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We are interested in expressing each of a given set of non-negative integers
as the sum of two members of a second set, the second set to be chosen as
economically as possible .

So let us call B a basis for A if to every a E A there exist b, b' E B such that
a = b + b' . We concern ourselves primarily with finite sets, A, since the
results for infinite sets generally follow from these by the familiar process
of condensation .

TRIVIA

If then, we introduce the notation
nA = number of elements of A,
NA = largest element of A, and
in, = minimum number of elements in a basis, B, of A,

we may make the following simple observations .
1 . m <_ n + 1, this since the set B = {0} u A is clearly a basis for A .
2 . m <_ (4N + 1) 1 / 1 .

We obtain this bound by choosing for B the integers 0, 1, 2, . . ., k - 1
together with the integers k, 2k, . . ., [N/k] . k. This is a basis for the whole
interval [0, N] and so surely for A itself. Also the number of elements in
B is k + [Nlk] and since min k(k + [N/k]) _ [(4N 1)ái2 ] our result follows
by choosing k appropriately .

3 . m >. n'/2 (indeed m >. (2n + 4) 1 /2 2), for if B is a basis for A,
having m elements, then the number of integers of the form b + b', b, b' E B,
would have to be at least n . Since the number of couples (b, b') is at most m2
(indeed ('n2" )) our results follow .
In summary, then, we have

THEOREM 1 . (n A )l/2 <- t"A G min(nA + 1, (4NA + 1)1/2) .
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Our main message is that the truth is "usually" nearer this upper bound
than the lower one . As an example consider A = {3, 9, 27, . . ., 3n}, for B to be
a basis we must have b + b' - 3", k < n, so that either b or b' lies in
[2 • 3k, 3k] . Also b + b' = 3 implies that we must have an element of B in
[0, 1] . These n. -- 1 intervals are disjoint, however, and so B has at least
n + 1 elements . Hence m = n + 1 .

"MOST" SETS

In order to describe the situation for "most" sets we reverse our outlook by
fixing numbers n and N and considering all those sets A for which nA = n,
NA = N. We denote such sets as being of type (n, N) and we observe that
the number of such is precisely (nN1)_
Next fix a number m and consider all those sets B for which nQ = m and

N1 ~ N. For each such B we form B + B, the set of all sums b T b', b,
b' E B, and obtain thereby a set of at most m 2 distinct integers . Thus those
A of type (n, N) for which A C B + B, i.e ., for which B is a basis, number
at most n i) . The number of such B, furthermore, is exactly (Nm1) and if
we disallow those wasteful B which contain the number N but not the
number 0 then this count diminishes to (m) + (m- 1) <_ 2(m) .

Combining these results we obtain

4 . Of all sets, A, of type (n, N) the fraction having MA _-~ m is at most
- 2(án2 1 )(m)/(n-1) •

As for this quantity A we have

so that

5. log A ± v(2 + log X) - (2v - m)(1 + log X - log m) .

Now any choice of in which makes the right-hand side of 5 negative
guarantees the existence of an A of type (n, N) with MA > m . Also if the
choice of m makes this right-hand side large negative then we are justified
in saying that most sets of type (n, N) have mA > m .

For example, consider the case N = n3 , and choose m - [n/2] . The

A-2Iin2 -l IN -n+1/( [?~ -n Im IN-m)

y (2m2°/I m)(1/Xv-» )

where v = n - 1, X = N - n + 1 . By the inequality I m > 2(m/e)", we
have, furthermore,

A - m2v-m((Xe)m/X,)
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right-hand side becomes essentially equal to 2n + 3n log n - (2)(1 + log 2)
n - 3n log n = ((1 - 3 log 2)/2)n, and this is large negative . Conclusion

6 . Most A of type (n, n3) have m,, > n/2 .

A similar calculation holds if we assume that N > n2 l 1, E > 0. We then
choose m ti (E/(1 + E))n and note, by monotonicity in N, that our expression
is bounded by

Hence we have

7 . If N .>n2 +E most A of type (n, N) satisfy m,, > (E/(I + E))n .

For the general case we point out that the choice of m = min(n/log N,
N' /2/2) always proves successful . Substituting this into 5, we obtain, namely,
the bound

n log(n2} E) - (2 - (E/(1 + E))n (jog(n2+ , )

	

log(En/(1 + E»

-n((2 + E)/(1 + E» 10g((1 + E)/E) .

n log N - (2n - (n/log N)) (log N - log(N' /2/2))

_ (n/2) - n - 2 log 2 + n/log N <_ (1 - 2 log 2)n .

