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APPROXIMATION BY RATIONAL FUNCTIONS

P . ERDŐS, D . J . NEWMAN AND A . R. REDDY

Introduction

Recently approximation of e - x by rational functions has attracted the attention
of several mathematicians (cf. [2]-[5], [7]-[10]) . In this paper we present several new
results . Some of the methods used here may be applied successfully to several related
problems .

As usual we use throughout our work 1) ~I to mean the maximuin modulus within
the set of points under consideration .

Lenunas

LEMMA 1 [8] . Let p(x) be a polynomial of degree at most n having only real zeros
and suppose that p(x) > 0 on [a, b] . Then [p(x)]' 1` is concave on [a, b] .

LEMMA 2 [1; p . 10]. Let f (x) be a fuiiction which is (n+1) times continuously
differentiable on [a, b] and satisfies the further assumption that If (" +')(x)I > M > 0
for all x e [a, b] . Then for any polynomial p(x) of degree at most n,

2(b-a)" + ' M
.f(x)-P(x)~Ir._[a.b1> 4"+'(n +1)!

LEMMA 3. Let P(x) be any polynomial of degree at most 2n satisfying the assumption
that I P(k)I is bounded by 1, for k = 0, 1, 2, . . ., n, n+ 1, . . ., 211, Then

Proof. It is well known that P(x) can be written as

max IP(x)j < n4" .

	

(1)
[0, 2n1

2n

Y- P(xi) li(x),

	

(2)
i=o

li(x) =
	(x-xo) (x-x1) . . .(x-xi-1) (X-Xi+1) . . .(x-x2")	(3)

(Xi-xo) (Xi-Xi) . . .(Xi-Xi-i) (Xi-Xi+1) . . .(xi-x2n)

and x,, = k .
From (3), we obtain for 0 < x < 2n, n > 1,

Ili(x)l
< (2n)(2n-1)(2n-2) . . .(2n-n)(0-(n+1))(0-(n+2)) . . .(0-2n)

(2n-i) (i) (i-1) (i-2) . . .(1) (-1) (-2) . . .(i-2n)

(n!) -2 n(2n)! (2n)!

	

n(2n)!

	

2n

(2n-i) (i)! (2n-i)!

	

i!(2n-i)! ( n )

	

(4)
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Hence we get from (2) and (4),

2n

	

2n

	

n

	

n(2n)I
=

	

2 n .IP(x)l S Y_ Max JP(x i) j Jl i (x)j _<

	

n4
=o

	

( n

	

i=o (2n-i)i!

LEMMA 4 . Let p(x) be a polynomial of degree at most n . If this polynomial is bounded
by M on an interval [a, b] c [c, d], then throughout [c, d] we have the relation

1P(x)1 5 M Tn
2(d-c)

(
(b-a)

-1) ,

	

(5)

where
2T" (x) _ (x+á/(x2-1))"+(x-"l(x2-1))" .

Proof. The inequality (5) follows easily from [11 ; (9), p. 68] .

LEMMA 5 . If Q(x) be a polynomial and A denotes the difference operator with
increment 1, then

An+1 (ax Q(x)) = ax(aA+a-1)n+i Q(x) .

	

(6)

Proof. It is well known [6 ; (10), p. 97] that

Amax Q(x)) _

	

m ) A. Q(x) Am-i Ei ax,

	

(7)
i

(
=o

	

i

where E = 1 + A. A little computation based on (7), along with the well-known
fact that

Am(f (x)) = kIo (-1)m-k(k )
f (x+ k),

will give us the required result .

LEMMA 6 [6 ; p. 13] . Iff (x) is a polynomial of degree at most n+ 1, then

(1-A)-n-if (x) _
n+1

(
T2+1 )

A,f (x) •

	

( 8 )
i=0

	

l

Henceforth we let N denote the set of non-negative integers .

