CORRIGENDUM
Rational approximation on the positive real axis
[Proe. London Math, Soe. (3) 31 (1975) 439-56]
By PAUL ERDOS and A. R. REDDY
[Received 17 November 1976)

There is an inacenracy in one of the ealculations presented in the proof c
Theorem 2 (pp. 443-44). This ocourred in equation (20).
By making the following changes throughout the proof:

Din)
e ()
Li(n[D(n)]™)

to [D(n)]t,
to  eq(z),
to  Ii(n[D(n)]),

Line*[D(n)]™) to  I(ne*[D(n)]),
we get eagily the following:

TuroreM A. For every ¢ > 0 and & = 1 there is an entire function o
infinite order with non-negative coefficients for which there exist infinilely
meany n such that

Aon = exp(— ([D(n)]1)).

By careful ealoulation 1 can be replaced by 3 —e (2 > 0).

By adopting an approach used to prove Theorem 15 of [1], one can
easily prove the following: '

TarorwM B. Let P(x) and Q(x) be any polynomials of degrees al most .
Then there is a constant ¢ = 0 for which

Plz) ( —en )
—eF) =t > expl———|.
=)~ @) Loy ¥ \loglogn)
We take this opportunity to correct the following printing errors:
FPoge  Lins Should read For
444 13 = ®
4490 —4  p(< 1) and regular growth P
450 8 2dydy. . Aayn 2d3n41
459 11 < <
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Introduction

Rational Chebyshev approximation to reciprocals of certain entire
funections by reciprocals of polynomials on the positive real axis has
recently attracted the attention of many mathematicians. By developing
eertain new methods of approach we successfully attacked ( [8]-]6]) some
of the related problems. This paper is a continuation of our earlier papers
([8]-[6]). The results of this paper improve and extend some of the
earlier results with simplified proofs (ef. Theorem 3). For a reader
interested in this topie, this paper may serve as a guide by illustrating
some of the techniques (old ones with refinements, as well as new) which
we used to solve some of the very interesting and difficult problems of
the field (of. examples 1, 2, 3 of Theorem 5).

Notation and definitions
Let f(z) = ¥F 442" be any entire function. As usual, let

Mir) = max|f(z}|, m(r) = max|a,|r =|a,|r,
T n=l

where » = v(r) i3 an increasing function of ». M(r), m(r), and »(r) are
known as the mazimum modulus, mazimum term, and the rank of the
mazimum term, respectively. If there exists more than one term which
is equal to the maximum term, then we take the one with the largest
index. 8,(2) denotes the nth partial sum of f(z). =, denotes the class
of ordinary polynomials of degree at most n, =, , denotes the class of all
rational funections of the form r,, = p, /g, where p em,, q,em,.
Thronghout our work we denote (k = 1)

hix) = L y[logx], lolx) = 23
ex(x) = e qlexpa], elx) ==;
w(lyn)(lgn)lgn)... (Lan)* = A(n);
()t (). (L)t = Bln);
(I )Ign)(fyn). .. (In) = Dn).

Proc. London Math. Sue. (3) 31 (1973} 439-456




440 PAUL ERDOS AND A. R, REDDY

As usnal we write
inf 3 1
f@) pla)

) Yoalf ) = X = it

where |+|| is the uniform norm on [0,20). As usual we define the order p
of f{z) as follows (2], p. 8). The entire function f(z) is of order p if
— lug log M (r) _
.._.m ~ logr
If p is positive and finite, then we define the type r and the lower type w,
corresponding to the order p, as follows:

(2) limsupr—*log Mir) =7, liminfr—+log Mir)=

oo

[0 ':L‘II

(0 <p <)

=<p<on 0w rsom).
It is known ([2], p. 13) that for functions of finite order we can replace
log M(r) by logm{r) in the above formulae. That is,

Tira sujp log log m{r) =

A ot (0<p < ),

{2) limsupr—rlogm(r) =+, liminfr—*logm(r) =w
Faon F

<specom, 0w rsm)