From this result and 7, we obtain

THEOREM 2 . Most sets A, of type (n, N) satisfy m q > min(n/log N,
Ná/2/2) . If furthermore, we have N >, n2-k, E > 0, then the log N may be
replaced by (1 + E)/E .

Certain observations present themselves. Note that when c becomes very
large this bound for m,, becomes very close to n (or n + 1) itself. In short :

8 . If N grows faster than every power of n then most sets, A, of type
(n, N) satisfy m,, - n.

Also observe that the only time that the lower bound in Theorem 2 is of
a different order of magnitude than the upper bound in Theorem l is when
N is of the order of n 2. Only sets with growth like the squares seem to present
any real difficulty! It behooves us, therefore, to study the squares themselves .

THE SET OF THE SQUARES

We consider the set A o = {12, 2 2 , . . ., n2} . Since we do not know that this
set is in any way typical, Theorem 2 is not applicable and all we can use is
Theorem 1 to conclude that n' /2 - mA G n -+ l .
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Our purpose here is to narrow the gap between this upper and lower
bound. Although we are far from closing this gap we derive the nontrivial
bounds,

9 n2 /3- E < M A o < n/ M , E arbitrarily small, M arbitrarily large .
log n

This upper bound definitely shows that the set of squares is not typical,
for most sets of type (n, n 2 ) satisfy MA > n/2 log n, by Theorem 2 (and in
fact this can be improved to mA > c n(log log n/log n) while MAO < n/tog2n
(for example) .
To derive our upper bound recall that, for each odd prime, p, the squares

fall into precisely (p + 1)/2 residue classes (mod p) . Hence if p, q, r, . . . are
distinct odd primes and P - p • q • r . . . the Chinese remainder theorem tells
us that the squares fall into precisely (p + 1)/2 • (q 1)/2 • (r + 1)/2 . . .
residue classes (mod P) . A basis for the squares is obtained, then, by choosing
these reduced residues (i .e ., in [0, P)) together with all the multiples of P .
Hence we have

m AO < ((p + 1)l2)((q + 1)/2) . . . + (n2/p - q - y. . . .)
+ 1,

for any distinct odd primes, p, q, r, . . . .
If p 1 < p 2 < . . . denote all the odd primes below 2 log n then we know,

from prime number theory, that for any fixed M, p, • p 2 > n loge' + 3n .
Thus we may pick k so that

2n logm+,n > pip, . . . Pk > n 1ognr+ 1n

and we automatically have (2 log n)'° > n log"n, so that k > log n/log log n .
Using these primes as our p, q, r, . . . and observing that (p i - ; 1)/2p á < 2 we
obtain

mA,, < 2n logm+ , n(3)logn/loglogn + (n 2 /n log"+i n) + 1

< (n/log" n)

	

for large n .

This trick can be used with some success for other sequences which, like
the squares, fall into a limited number of residue classes (mod p) ; thus for
example if A is the set of primes below x then we produce thereby a basis
of size O(x/log log x)1/2 . Compare this to the lower bound (Theorem 1)
which is (x/log x) 1 /,

We obtain our lower bound as an immediate corollary to the following
theorem (since the number of solutions to x 2 - y2 = k is known to be
O(kl) for every c) .

DEFINITION . DA is the maximum number of ways in which a positive
integer can be written as the difference of two elements of A .
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THEOREM 3 . m, > n,2/3(D, + 1) --1 /3

Proof. Let B be a minimum size basis for A and order the elements of
B as follows : b, is the element involved in the least number, V1 , of representa-
tions for A, b2 is then chosen as the element involved in the least number, V2 ,
of new representations for A (i.e ., ones not involving b1) ; b 3 is then chosen as
the one involved in the least number, V 3 , of representations not involving b 1
and b 2 , etc .