Theorems

THEOREM 1 . Let p(x) and q(x) be any polynomials of degree at most (n-1) having only
non-negative coe dents . Then

e_ x- p(x)
q (x) L_(N)

1

	

p(x)

f (x)

	

q (x)

i (4ne"+1)-1 . (9)

Proof. Let us assume that (9) is false. Let f (x) = ex ; then there exist polynomials
p(x) andq(x) such that at the origin and each positive integer

1

4nen t 1

	

10)



Now at x = n,

At this point

If (12) were not val id, then (10) would be contradicted .
At x=n+1,

From (12), and the assumption that p(x) and q(x) have non-negative coefficients, we
have that

From (13) and (14), we get easily for x = n+ 1, that

The relation (15) clearly contradicts (10) at x = n+l, and hence the result is
established .

THEOREM 2. The rational function

satisfies

W

f t n (t -x)m e-t dt
o
W

f t m(t+x)n e` dt
o
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q(n+1)

p(n+ 1 )

q (x)

P (X)

-ex

f(x)=f(n+1)=e" +1

f (x) = f (n) = en.

	

(11)

(n+ 1)n-1 q(n)

1

	

n n -n_e-n-1

	

p(x)

	

1

	

(15)
4nen+1

5
(n + 1) e

	

<
q (x)

	

f (x)
.

q (n)

p(n)

nr -1 p(n+1)

W

f tn(t-x)me- `dt
0
W

f tm(t+x)m e-r dt
0

mm nn
Ile-x-rm, n(4I L_[0,1 ]

(m+n)m+n (m+n)1'

	

(1 6)

	 1
<

(n+
n) en

	

(12)

n+1

n Y< (	 en .

	

(14)

Proof. It is easy to check that for 0 < x < 1

W

	

W

f tn(t- x)m e- ` dt- f tm(t+x)n e-(` +x) dt
o

	

o
W

f t m(t+x)n e-tdt
0
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x

Hence the result (16) is proved .

THEOREM 3 .

<

f 1"(1,-x)'ne-`dt- J t "' (t-x)"ne -t dt
0

	

x

c

f tn(x-t) " e -t ( - 1) "n dt
0

1

f tn(1-t)n'e -"t dt
0

(m+n)!

00

f tm+n e-t dt
0

W

i
t n'(t+x)n e -t dt

o

X

f t n(1-t)rn e -t (1t

0

m+11

From (17) and (18), we get the relation

G

n
t=

xk

i, o (k)! I !
L,10, a~)

w

t ""(t+n)n e t dt
0

0

n1"" 1t"

It is easy to verify that t"(1-t)n' attains its maximum on [0, 1] for

(m+11)n'+n (m+n)I

,1

	

00

S,,(X) _ Y
xk

=
1 f e-`(t+x)ndt.

Á,=o k!

	

n!

s

f t n (1 - t)m e -, (It
0

(1n + n) !
.(17)

Remark. This theorem is already known (cf. [2]) . But the proof presented below
is very simple.

Proof. It is known that



Therefore

Hence (19) is proved .

1
0 <1

	

-e
-x =

Sn(x)
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o

W

	

00

J
e-t t n dt-

J
e-t t n dt

0

o

W

f e -t(t+x)"dt

J
e'tndt

	

J
e'tndt

o	o	
x

e -t(t+x)" dt

	

J
e'(2t)n dt

1

p (x)

o
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THEOREM 4 . Let p(x) be any polynomial of degree at most n having only real
negativezeros . Then

1

L_(N)

	

4nes

	

(20)

Proof. Let us assume that p(x) > 0 on [0, 2] . Then according to our Lemma 1,

[p(x)] 1 /" is concave on [0, 2] .
Therefore

2[p(1)]' /" > [p(0)] á/"+ [p(2)] á/" .

	

(21)
Let us write for p(x) at x = 0, 1 and 2,

~lex- p(x)JI = E .

	

(22)
Then

p(0) > 1-E,

e
p( 1 ) < e+E < 1-E

	

(23)

p(2) > e2-E > e2 -e2 E = e 2(1--E) .

From (21) and (23), we have

2e'/n

/n > (1 - e) '/n + e2/n(1-8) 11n
(1-E) 1

	

`

From (24), we get

(24)

1

	

e-1/n +e1/n

	

1
(1_ E)z/n >

	

2

	

> 1 + 2n2 .