If f{z) is of order zero, then we define as in [11], p. 145, the logarithmic
order p; = A+ 1, and if A is strictly positive and finite then the eorrespond-
ing logarithmic types are defined as follows:

i sup-°% 2£27) — tim PM =A+1 (0<A<®),
] l@g Iﬂgr Ppioi lo IDg:I'
1“5 -M{"'} 4 log m(r)
]lIElj:'}_l {] J_¢+1 ll’l:'lj'-i-ll:' I[!-Dg'i }a’l-+1 = Ty
: log M(r) log m(r)
hELﬂf{| Eg ].n\+1 = i rglfﬂﬂf;,?]nﬁ'l w (0<A<o0,0<wsn<o)

It is also known ([20], p. 45) that if f(z) = X2, a2% is of order
p (0 < p <o), type =, and lower type w (0 < w < 7 < o), then

lim sup(n/pe) | @, /" = 7,

and

(3) liminf{mrﬁpﬁ}[a-mli’-"“r =,
P—=x

for a sequence of numbers n,, satisfying the condition

4 lim sup(n, . /m,) < 23/,

o
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where x, is the greatest and x, the smallest root of the equation
(5) xlog(x/e) + (w/7) = 0.

LemMa 1 ([7], pp. §584-35). Let plx) be any algebraic polynomial of
degree at most n, If this polynomial is bounded by M on an interval of
total length | contained in [ =1, 1), then in [—1,1],

(6) [plx)| < M| T, (41~ 1)|
where 2T, (x) = (z+ J(22— 1))+ (2 —J(22 = 1))".
LeMma 2 ([20], p. 34). Let f(z) = TFa,z* be any entire function of finite
order p. Then for any ¢ > 0, and all sufficiently large r = ry(e), we have
M(r) < m(rjrrie,
Lantsta 3 ([10], Problem | 1], part 1), Let
(7 f{r]=l+_&‘ldd,d, 4, (djppy >dy> 0,52 1)
Then for x = d, the nth term of the series (7) becomes the maximum term.

For the detailed discussion of our results, we need the following known
results.

Turonem 1 ([8], Theorem 6). Let f(2) = 3, a,2* be an entire function
of order p, type =, and lower lype w (0 < w £ 7 < 0), with a, > 0 and
ay > 0forall k> 1. Then

lim sup(A,,)V* < 1.

Tueorem IT ([12), Theorem 7°). Let f(z) = ¥E,a:2% (a, > 0, a, > 0,
k = 1) be an eatire funclion salisfying the assumptions that 0 < A < oo and
u{ﬂllﬁﬁ‘:w- Tl’ﬂﬂﬂ

limsup(d, v "M < 1,
nem

Turorem 111 ([13)], Theorem D). Let f(z) = YE a.2% (@, > 0, 4, 2 0,
k 2 1) be any entire function of order p (0 < p < ), lype 7, and lower lype w,
with the assumption that v < fw fora 8 < 2and 0 < w < v < 0. Then

Lim inf(dg  JU% > (/7220 41)m0/pm,
Tunorem IV ([3], Theorem 1). Let f(z) = SE 02" (@, > 0, a, = 0,

k= 1) be any entire function. Then for each e > 0 there exist infinitely
many n such that

‘l‘.ll = exp(— n{hgn]*"'}.
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TreorEM V ([3], Theorem 2). Let f(z) = TF , a;2* be any entire function
of infinite order with non-negative coefficients. Then for each & > 0 there
exist infinttely many n for which
}‘ﬂ.ﬂ = Expi'_m}'
Trrorem VI ([18], Theorem ). Let f(z) = ¢*. Then
m(y )V = }.

Careful observation of the above theorems naturally leads to the
following questions.

QuusTion 1. Can one obtain under the assumptions of Theorem I the

fact that
lim inf(},,, )/ > 07

Ho

QuusTron 2. Is it possible to improve the upper bound and provide a
simple proof to Theorem 1%

Questrox 3. What conclusion do we get by dropping the assumptions
on the logarithmic types in Theorem IT1?

QuestioN 4. 1Is it possible to prove Theorem 111 without the
assumption that 7 < fw !

Quusrion 5. Is it possible to replace (logn)'** by (In)(lan)...(Tan)tt
for any & = 1 in Theorem 1V ?

QuesTron 6. Given an g, = (loglogn)™' can we replace £ in
Theorem ¥ by g,

QuesTION 7. Are there any other functions besides e for which we
get, for a yi(n) which tends to infinity,

Bm{Ag M =8 (0<8 < 1)?

=D
These questions motivated the work of this paper and in it we answer
all of them.