Now fix i and consider the ordered couples (j, k), j - i, k > i such that
bi + b; e A, b; + b k c- A . First of all, for fixed j, there are at least Vi - 1
such k and since there are exactly V i of these j the couples number at least
Vi(V - 1). On the other hand for fixed k each j leads to the representation
(bi + b;) - (b; + b k) of the nonzero number b i - b k as a difference of two
members of A . Thus for each fixed k there can be at most D couples and
since the number of k is less than m there are less than mD couples .
Hence Vi(Vi - 1) < mD, but we also know that gym' 1 Vi , n (since all of A

is represented) and combining these inequalities shows that (n/m)((n./m)-1) <
mD . Thus D > (n2/M3) - (n/m2) and since this is á(n2/m3) - 1, by 3, our
theorem follows .

It is interesting to note that Theorem 3 is, in a very strong sense, best
possible . Indeed by Theorem 1 the inequality is trivial when D > n 1 /2 and so
we consider only numbers D and n such that D < n 1 /2 . For any such pair
of numbers we construct an example of an A for which D,, < D, n,, > n,
and m,, < 7n2/3D-1/3

We proceed as follows : Denote I = {1, 2, . . ., k}, J = {k + 1, k + 2, . . ., 2k},
and to each i c- I choose, at random (each element independently and with
probability a), a subset Ji C J. The expected number of elements in Ji is
ka and in ii n Ji , is ka 2 . A slight calculation shows in fact that, with positive
probability,

(a) each Ji has at least ka/2 elements,

(b) each J, n Ji , , i

	

i', has at most 2ka 2 elements,
(c) each pair j, j'(j f) lies in at most 2ka2 sets Ji .

We pick such an arrangement . Next we choose numbers b 1 , b2 , . . ., b2k
such that

(d) The sums taken 4 at a time, bi + b; + b k + b t , are all distinct
up to permutations (for example we can pick b i - 4i) .

So B is chosen (with 2k elements) and we pick A as the set of all b i + b; ,
i < k, j c Ji and note that nA > k 2a/2 (by (a)) . As B is clearly a basis for A
we have MA < 2k . Finally we estimate DA . Namely, for two numbers of the
form b 1 + b; - (b i , + b; •) to be equal (d) ensures that they must have either
the same j andd j' and i = i' or the same i and i' and j = j' . By (b) and (c)
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above, then, there can only be at most 2ka 2 such coincidences, and in short
we have D,, < 2ka2 .

It is a simple matter, for given n and D with D < n'1 2 , to make k2a/2 < n
and 2ka2 < D. Choose a = D 2 /3/3n'/3

Noting that the interval [2(nti/s/Diva) 2(ns/3/D'/3)] has length at least 1 we
can choose a k lying in it . This choice of k and a then works and indeed it
gives m,, < 2k < 7n2 / 3D-'/ 3 as required .

DISCONTINUITY

Finally we wish to point out that the size of m,, depends rather delicately
on the arithmetical structure of the sequence A and not just on the coarse
aspects of its "rate of growth ." The fact is that to every set, A, there is a
fairly nearby set, A', which has a relatively small basis . This perturbed set is
produced by choosing a large K and then replacing the larger members of A
by their closest multiples of K, while leaving the smaller ones fixed . Thus A'
has changed the elements of A by a relatively negligible amount and yet A'
has for a basis the following (small) set : 0, the unmoved elements of A, and a
basis for the set of all multiples of Kup to NA . (Indeed by 2 the multiples of K
up to NA have a basis of size only ((4NA /K)) + 1)'i2
To give an example of such a phenomenon consider a randomly chosen

set of type (n, n 2) . An elementary probability computation shows that
usually with at most n314 exceptions the gap between elements is at least n2/3

We take as A such a set which at the same time is typical according to
Theorem 2. Thus MA < n/2 log n . For A' we take the aforementioned n 3/4

exceptions together with the nearest multiples of K - [n'/ 2 ] to the other
members. Thus A' is very near to A and yet, as previously indicated,
mA ' < 1 + na/4 + (4n3í2 + 1)1/1 < 5n3 /4.

In view of this discontinuous behavior of m as a function of A it seems
difficult to even guess the size of m for a specific A . For example, what is the
size of m for the cubes, {1 3, 23 , . . ., n 3 }? If they were typical the answer would
be cn : the squares are atypical, however, and so perhaps the cubes are also .
We are unable to decide .

Another question which seems interesting and difficult is whether any set
of type (n, n 2 ) needs cn elements in its basis . In short let M,, = maxA MA ,
taken over all A of type (n, n2), is Mn = o(n) ?
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