	

(25)

From (25), we obtain

1

	

1

	

n/2

	

1

	

do+1

(1 -E) > (1 + 2n á) > (1+ 4n )

	

4n ' that is, s > (1 +4n)_ 1 .

	

(26)
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Let us assume that [pn(x)] -i deviates least from e-x at x = 0, 1, 2, and let

1
e-'-

Then we get from (27), for x = 0, 1, 2, by noting the fact that p n (x) has non-negative
coefficients and 6 < (en)- ' (cf. [9 ; Theorem 1]),

l ex- pn(x)II < 6e2 pn(2) < 8e4(1-e26)-i .

	

(28)

But from (22) and (26), we have for every pn(x), at x = 0, 1, 2,

Ilex-pn(x)II > (1+4n)
-i

	

(29)

Hence 1/(1+4n) < 6e4(1-e 2 6) -i , which implies that 6 > e-5 (4n)
-i .

THEOREM 5 . Let f (z) _

	

akzk, ao > 0, ak > 0 (k > 1) be an entire function .
k=0

Then there is a polynomial p(x) of degree at most n for which, for all n > 2,

Proof. Let

Then, clearly,
f (x) = p„(x),

	

x = 0, 1, 2, . . ., n .

	

(32)

Therefore, for .x = 0, 1, 2, . . ., n,

For x > n+ 1,

óJ

1

	

1

pn(x)

f (x)

	

p(x)

pn(x)
ky0 k x ) Akf (x)Ix=0 .

= S .

f (x)

	

pn(x) l~

pn(x) _ yo ( k ) Akf(x)Ix=o >f(n) .

Therefore for x = n+1, n+2, n+3, . . ., 2n, 2n+1, . . .,

1

	

1

f (x)

	

pn(x)

The relation (30) follows from (33) and (34) .

THEOREM 6 . Let 0 = a o < a i < a2 < . . . < a„ < an+i < . . . be any given sequence
of real numbers . Let f (x) be any continuous, non-vanishing and monotonic increasing

1

	

1

	

2

f (n) + f (n)

	

f (n)

(27)

2

L~(N)

1< f (n)

	

(30)

(34)



where

set

Proof. Set

Hence the result (35) is established .

THEOREM 7 . Let p(x) be any polynomial of degree at most n having only non-
negative coe dents and q(x) be any polynomial of degree most n . Then we have,
for all n > 1,
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function of x . Then there exists a sequence of polynomials p2n(x) for which at x = ao ,
al, a2, . . ., an, a,,+ 1, . . .,for all n,

1

	

1

f(x)

	

p2n(x)

„
p2n(x) _ Y- lk 2(x)f (xlc),

k=0

(x-a,) (x-a,) . . .(x-ak-1) (x-ak+1) . . .(x-an)

(xk a0) (xk-al) . . .(xk-ak-1) (xk-ak+1) . . .(xk-a,,)

Therefore, for x = ao , a l , a 2 , . . ., ak, . . ., a,,,

f (x) = p2n(x) •

	

(37)

For x = a„+i, a,,, 2, a,,+ 3 , . . . and so on, it is easy to check that

p2n(x) > f (x) •

	

(38)

Now we get from (37) and (38) at x = {aj }1' o that

1

	

1

f (x)

	

p2n(x)

ex-
	 p(x)

q (x) c_[o, 1]

Proof. Let us assume that p/q deviates least from e-x in the interval [0, 1] ; then

-p(x) = a .

	

(40)
q (x)

We assume without loss of generality that q(x) > 0, on [0, 1] . From (40), it follows
that, on [0, 1 ],

e x -
q(x)

p(x)

2
5

f (a,,)

1

	

1

	

2

f (an) + f (an)

	

f (an)

aexiq1

	

selg1

	

(41)

1p1

	

1p1

It is well known that ex can be approximated by its nth partial sure on [0, 1] with an
error (n!)-1 . Hence, clearly,

4

n .

(35)

(36)

> [e+2-1e24"(n+1)!]-1 .