New results

TerorEM 1. Let f(z) = B2 025 (4, > 0,2, = 0, & = 1) be any entire
Junction, Then for cach £ = 0 and any k = 1, there exisl infinitely many n
such that
(8) Ao < €xp(—n/(In){n)... (Ln)tHe).

Proof. I fl{z)=3X7a;z* iz entire, then lim,_ . |a,[Y*=0. Let
w, =a,~ . Then u,->oc0. Now it is easy to observe from the
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convergence of
[=":]
I+ A1)
J=eyall)

that there exist arbitrarily large values of » for which for each [ = 0,

(9) %> uut|![1{l+[:1{n+t}}—1}.

From (8) it follows, with I = », that
~(10) My, >t (14 n[24(n)]1).

Given any & > 0, we can show now that there exist infinitely many »

such that
S = 1
(11) @ S o < expl — 2n[B{2r)]1).

By the definition of A;, (8) follows from (11). To prove (11), observe
that, on the one hand, we have for all x = 0,
. e e
Sgal) Jlx) = Sgufx) ~ a,z"
Now for any given £ > 0,F let 2 = u, (1 + [B(n)]"*). Then

(12) @™ = (14 [B(n)]"Y)" = exp(2rn[B(2n)]).
On the other hand, let 2 < u-ﬂ{ 14+ [B(n)]™"). Then for all » = n,,
1 _ J(x) = Sgulz) =

I O ki

By (9) and (10), we have for all k > 2n,

(14) < K1+ n[2A ()] ).

Thus, from (13) and (14), for z < w,(1 4 [B{n)]"Y), we obtain
- -+ 5 (LB

(18) k-mﬂﬂkrk = k-hH.{l +n[24(n)]” 1) '

A simple calculation based on (15) gives us

(16) a7t 3 aut < exp(— 2n[BER)]).

Inequality (11) now follows from (12) and (16).

THEOREM 2. For every large ¢ > 0 and k = 1 there is an entire function
of infinile order with non-negative coefficients for which there exist infinitely

1 & may not be the same ab each ocourrence,
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wigny # such that
Mo = OX(—n/(ln)(Ign)...{Iyn)).
Proof. Let f(x) = ep.y(x) (k = 1), and let us suppose that for all large »,
1

[ b
Let o = L{in[D{n)]2) = ry(k}), say (& = 1), At this Paint-

(17) < exp{ —cr[D{n)]1).

10, e:)

flz) = ey,y(x) = expln[ Din)| ).
Then, by (17),

(18) |p| < exp(2a[D(n)]).
But at @ = L {ne2[D{n)] ) = rqlk), say,
(19) flz) = e palx) = exp(ne[D(n)] ).

By applying Lemma 1 to (18) we get for the interval [0,r,]

2y 20 (e[ D{n) 1)
¢0) 'y ceap (mn:lu;n:u...tem})i"“( Femins Y

% exp( 2nlD(n) ] Vexpldn[D(n)]1).
From (19) and (20), it is easy to see that

R
flz) plx)
for some constant ¢, which contradicts our earlier assumption (17).
Hence the required result is proved. -

= exp(—en[D(n}]),
[, ral

Tueoresm 3. Let flz) = T8 o055 (g > 0,0, =2 0, k= 1) be. any entire
SJunction of order p (0 < p < ov), type v, and lower type w (0 < w € 7 < ).

Then
0 < (ew?/ e/t (el (e 4 ] )dr)rnias < lim inf{(}, )/
fiva

< limsup(d,, )¢ < exp{—w/le+1)r) < 1,

where @y is the greatest and xy the smallest root of equation (5),

Proof. 1f f(z) is an entire function of order p (0 < p < o0) and type =
(0 < r < o0), then, for each £ > 0, there iz an n, = ny(e) such that, for
all n > nyle), we have ([2], p. 11)

(21) |, | < (per(l-+¢)/n)",
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As carlier, we have

11 s L, @
(22) 0< 5.0 @ < ag M f(x) —8,,(7)) < ay k:_§+1ﬂkxk

a7t T ap* (0<a<r)
Re=ng+1

On the other hand, for each r > 0, we can find ([2], p. 12) an ny = nylr)
guch that foralln Z ngtand 2 = r
e X X A1

Saplx) flae) ~ Sy,x) " omlr)
Now two possibilities ccour in (23): (1) my = ng, or (ii) ng < e I (i) is
true, then in (22) we replace §,,(x) by 8,,(z), that is,

1 1 o
< ——— =yt Y agrk
5@ F@ 5% i
If (ii) is true, then in (23) we replace S,,(v) by 8,,(%), that is, for all # > r,
1 1 1

(23)

(22 0<

o <5 @ <
where
(24) r = (n/pre+1)(1+¢))tr.

