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Ellis' article the alternative conditions (2') and (3') (misprinted as (3)) that are stated in the last
paragraph. Concerning A. D. Wadha's An interesting subseries of the harmonic series (this MoxThLY,
82 (1975) 931-3) Robert Baillie writes that he has computed the sums S, =Z 1/n (n has no digit equal
to i) fori=1,1,... 910 twenty decimal places. Further information ean be obtained by writing to him
al Computer-Based Eduoe. Res. Lab., University of Winois, Urbana, IL 61801,

The article Probabilities in Proafreading by G. Polya (this MonruLy, 83 (1976) 42) has stimulated a
lot of reader response. V. N. Murty has informed us that the estimate obtained by Polya for the
number of unnoticed misprints was obtained by Edward Deming and Chandra Sekhar (J. Amer. 5tat,
Assoc., 44 (1949) 101-15) and that demographers use it to estimate vital events, Ralph Winter writes
that if the number € of misprints noticed by both proofreaders is 0, then Polya's estimate is undefined.
He then adds that if most probable numbers (rather than expected numbers) are used, the estimate
becomes (A — C){B-CW(C +1). L. Glickman has informed us that the problem Polya solves
appears as Exercise 23 on page 170 of W. Feller’s book An Introduction to Probability Theory and its
Applications, vol. I, 3rd edition (J. Wiley, Mew York, 1968).

Richard I. Loebl has written that Chandler Davis has informed him that an example similar to that
m hisarticle The non-commutative riangle inequality fails (this Mostary, 83 (1976) 259-60) appears in
Davis® article Notions generalizing convexity for functions defined as spaces of matrices (Amer, Math,
Soc. Proc. Symp. Pure Math, V11, 1963),

Research problems. Due to the unusual amount of activity concerning the research problem
posed by 1. Cahit in Are all complete binary trees graceful (this Mosmavy, 83 (1976) 35-7) and the fact
that the next updating article for the Research Problems section is scheduled for December, 1977, we
are reporting here that the guestion posed by Cahit has been answered in the affirmative by several
people. It has been discovered also that the solution is immediately implicit in the article Labelling of
balanced trees by R, G. Stanton and C, R. Zarnke (Congressus Numerantium VI Proc. 4th 5. E.
Conf. on Combinatorics, Graph Theory and Computing, Boca Raton, 1973, 479-95). More details will
be given in the December 1977 article by Richard K. Guy.
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In this Deparntment the Monthly presenss easily stated research problems dealing with netions ordinarily
encountered in undergraduate mathematics. Each problem should be accompanied by relevanr references (if
any are known to the authoer ) and by a brief descripaon of known partial resulis, Manusceipes showld be sent fo
Richard Gy, Department of Mathematics and Statistics, The University of Calgary, Calgary. Albera,
Canada, T2N IN4. (From July 1976 1o fune 1977 Department of Pure Mathematics and Mathematical
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THE POWERS THAT BE
R. B. EooLeron, P Ernds anp 1. L. SELFRIDGE
If n is # fixed positive integer, a any integer greater than unity and m the unique integer such that

a"=n= ':!m-H.I

then we shall call @™ a maximal power for 1, ™" a minimal power above n, and m the exponent of a
for n. (The exponent is just the characteristic of the base a logarithm of n.) In particular, if the prime p
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has exponent m for n we call p™ a maximal prime-power for n and p™"" a minimal prime-power
ahove noand mowill be referred to as & P-exponent for n.

It is easily seen that the least common multiple L, of the pesitive integers up to n is equal to the
produet of the maximal prime-powers for n. More generally, let Ay be the largest possible Teast
common multiple of any set of k positive integers not exceeding n. Then the w(n) maximal
prime-powers for n are a suitable set for showing that A .., = L., where {n)denoies the number of
primes up to n, As no positive integer up to n is divisible by two different maximal prime-powers for n
it follows that the sequence ( Ay} sz« 18 strictly monotonic increasing. We have investigated [1,2] a
number of properties of this sequence, The questions we shall raise here have their origins in these
investigations,

Let any two integers greater than unity be called exponentially equivalent for n if they have the
same exponent for n. This is an equivalence relation on the set of integers greater than unity and, by
restriction, also on the set P of primes. Let E(n) denote the set of expenents for n, that is, the
exponents corresponding to the various exponential equivalence classes for n; similarly let Ex(n)
denote the set of P-exponents for n. If m s an exponent for n, let g, and b, denote respectively the
smallest and largest integer in the corresponding exponential equivalence class; if m is also a
P-exponent for n, let p. and g, denote respectively the smallest and largest prime in the
corresponding exponential equivalence class. (Note that by and g, do not exist.) We illustrate these
ideas in the following tabulation,

For n =49k

m o P= Gim
0 1 = 97

I 10 ol 11 B
2 5 9 5 7
3 i 4 = =
4 3 3 3
ﬁ el - - —
i 2 2 2 2

Thus 90 has 6 exponential equivalence classes, E(90)=1{0,1,2,3,4,6}. Since 4 is alone in its
equivalence class, this class does not contain a prime and E-(90)=1{0, 1.2, 4,6},

There are several questions which now arise. We shall mention some of these, and follow up with
such comments or partial solutions as we can offer.