	

(39)

(42)



e_x- P(x)
q (x)

e > {e+2-1 e24"(n+1)!}-1 .

Hence the result (39) is established .

THEOREM 8 . Let p(x) and q(x) be any polynomials of degrees at most n-1 where
n > 2. Then we have

(e- 1)" e -4n 2-7n

L~(N) 1> n(3+2,/2)n-1

= E .

Normalize q(x), such that, for k = 0, 1, 2, . . ., n, . . ., 2n,

Max Iq(k)I = 1 .

(49)

Proof. Let us denote for any given p(x) and q(x) at x = 0, 1, 2, 3, . . ., n, n + 1, . . .,

(50)
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From (40),

Ip1

	

1

	

1

	

ce
(43)s>,--8=

IqI

	

ex

	

e

	

e

on the interval [0, 1] . From (41), (42) and (43),

q (x) ce 2

n

lex-
P(X)

<
1- ce

(44)

Set P(X) _ Y- a. x', ak >, 0 (k > 0); then, from (44) on [0, 1],
k=0

se

	

s 2PEe) .
(45)Iexp(x) -q(x)I < l Ee p(x) <,

Now by applying Lemma 2 to exp(x), we obtain on [0, 1 ]

Ee2

	

Min I(D+1) +i
(P(x)) I

p(1)

	

IIexP(x)-q(x)II >, (46)
1-se

	

(n+1)! 4" 2-1

where as usual D = d/dx.
It is not hard to check that

n
Min I(D+ 1)n+l p(x)I > X ak = p(1) (47)

k=0

From (46) and (47),

ee2

	

2
(48)

1-8e

	

4"(n + 1)!

From (48), it follows easily that
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From (51) and Lemma 3, we obtain,

Max Iq(x)I < 174 2n .

	

(52)
[0, 2n]

From (52), we get by applying Lemma 4 that

Max lq(x)l < n42"(3+2,/2)n-i .

	

(53)
[0, 4n]

From (50) and (53), we have, for all x = 0, 1, 2, . . ., 4n,

IIe-x q( .x) -p(x)II < En42n(3+3,/2)n -i

	

(54)
Set

R(x) i e-xq(x)-p(x) .

Then we get by using Lemma 5 that
"

A"R(x) = An(e-xq(x)-p(x)) = An(e xq(x)) = ex
4+1-e

(

	

) q(x) .

	

(55)
e

On the other hand it is well known that

WR(x) _ Y- (-1)" -'(

	

R(x+l) .

	

(56)
i=o

	

l

From (54) and (56), we get for .x = 0, l, 2, . . ., n, . . ., 3n,

1 W R(x)l < i

	

l
l R(x+l)l < 2` en4"(3+2,/2)n -i

	

(57)

Now we have from (55) and (57), for x = 0, 1, 2, . . ., n, n+ 1, . . ., 3n,

I(A+ 1 - e)"q(x)I < ex en 23n an4"(3+2,/2)"-I < Fe I n 25n n(3+2,/2)n-i .

	

(58)
Set

S(x) - (A+ 1-e) n q(x) .

Then for x = 0, 1, 2, . . ., n, n+ 1, . . ., 2n, we get by using Lemma 6, that

Iq(x)I = I(A ` 1 -i e) - " S(x)I =

<

•

	

(e - 1)-n

(1-e) ' (1- e - l )- S(x)

n+i

GA- ) IS(x)i=o

	

i

(

	

)
A` S(x)

t=0

	

l

•

	

(e - 1) nce4n25nn(3+2,/2)n-1 n
( n+i`-

i
1
=O

•

	

(e-1) - "Ee411 2'nn(3+2,/2)n -i . (59)

From (59), we get for x = 0, 1, 2, 3, . . ., 2n,

Max lq(x)l <ee4"2'"n(3+2,/2)"-i(e-1)-" .

	

(60)
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From (51) and (60) we get

e > (e-1)"e-4"2-7"n- t(3+2,/2)-n+i
Hence (49) is established .

We would like to thank the referee for his suggestions .
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