In either case we choose % = max(n,, #4).7 A simple calculation based on
(21) and (22°) gives us, for 0 £ z < v,

] L]
. e
{245) 0 - 8.7 fl[:r} k-§+1u‘ﬂ
o B [ per(le) \We
wo k_,,.,( fe+n{1+en)

= e \ Mo
= a2 iy
? km%—j-l (E—l- l)

AR L)

{e +1 ].Up = Elﬂ"‘

On the other hand, from (2') and {23'), for all » = rq(e),

(26) m(r) = exp[rrw(l —e)] = (tﬂ%ﬁl E}) F(’f:il-!;—g?.p.m, T),

 tiy demotes the rank of the maximurn term.
1 It is easy to verify that nglr) = sir) for the value of ¢ given in {24),
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where ¢ is arbitrary. We easily obtain from (25) and (26) that
limsup(Ag, )™ < exp(—aw/pr{e+ 1)) < L.

Now we shall prove the other inequality of Theorem 3. As the coefficients

of f(x) are non-negative, we have from (2), for all large r = r,(z),

(27) 0<flz) = fir)=M(r) < explrie{l+2)) (0 <r, vz rle)).

Now from (27) we have, for

r = {wn(l + 2e)1p~tr—2e+ 1)V = Hin, p,w,7),
that

0< fix) ﬁf[(ﬁp M)ﬂp]

__ _*_.fm{l+€}| )
= p([1+23}1'p{?+1]|

1
< Gn, pw,7) = exp(mn_l—ft—'”—’:) < f‘lT

for all n = n;. Next, we take the rational function r§ = 1/p% (17 . €m,.)
which gives the best approximation in the sense of {1); that is, for all
= Ty,

1 1

28 =) | [ -
= Yon = |70~ 7%,
A gimple manipulation based on (28) gives us

(29) -,r*tx}f(f{m%) < pt—fix)

0,500

< fH=)/ (J% -f l:m}) (0 < x < Hin, p,w, 7)).

Clearly the right-hand side of inequality (29) is monotonic increasing
with z. Hence we write

(30) |7 ~f(@)] < G2n. p.7)/ (-~ 60, py 7))

0n
(0 x< Hn,p,w,7)).
Next, let
(31) Bo(f) = inf || pfe) = F () liosrm,panen
PhEWnm

From (30) and (31) we get, for all n = n,,

(32) E.(f) = G{2n, p,w,'r}f(iw—- f¥{n, p, e, -r})+

o
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To obtain a lower bound for E, we use a result of Bernstein ([1], p. 10)
which gives us, in the interval [0, H(n, p, w, )],

: o (n+1lp B
(38) En > (;i;e—m;gu e
From (32) and (33) we get

i) rl-ﬂ:.-l[H{z;f_;:ﬂ.f}]nH < 6@, pros)/ (L_gm, oy, .,})

it

for all m = n..

From (3) we have, for a sequence of values of n = n,+ 1 satisfying
the assummption (4},

(35) Gy 11 2 (pea(l—z)/(n, +1))0t1Ve,
From (34) and (35) we get

(36) pew(l —e))| nst Do [H{'{fﬂf pyw, 7)]"e 1
—ﬂ’p +1 i B2yl

= G{2n, p, w, -:']II.--"'(i

&uln—ﬁr'l:ﬂ,p,m, -r}).

