimensional subgraph

(k=k(n)

	

as n

	

~) so that this subcube has > a k 2k edges of G2 .

I very much doubt that this is true .

A similar situation may prevail with Van der Waerden's Theorem :

Denote by F(k,k,a) the largest integer so that we can split the integers

not exceeding F(k,k,a)

	

into two classes so that both classes contain

at least ak (a <
2) terms in every arithmetic progression of k terms .

It is not hard to prove by the probabilistic method that

F(k,k,a) > (1+e )k, and for a=0 obtain the classical Van der Waerden theorem .
U



It is possible that the order of magnitude of F(k,k,a) depends

significantly on a but nothing at all is known about this .
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II

I now state a few miscellaneous problems and results which

occupied me and my coworkers recently all of which have a combinatorial

flavor .

1 .

	

Kneser defined a graph as follows : Let ISI=2n+k, The vertices of

our graphs are the (
2n+k
n ) subsets of size n of S . Two vertices

are joined if the corresponding subsets are disjoint . Kneser conjectured

that the chromatic number of this graph is k+2 . It is easy to see that



the chromatic number is < k+2, the whole difficulty was to show that it

is not less than k+2 . Szemerédi proved some time ago that the chromatic

number is > f(k) where f(k) - - as k -r

	

A few weeks ago Lovász

proved Kneser's conjecture . His proof will appear soon . Just now (1977

IV 7) Báránz found a simpler proof of Kneser's conjecture) .

As far as I know the following stronger conjecture (which can be

considered as an extension of a theorem of Ko, Rado and myself [1]) is

still open :

Let ISI=2n+k and Tn the family of its ~2n2+k~ n-tuples . Let
J

further Fl,.-Fr, r < k be disjoint subsets of Tn where for every

r any two n-tuples of F . have an element in common . (In
Z

other words in our graph the F . are independent .) Put
2

r
,Tn;r) = max

	

IF . .
i=1 Z

The well known theorem of Ko, Rado and myself implies f(n;1) _ ~2n+k-1l
n-1 !J

Determine f(n;r) for r > 1 . This question was raised by Hajnal and

myself independently several years ago . Probably for n > n 0 (k,r)

v 2n+k-i(1)

	

f(n;r) = L

	

n-1i=1

Hilton pointed out that (1) does not always hold for r ? 2 . The

conjecture of Kneser would follow from

(2)

	

f(n;r)
<

rL1 2n1Z~

Z=1

I hope that (1) holds with very few exceptions and that it will be

possible to determine all the exceptional cases .

P. Erdős, C . Ko and R . Rado, Intersection theorems for systems of

finite sets, Quarterly J . Math . (2) 12 (1961), •313-320 .

2 .

	

V.T . S6s and I conjectured that if Isl=n, n > n
0
(k) and AicS,

IAil=k, 1 < i < t, t > ~k-2j then for some 1 <_ i 1 < i2

	

t,

IA; nAi I=1 .That t>ik_2

	

is needed is shown by the sets containing the
1

	

22
same two elements of S . We observed that for k=3 t must be n+1 .
Katona (unpublished) proved our conjecture for k=4 and recently Frankl



proved our conjecture for all k > 4 ; his proof will be published soon

(Bull . Australian Math . Soc .) .

The following related conjecture of mine is still open ; Denote by

F(n,r) the smallest integer for which if A .-S, 1 < i s F(n,r) is any
Z

family of F(n,r) subsets of the set S of size n there are always two

of them A .

	

and A .

	

with IA nA 1=r. I conjecture that to every
21

	

2 2

	

i I i 2

n > 0 there is an e=e(n) so that

(3)

	

max

	

F(n,r) < (2-c)nn

nn<r< (
1
2

n)n

I am very far from being able to prove (3) . It would of course be of

interest to determine F(n,r) explicitly for every r and n. (3) would

have immediate applications in n-dimensional geometry .

D .G . Larman and C.A . Rogers, The realisation of distances within

sets in Euclidean space, Mathematics 19 (1972) 1-24 .

3 . Euclidean Ramsey problems . We [1] conjectured that if S is a set

in the plane, no two points of S are at distance 1, then the complement

of S contains the vertices of a unit square - more generally : what sets

of points can be imbedded congruently in S?

Ms . R . Juhász just proved that every set of four points can be

embedded in S, but that 12 points on the line at distance 1 cannot in

general be embedded ; her proof wí11 appear in the Journal of Combinatorial

Theory .

I conjectured and R .L . Graham proved a few weeks ago that if we

divide the plane into a finite number of sets ú S ., then for some i S .
i=1 2

	

2

contains three points X;Y;Z so that the triangle (X,Y,Z) has area 1 .

More generally he shows that for some i S . contains the vertices of
Z

triangles of all areas . I further conjecture that if the plane is

divided into infinitely many sets Si , 1 s i < m, then for some i there

is an Si so that Si contains all triangles of area < c,

The following old problem of mine is as far as I know still open :

Is it true that there is a c so that if S is a measurable set in the

plane of plane measure > e then S contains the vertices of a triangle

of area 1?