1, When is g, = b, ?

Q2. Iim, m’ € E{n)and m < m', for which integers n do we have g... = b... whenever a.. = h..?

Q3. When is g = g

4. When does a., exist while p.. fails to exist?

Q3. Are there infinitely many n for which p,, = a., or for which g, = by, whenever m € E.(n)?

Q6. How many exponential equivalence classes does n have, that is, what is the cardinality of
E{n)?

Q7. What is the cardinality of Ex(n)?

An asymptolic answer to Question | is not difficult. It is clear that a, = b, must hold if
n'"™ —pt = 1 and cannot hold if n''™ —n""*"= 2. The reader may wish to verify that if » is
sufficiently large, a. =Hh, holds if m =logn/lloglogn —2logloglogn) and fails if m<
log n/{log log i — (2 — &) log log log ) for any given £ =0, The phenomenon in Question 2 occurs for
small n, but for 15625 =5"= n < 16384 = 4" we have as;= b= 6 and a; =4, b= 5. For sufficiently
large n, the number of integers m satisfying 1 < n"™ — n"™ """ < 2 is large enough to ensure that there
is-an exponential equivalence class containing two integers with larger exponent than that of some
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other class which contains only one integer. Thus the set of integers n described in Question 2 is finite;
what is its fargest member?

For Question 3, it is probable that the asympiotic answer is the same as for Question 1, though in
this case the distribution of the primes complicates the matter, and the same difficulty arises in
Question 4. For Question 5, we note for example that p.. = a,. whenever m € Ex(100), and g,, = b,,
whenever m € Er(127). However, one should be able to prove that only finitely many integers n have
either of these properties, but finding the largest is probably very difficult. The calculations for
Question 1 are adequate to obtain an asymptotic answer to Question 6, since m € E(n) certainly
holds as long as n"'™ — o' " = 1. Tf m, is the largest exponent satisfying this inequality, the number
of exponents not counted in this way is at most n''™, which is of smaller order than m,. Hence
| E{n)| = log n/log log n, We conjecture the same asymptotic answer for Question 7, though we cannot
prove this. It has long been known (cf, [6]) that for all sufficiently large x there is a prime between x
and x + x" where 8 < 1 is a suitable constant; this implies that | Es(n)| = ¢ log nflog log n for some
positive constant ¢ = 1. We can show, however, that E.(n)= E(n) holds for only finitely many
integers n. Indeed, E.(4095) = E(4095)={0,1,2.3,4,5, 7,11} is the largest such example, because 4 is
alone in its exponential equivalence class for 4096 =4"=n < 15625 =S dnd for 16384 =4"= n, and 6
i alone in its class for 15625 =5"= n < 16807 =7

We shall now consider the numbers o, = ph, B =g ¥ =p5 " and §. =g2"". Denote the
sequences of these numbers by a(n) = {a. b Flnl={B.] ¥(n}=1{y.} and d(n)={f.}, where the
subscripts run through Eq(n) by increasing magnitude for e and y, and likewise through E; (n)|{0} for
2 and 8 (The corresponding sequences of powers of a, and b, are also interesting, but do not
necessarily have all terms distinet, e.g., ai=ai=064= bi= b} when n=90.) We now illustrate.

For n = 9

L i == 97 —_
1 11 =9 121 921
i 25 44 123 H3

81 &1 243 243

o n
z
z
b

128

P 41}

Since p,, is approximately n . the sequence o (n) increases monotonically, at least initially.
Similarly .. 15 approximately n'™, so 8(n) decreases monotonically, at least initially. There are no
such compelling reasons for B(n) or y¥(n) to be monotonic, even initially, though if it happens that
n"'" — g, does not decrease too rapidly as mincreases then Bin) will decrease initially; likewise if
B — 1™ does not decrease too rapidly as m increases then y(n) will increase initially.

We are now in @ position to raise several more questions, also to be followed by comments and
answers as far as we know them,

Q8. Are there infinitely many integers n for which « () increases monotonically throughout?

QBB, OBy are the corresponding questions about B(n) and y(n).

98, Are there infinitely many integers n for which §{n ) decreases monotonically throughout?

Q94, 09y are the corresponding questions about B(n) and y(n).

(310. Are there infinitely many integers n for which e{n) increases throughout and simultane-
ously &(n) decreases throughout?

0QI11. To what point can we be sure that a{n) will increase monotonically?