1t iz easy to obtain from (36} that

A G(2n,, p, w, 7)(n, 4 1)met1)ip2ins+1
e Ao bl [{pecw(l — &)} rH (ny, p, w, 7)]"H

<2 [EIP( 2y m—):| (frﬁf'{fi,! )1+ 23})“”“”-“ (’ﬂp + I) 1n,+11.f.o‘

e+ 1)p w1l —¢)e ny,

Now by adopting the technique used on p. 373 of [19] we can casily
obtain from (37) and (4) the fact that

- - Emz S.I.;'Iml
af =
(38) ].Iﬂ::lﬂjip,n}'r "z (Eau,rr;zm.,_a{g,f. 1}@) 3

Bemars. (1) Under the assumptions of Theorem 3, Reddy ([16] ) has
recently obtained the following sharper result

lim inf(d, , V™ = (2FHVerliog 1o — 1),
{2) There exist entire functions which fail to satisfy the assumptions

of Theorem 3, but for which we can still find two constants ¢; and ¢,
(0 < ¢, =6y < 1) such that

0 < ¢, € liminf(A, ,/* < limsup(A, /" < ey < 1.
el e+
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Examrrn 1. Let

fla) =1+ E (Iog"') ",

This is an entire function of order p = 1 and type » = co. For this function
the maximum module M(r) is given by

(39) 1) = () ~ exp(}og?).

This function clearly satisfies the growth condition (3.1} of [8]; hence
there exists a constant g > 1 for which

(40) lim sup(),,, JV = % <1

From (4) it is easy to see that, for all large n = nyle),
(41) " = [g(1—&)]" < 1/X,.
From (39) we have

0 = flx) < flr) < exp(rlog(r/e)).
Let

(42} rlog(r/e) = inlogg,.
That is,

nlog g,
2log(inlogq)

From (41) and (42) we get, for all n = n,,
0 < f(x) € flr) < exp(rlog(r/e)) < ¢"* < 1/Ag ..

Now proceeding exactly as in the proof of the second part of Theorem 3
we get, for the value of r given in (42) and for all # = ny,,

" a4+l B = 1 i
{43} (lﬂgl:iﬂ 10&‘9’1 }) s;nn-:i = f(m —iy m) *

From (43) it is easy to sece that
1 _ gy log(inlogq,)I*+t

'J"u.ﬂ g +gy™e
1 7 lo fikl
<o) e

In other words,

(44) < 22ty n(”"f 1)“" ‘(]:?EHR} +11!:-;_.1]{1:5.1:1)uﬂ+

1
}LM -~ log(n41)
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A simple manipulation based on (44) gives us, if we take ¢, to be very

vlose to q,
lim inf(A,,, )" > 1/4q.

Exanrern 2. Let

Ty 1 E (ﬂlugn) g
This is an entire function of order p = 1 and type r = 0. For this function

(45) 10 ~ exp )

fir) satisfies the growth condition (3.1) given in [8]; hence there exists
a q > 1 such that

(46) lim sup(Ag,, )''" = é < 1.

As before from (46) we can find, for all # = ny;(e), a q; < g such that
(47) Ao S @™

Let

{4‘8} zfﬂg{rﬁ? ‘&ﬂ Dggl

Then for some ¢ > 0, r ~ nloglenlogg,). From (45), (47), and (48) we
obtain, for all n = nyy,
{ +£}T nil
0< 1) < flr) < exp(G A T) < gt < 3
and

alm W oglen lo -l 1
(49) e e TV ]

From (49) we get as before, for a, = (nlogn)™,
lim inf{A,, )M > 1/4¢.
Ti-+x

TaroreEM 4. Letf(z) = 1+ 33, a2, a;, = (dydy. . dp) P withd,,, > d. > 0
(k = 1), be an entire function of finite order p. Then for any & > 0 and all
large n = nygle), we have

dydotly. .. d,
ST S

dilly duansn
n t ld':lt R dﬁn{diml _diu}

Proof. The second half of (50) follows from the proof of Theorem 5 of [4].
5388.3.81 EE

(50)

< Mz S o




450 PAUL ERDUS AND A. B. REDDY

To prove the first half of (50) observe that, for0 £ x < r = 4, Lemmas 2
and 3 hold and that, for all n = (e,

(51) 0 < fla) < M{r) < mr)ret

= mid,)d,
d nd Fo - dﬂ+1dﬂ+!"‘d2ﬁ{dﬁﬂ+1_d!ﬁ) o {d’!n+1 _dﬂﬂ)
" dyy...d, iz 2J(dy)dyusy

This follows because when x = d, we know from Lemma 3 that the nth
term becomes the maximum term, that is,

m(d,) = d,"/ddy...d,.