Recently in the Journal of Recreational Mathematics Silverman

stated several interesting questions about decomposing sets of simple

structure into a finite number of sets none of which contains three

points determining a right angle . This prompted me to conjecture : Is it

true that a set of n 2 points in the plane always contains 2n-2 points

which do not determine a right angle? The lattice points (x,y),

0 <_ x < n, 0 5 y < n show that the conjecture if true is best possible .

Perhaps the conjecture is too optimistic - if a reader finds a

counterexample 2n-2 should be replaced by cn . I can only prove cn
2/3

instead of en .

Consider the n3 lattice points (x,y,z), 0 <_ x,y,z < n in

three dimensional space . Determine the largest subset which does not

contain the vertices of a right angled triangle . I could not solve this

problem but perhaps it is easy and I overlook something obvious .

A few years ago Fajtlowicz asked : Can one decompose the plane into

(1~ 0 sets Si , Z < i < - so that none of the S i contain the three

vertices of a right angled triangle . I proved that this is possible if

and only if c= 11), .

P . Erdős, R .L . Graham, P . Montgomery, B .L . Rothschild, J . Spencer,

E .G. Straus, Euclidean Ramsey theorems I, II, III, J . Comb . Theory,

Ser . A 14 (1973), 341-363, Coll . Math . Soc . J . Bolyai 10, Infinite

and Finite Sets (Hungary) 1973 vol . 1 529-557 and 559-583 .

4 .

	

Silverman and I conjectured that if Gr is a graph whose vertices

are the integers and we join i and j if i+,j is an r-th power, then the

chromatic number of Gr is infinite for every r . We could not even prove

this for r=2 . This is really a problem in number theory : Is it true that

if one divides the set of integers into k classes then there are always

two distinct integers of the same class whose sum is an r-th power? If

sum is replaced by difference this is a theorem of Sárközy and Furstenberg .

They in fact prove that if a, < a 2<

	

. < ak <_ X is such that none of

the differences a
s.-a . i s an r-th power than k=o(X) . Nothing like this

is true for a
2
.+a

J
. e .g . the sum o£ two integers =1(mod 3) is never a

square. Denote in fact by fr (n) the largest integer k for which

there is a sequence 1 <_ a, < . . . < ak <_ n so that no two sums ai+a .
0

are the r-th powers . Determine or estimate
f,
W . The same question can



of course be asked if the a's are elements of a group, Sárkdzy's proof

will soon appear .

5 .

	

Let G(n) be a regular graph of n vertices . Berge conjectured

that G(n) always has two disjoint maximal independent sets i .e . if

XZ , . . .,Xn are the set of vertices of G(n) there are two disjoint

independent subsets Y 1 , . . .,Yk and Zl , . . .,ZQ so that every YlYi,

1 <_ i < k is joined to one of the Y's and every X74 Z
0
, 1 5 j < k is

joined to one of the Z's .

Hobbs and I proved a few weeks ago that there is an e > 0 so that

if every vertex of G(n) has valency (or degree) not less than

n-(2+E)n1/2 then G(n) certainly has two disjoint maximal independent

sets . Also we showed that our theorem certainly fails if n-(2+e)n1/2

is replaced by n-en2/3 . It would be of some interest to determine or

estimate the largest f(n) for which every G(n), each vertex of which

has degree > n-f(n) contains two disjoint maximal independent sets . It

is very doubtful though whether this would throw any light on the

conjecture of Berge . Berge by the way informs me that his conjecture has

been proved if the valency of G(n) is not more than 7 .

6 .

	

Blanchard considered the following problem : Let S be a set of n

elements . Denote by f(n) the maximum number of pairs chosen from the

elements of S so that the union of any two of the pairs is different .

He proves (Bull . Assoc . Proc . Math . No . 300 (1975), p . 538)

c1n3/2 < f(n) < c2n3/2 , and he asks : is it true that limf(n)/n3/2 = c

exists and determine its value .

Bollobás and I considered the following Wneralisatíon : Denote by

fr (n) the maximum number of r-tuples chosen from ISI=n so that the

union of any two of the pairs is different . We proved

c1n2 < f3 (n) < cIn2 .

In fact we proved that if JA i l=3, 1 <_ i <_ o.n2 then one can

always find four A's A . ,A . ,A . ,AA

	

satisfying AA nA . =A . nA . =0 and
21 22 `Z Z `)2

	

21 22 `11 0 2
AA uA . =A . uA . .
Z I 22 11 `1 2

In graph theoretic language Blanchard's problem can be stated as

follows : Denote by f(n) the largest integer for which there is a graph



G(n;f(n)) (n vertices and f(n) edges) which contains no

c 4 . It is known that

(? + o(1))n2 < f(n) < (
2V-2

	

Z + o(1))n2 .

C 3 and no

W.G . Brown, On graphs that do not contain a Thomsen graph, Bull .

Canad . Math . Soc . 9 (1966), 281-288, P . Erdős, A. Rényi and V.T . Sós,

On a problem of graph theory, Studia Math . Hung . Acad . Sci . 1 (1966),

215-235, I . Reiman, Uber ein Problem von Zaranhiewicz, Acta . Math .

Acad . Sci . Hungar 9 (1958), 269-278 .
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