012, To what point can we be sure that 5(n) will decrease monotonically?

For Question 8a it is easy to find integers i for which a(n) increases throughout. This is the case
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for 1=p<9, 1l6=n<27, 32=n<R8l, 256=n<625, 1024=n<2187 B192=n<15625 and
16777216 =2 =n < 19487171 =11".

For n =2 ol B i = ) <1
i 1RTIT259 I ] 11 1771561
I 40499 4099 B ¥ 57a4801
2 257 GA0AG Iy 5 9765625
3 67 IWI7A3 15 3 14348907
4 29 707281 24 2 16777216
5 17 1419857

However, the gquestion is whether there are infinitely many integers n for which a(n) increases
throughout, We conjecture a negative answer, and possibly one can prove this. By computer we
verified that outside the seven intervals listed, there are no cases with n = 107™ in which a(n)
increases throughout. (The corresponding question can be asked for such sequences as {an |, where m
runs through E(n). Perhaps n = 15624 is the last case in which this sequence increases throughout.) It
would be interesting to decide if there are infinitely many n for which those terms of a(n)
corresponding to exponents m < (log n)* are increasing. For Question 8y we note that y(n) can
increase throughout only when @(n) does so. Thus 1 =n <3 and 16=n <23 are the only intervals
with n = 10 in which y(n) increases throughout; we conjecture that there are no later examples,

For Question B we have the examples 2 = n< 5 and n = 8, Moreover, in this case we can prove
that there are only finitely many integers n for which 8(n ) increases monotonically. A classical result
of Ingham [6] states that for any £ =0 and all sufficiently large x there is a prime between 1 and
x+x"™""" Hence we deduce that between any two sufficiently large cubes there exists a prime.
Ingham's result also ensures that 3 and 6 are P-exponents for any sufficiently large n, Thus if n is
sufficiently large B(n) contains the cubes @y and B, and between them there is a prime, so
min {85, B} < B, showing that B(n) does not increase monotonically. Incidentally, it has never been
proved that between every two consecutive cubes (or every two consecutive tetrahedral numbers)
there is a prime: it would be nice to have such results available.

The parts of Question 9 have a similar status to the corresponding parts of Question 8. It may be
easier to resolve Question 10 negatively than to resolve either Question 8« or Question 48 alone, The
interval 1331 = n < 2048 is the last interval with n = 107" for which «(n) and &{n} are both
monotonie throughout,

For Question 11 we note that a result of Huxley [3] improves Ingham's result used above by
replacing the exponent § by 5 Thus for any given & >0, if "™ is sufficiently large, then
Proi<n'™ +nTTET Also 0™ T < p L so-a short calculation shows that if n is sufficiently large,
-y < @, holds so long as m = (3 — ¢ }log n/log log n. How goed is this estimate? (Probably the
result is still true if the coefficient is replaced by { — &, and perhaps even by = £.) Are there infinitely
many n for which this monotonicity fails before the P-exponent reaches log nfloglog n? This
discussion essentially carries over for Question 12 as well.

We shall now introduce two functions (from P to the integers) related to the monotonicity
problems for & and 6. In the present context, let py denote the ith prime and let m, denate the
exponent of p, for n. For a given & suppose n is the smallest integer for which 2™ = 3™ .- = pTh,
(Recall that p™™'>n for each i =k) This sequence is conveniently recorded by the function
flpe )= my, since n = 2™, Similarly suppose n' is the smallest integer for which

2L 3L p Y,

where m| is the exponent of p; relative to n’. The function g(p. )= m| records this sequence.
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As part of our computations related to the monotonic behavior of «, we obtained the following
data:

P Fipu) o fip) 8 fipe}

2 il 1 10 3 5627
3 1 13 40 29 14501
5 -] 17 ai 3] 330841
7 5 149 16 37 AERLLD

Here are three further questions.

Q13. What are the corresponding values of g, and how do both sequences of values continue?

Q14. What is the asymptotic behavior of f and g7

Q15. Does [ increase strictly for p, = 177 (Probably not.)

In closing, we note the following result related to the problems we have raised. Let p, g be primes
such that 1 <p <t g = n and let p" and ¢° be the highest powers of p and g dividing n!; then p* > ¢*
if r=s This result is the content of a problem originally proposed by Erdds [3], with published
solution due to Harrington [4].

The research of the first suthor has been supported by the Foundation for Number Theory Computing.
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MOTIVATING EXISTENCE — UNIQUENESS THEORY FOR APPLICATIONS
ORIENTED STUDENTS

ARTHUR DAVID SRIGER
When one is teaching a course in partial differential equations to an applications-oriented

audience, a dilemma arises about halfway through the semester: namely, the available techniques for
constructing solutions (method of characteristics, transforms, separation of variables, Green's



	page 1
	page 2
	page 3
	page 4
	page 5