As before we choose p*{(x) €y, such that p*(x) gives the best approxima-
tion to f{x) in the sense of (1), that is,

Xk
flx) p*x)
A simple calenlation based on (52) gives us (as in the proof of
Theorem 3)

63 If-phal < {f }EJ(M /) ©<zsr=d,)

From (51) and (58) we obtain
(54)  |If—pEall

(p* Emy )

(52) Mogay 2 ‘

[0}

= . 2ng stp+-h;’{d1&2...d }n( 1 _ ‘juwnpﬂ) 0gx=<d.)
S " Aﬁh_l [ PO b
Let
(55) Epalf)= min  ||f—gpu1li0ag

Fan ~1 € Min -1

From (54) and (55) we get
(56) By a(f)

< d, v 2ete) f(dody. . d, ) ( 1 dd,e

n "] u
T £rsd,)
Ao gn—1 d]dl'“dna ( ﬂj

To obtain a lower bound for Es  (f) we use (as before) a result of
Bernstein (|1}, p. 10), which gwea us far 2=d,

{57) E‘n I.Lﬂ = ﬂ&ﬂd 2‘2?'22:!22‘&—1
From (56) and (57) we get, for all n = n,,,
1 d, ™, -““]
=1 2tptel /|
(58) Tid) < -t e[
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From (58) it is easy to caleunlate that
1 Sad Hptel
R AR e Wl
Ao 2n1 Jdy)
Therefore for all largu #, we have

dydgily...
2'!1“!-1 L ruﬁd“+1d'

dydy...d g
£A % -
r2-+ -y et i1 ipe e Oan(Ton iy —Ban)

a4l

Examrres. (1) Let

o f
f@y =1+ X sizagiors, giown-

For this function we get from (50)
lim (A, )Y/ town) — 3
P el

It iz interesting to note that this funetion fails to satisfy the assumptions
of Theorem 7 of [8] and Theorem 7' of [12], because p, = A+1 = co. But
our present method which is much simpler than the methods used in [8]
and [12] gives us more precise information.

(2) Let

i
'H-

fla) =1+ E . S

This function also fails to satisfy the assumptions of Theorem 7 of [8]
and Theorem 7' of [12], because in this case A = 1, that is, p,= 2 and
7 = 0. For this function we get by (50)

lim (A, 1 lown — =178,
L
(3) Let
flxy= 1+§1§ {1 <8 = co)

For this function A = 0, whence it also fails to satisfy the assumptions of
Theorem 7 of [8] and Theorem 7' of [12]; but we obtain by (50)

lim(Xg, 2" " = 1/5.

TaroreM 5. Let flz)=14+%2 (ddy.d) 2" (dpy > de =0, k= 1)
be an entire function of infinite order. Then for each & > 0, there exist

infinitely many n for which
Aoan— = [K(d, )]
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Proof. As before when & = d,, d,"/ddyd,...d, becomes the maximum
term of f. Let t, = a®/d\d,...d,. Then

[
(59) 1) = tarty s (14202t
n—1 n—2
] 1 'Eﬂ_'*'ﬂ g“;"*
Tlnit +‘ +1+5 +-1+"' '
But
by _ 2 _ s
£n+l w3 dn-ﬂ

and so on. Henece

; t d.
60 AL Wik L] ma W
(60) Furi Eann l'1‘||':|+5=_’5'a:11+.1
Similarly
by a < (‘In—l) bysa < (dn—l)a
by dn ' baa dn '
and so on. Therefore
4 f o
(61) B e
'cn—I t’ﬂ—l |I"i:nn_dﬂm—:l.
From (59}, (60), and (61), we obtain
(62) S} = b+ (1 4+2) + a1 +34),
where
a"n—l 1 rgﬂ-‘-l
- sl L e e

From (62) we get, forz =d,,,
a." g
I{x}éﬂ'dﬂ {E +'f:-: 1{1+?}+Em]{1+?]]“[ﬂid }]_1"'&'
For all sufficiently large n we can find an £ > 0 such that
(63} Jld,) < [K{d,)]-1+e)e,
Now let us suppose that for all large n and all x (0 € @ < o)

(84) m _Psn—ﬂ:-'r}

< [K(d,)]He.
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From (63) and (64) we get
|| < [K(d,)]~ s,

Because of the assumption that f(x) is of infinite order for every large
r >0 we can find sufficiently large n such that

(65) Sl (14171 = [f(d,)]5

Therefore from (62) and (65) we get

(66) S (1 +r 1] = [K(d,)] 0,

On the other hand by applying Lemma 1 to p(x) we get

(67) pld, (1 +r71)] < [K(d, )]~

From (66) and (67) we gat

(68) [K{d 0 < [K(d, )] V31 — [K(d,) P12}
1 1

S P ) fld i+’
that is,
{K{dn)}uh}r: HE, {Kl[rih}}aﬂ""“‘ = 1.

which gives the required result, because the conelusion (68) contradicts
our earlier assumption (G4).

