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Paul Turán, 1910 1976 :
His Work in Graph
Theory

Paul Erdös
HUNGARIAN ACADEMY OF SCIENCE

In this short note, I will restrict myself to Turán's work in graph theory,
even though his main work was in analytic number theory and various
other branches of real and complex analysis . Turán had the remarkable
ability to write perhaps only one paper or to state one problem in various
fields distant from his own ; later others would pursue his idea and a new
subject would be born .

In this way Turán initiated the field of extremal graph theory. He
started this subject in 1941 (see [18] and [19]) . He posed and completely
solved the following problem : Define f(n ; Kp) as the smallest integer for
which every graph of n vertices and f(n ; KP ) edges, denoting such a graph
by G(n ; f(n, KP )), contains KP . Turán determined f(n ; KP) explicitly .
Since his formula for f(n ; KP ) is somewhat complicated, it is better to
state his stronger theorem :

The only G(n ; f(n ; KP)-1) which does not contain KP is obtained by
setting

P-1
n = Z xi,

i=1

where the x i are as nearly equal as possible, i .e ., they differ by at most
one .

Let ISI = n and ISil = x i. Join two vertices whenever they belong to
different sets S; .
Denote by K(,

'
') the complete r-graph of p vertices and (p) edges . The

basic elements of an r-graph are its vertices and unordered r-tuples (the
edges). Denote by f (')(n ; Kp' ) ) the smallest integer for which every
r-graph G ( ' ) (n ; f ( ') (n, Kp ) )) contains KP') . Turán asked in 1940 for the
determination of f ( ' ) (n ; KP') ) . This fascinating problem is unsolved for
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every r > 2 and p > r. Turán made some plausible conjectures for r = 3,
p = 4, and r = 3, p = 5 . Here are his conjectures : First let r = 3, p = 4,
n = 3m.

	

Let

	

the

	

vertices

	

of

	

G (- '(3 rn)

	

be

	

X	Xm :
Yl , . . . , Y,,, ; Z l , . . . , Z,n . The edges (each a set of 3 vertices) are

(XÍ 1 , YÍ2 , ZÍ,),

and
I~ü,i2,i3<n

(X177 Xt2, y13), (YÍ1, Y12, Zr3), (4 5 Z" X 3)'

This graph has n 3 +3n(z) triples and no K43' . Turán conjectured

f (3'(3n, K43 ') = n 3 + 3n(2) + 1 .

He also conjectured that

f( 3 )(2n, K53 ~) = n 2(n -1)+ 1 .

No progress has been made with these conjectures since 1940 .
It is easy to see that

lim f~''(n ; Kp')1(r)=c(r, p)
n->x

that

exists . Turán's original results imply that

c(2, p) = 1 - 11(p - 1),

c(r, p) is unknown for all p > r > 2 . In Turán's memory I offer $500 for
the determination of any c(2, p), p > r > 2!

Turán also formulated several other extremal problems on graphs,
some of which were solved by Gallai and myself [10] . 1 began a
systematic study of extremal problems in graph theory in 1958 on the
boat from Athens to Haifa and have worked on it since then . The subject
has grown enormously and has a very large literature ; Bollobás has
written a comprehensive book on extremal problems in graph theory
which will appear soon .

Turán wrote one more paper on extremal graph problems, with V . T .
Sós (Mrs. Turán) and T . Kövárí [16] . They prove that

f(n ; K.,m) < cmn2-1/m

	

(1)

They conjecture that (1) is the best possible ; in other words,
1f (n ; K,,) > c„,n2-l m

	

(2)

The inequality (2) is known only for m = 2 and 3 . (See also [3] and [13] .)
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For further remarks and generalizations of (1) for r-graphs see [4], [5],
and [6] .
Turán's theorem had many applications . The Turáns, A. Meir, and I

applied it to various problems of geometry and potential theory in [11]
and [12] . Katona [15] has the following pretty application :

Let fi ( x), 1 i < n, be real functions such that J f, 2(x) ? 1 . Then there are
at most [n 2/4] pairs 1 i < j <_ n for which J(f;(x)+ fi (x))' 1 .

The following interesting conjecture of Witsenhausen is connected with
Turán's theorem :

Let there be given n points (X„ 1!!s ; - i < n) in d-dimensional Euclidean
space, ~JX; -XJJ :5 1 . Prove that

iiX= - Xill2l~i<j5n

is a maximum when the n points are distributed as evenly as possible
among the d + 1 vertices of a regular simplex of edge-length 1 .

Witsenhausen [20] proves this if n=-0 mod (d+1) but the general case is
open even for d = 2. Many further applications are discussed in [9] .
V. T . Sós and I in a joint paper [13] investigated a set of problems

connecting the theorems of Turán and Ramsey. Denote by f(n ; m, k) the
largest integer q for which there is a graph G of n vertices and q edges
which contains no Km and the complementary graph contains no K k- If
m and k are fixed and n >_ r(m, k), then by Ramsey's theorem there is no
such graph and we set f (n ; m, k) = 0 . The general determination of
f(n ; m, k) is probably hopeless . In our paper we investigated the cases m
fixed with k = O(n), and obtained several inequalities. Trivially
f(n ;3, k)=O(n 2), since f(n ;3, k)<-nk/2 . The cases of equality are not
completely settled . We proved that f(n ;5, k)=(1 +0(1))n 2/4 and later
Szemerédi [17] and Bollobás and I [2] proved f (n ; 4, k) _ (1 + 0(1)) n 2/8 ;
see also [1] and [7]. For some recent problems in extremal graph theory,
see [8] .

Turán's untimely death is a great loss to mathematics and to me both
personally and mathematically . He was one of my oldest friends and we
have published more than 20 joint papers and collaborated for more than
40 years. He left many half-finished papers and his book on his method of
power sums is not completely finished, but his pupils and collaborators
will, I hope, be able to finish them soon in his spirit . His collected works
will eventually be published by the Hungarian Academy of Sciences .
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Halász and I will write a paper for Acta Arithmetica on his work in
number theory which certainly was his main interest .

In a paper dedicated to Turán's memory which will soon appear in the
proceedings of the 1976 Manitoba conference on number theory and
computing, I gave a short history of our lifelong collaboration. In the last
paragraph I wrote :

It is always sad if a great man dies when he is still in his prime
mentally, but there is one consolation : He never knew the two
greatest evils-old age and stupidity. I hope I too will be spared
them as Turán was.
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