Tarorem 6. Let flz) = B a2 (ag = 0, a2 0, k= 1) be any endire
Junction salisfying the assumplion that

Then for any & = 0, i
lim inf{A, )» " < L
b

Proof. We get from Theorems 1 and 3 of [11]
; logn
| - : = Al
i logln-log a, '}
From this we easily obtain that, for any £ = 0,

lim | @, [V exp{rl/A+a) = 0,

TA—=00
Ag earlier, let u, = a,~V"; and let & = 1/(A+¢). Then u, exp{—n") — oo.
This implies that there exist infinitely many »n for which

H':rl+i' u‘ﬂ- =
(6) explin -+ = exp(n®) (t=0,1,2,...)
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Now let
x = 0, (1< 8 <exp(2h-1).

Then

{TD:] e !n{‘r} = R-“J:" = a’nun“ M= &"lﬂ‘
Hence, as usual we get from (70), for x = ',

{71} - : : . — < g,

St
Sgalr) '[ﬂ“} suidl

On the other hand, let

x < u, ()"

Then as before it is easy to note from (69) that, for any & > 2n,
|ag] < 1w, * explk(n® — k).
This formula implies that

S gt < 2 [foxp kind — Mo
F=2n41
= {ﬁ’e]“')’-‘
5 k=§a+1(ﬁx1’k’ﬁ
F: (Be)=* )m—ﬂ exp(2n) )
(erpl{ﬂﬂl (ﬂxp{ﬂn]'" (Be)
From this we have

e

h{-ﬂ
a3

s ¥ aab
ket

(Beym* )2“1 o  exp(2n)t
(éfprzn}_* (exp{ﬂn}* reﬂ}*‘)

From (71) and (72), with 8¢ < exp(2"), we easily obtain that

Tt (g 1N < 1G] < 1,
Rl

Tuworem 7. Lel f(z) = a,+ X7, a,2%, with a,>0, a, > 0(k=1),
and liminfy (g ,/n.) = B > 1, be an entire function of finite order p.
Then for any o (0 < a < 1) and any & > 0, we have

]jmiu['{:.llu J—aliptalin o '5—1,
- o

The proof of this result is very similar to the proof of the preceding
theorem. Hence the details are left to the reader.




RATIONAL APFROXIMATION ON [0, =0} 455
Concluding remarks

Theorem 3 of this paper answers questions 1, 2, and 4 in the affirmative.
The answer to question 5 follows from Theorem 1. Question 3 is resolved
in Theorem 6. The examples given at the end of Theorem 4 answer
question 7. Question 6 must be answered in the negative; this follows
from Theorem 4.

It may be of some interest to know whether it is possible to obtain a
lower bound for

lim sup (A, )* " (ef. Theorem II).
-

This has been solved in [15]. We have proved in [15], under the
assumptions of Theorem II, that

s sy =N l 14
timsup(hg )" > exp (m+ i) (m+ lm) )

It is natural to ask whether we can do much better by using the general
rational functions of the form p,(x)/@,(x) than by using 1/Q,(x) in the
above results. We are not able to settle this question in general (see,
however, [9] and [17]). But we are able to prove the following theorem.

Tueorey (cf. [14]). Lel fiz) = B2 a2 (a, = 0, k = 0) be any entire
Junction of order p (0 < p < a0}, type =, and lower type w (0 < w < 7 < o0).
Then one cannot find algebraic polynomials p(x) and Q(x) with non-negative
coefficients and of degree at most n for which
e, F1h
flz) Q=)
The examples 1 and 2 of Theorem 3 fail to satisfy the assumptions of

the above theorem; but the conclusion of the theorem still holds for
these examples, in a slightly different form.

1immf[ < (22).

}pm.fﬂ.r
=00

(0,35}
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