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SOME PROBLEMS AND RESULTS
ON THE IRRATIONALITY OF THE SUM
OF INFINITE SERIES

by P. ErRDGs

It is usually extremely difficult to decide whether the sum of a conver-
1

=
gent infinite series is irrational or not. I —; was proved by Euler to be a
e

«©
polynomial in = and is thus transcendental, but Ig.!,‘ % seems intractable.
=1

The situation is a little better if the series converges very fast. I proved
L]

that if nl-'fz* — oo then X nl;. is irrational, Straus and I [1] proved the follow-
n=1

ing theorem which is somewhat deeper:
Let lim sup n?/n1 < 1 and further assume that

z
limsup—N-k—(b—l)SO: (1

Mgt \Mis2

then = L is irrational except if nus = — mk + 1 for all k > ko where N

n+1 flg
is the least common multiple of my, ..., m. It is possible that our theorem
remains true without the assumption (1) but we have not been able to prove
this.

In this paper I prove the following:

THeoreM 1 Let m < mz < ... be an infinite sequence of integers satis-
fving
lim sup nl’zt = oo (2)
k=x
and
e W o (3)

for some fixed e > 0 and & > kole). Then
. “ |

ke Nk

a =
is irrational,
The proof will not be entirely trivial. Theorem 2 is much simpler.
THEOREM 2 Assume that (3) holds and that for every ¢




2 : IRRATIONALITY OF THE SUM OF INFINITE SERIES
- E
lim sup n}/"" = co. (4)
k=0

Then « is a Liouville number.
It is easy to see that Theorem 1 is best possible. It is well known and
easy to see that for every A4 there is a sequence 7 satisfying n, > A% for every

k>0but T H‘— is rational. (3) is also best possible. Let

-1

fik) = oo, logfiki/log k = 0.

There is a sequence ny satisfying (2) and mx > k f(k) for all k; but 5 & is
Fow] R

rational. We leave the details to the reader.

kz 2—:,, is not a Liouville number, thus (4) is best possible; but I think if
=1

{4) holds then a much weaker condition than (3) will ensure that « is a Liou-
ville number, but I have not yet succeeded in clearing this matter up.

Before I prove the Theorems, 1 state a few unsolved problems. Let
-

m<n< ... lim sup mfk =oc. Is it true that & 21:;"; is irrational ?
k=1

I cannot prove this even if mks1 — m — o0 is assumed, but I have no
counterexample if we only assume that lim sup (#xyy — m) = o=. 1In other

-
: T on : ;
words I have no example of a series .El 27’; whose sum is rational, but
lim sup {mk-1 — nx) = eo. 1 would guess that such a series exists.

Is it true that for every integer a there is a finite sequence of integers
a<m< ...< myfor which

i ;
a_ 5 m,

T T
Letm < m < ...,n— =, d(n) denotes the number of divisors of n.
Straus and I proved that
= dik) k
L' — = H
Few=1 Mk Mk i=1 s [5}

is irrational [2]. Very likely m = o¢ (without assuming monotonicity) suffices
for the irrationality of (5). I find it frustrating that I cannot prove the irra-

tionality of .‘.‘2 ;?—I-l_— For further problems see [3].

-
Obviously Z; (?--]_2}57 = 1. This led Straus and me to the following
question: A sequence m < nz < ... is said to have property P if for every
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L]
m> 0, m = 0 (mod my) kzl -ml—* is irrational. In particular we wondered if

ni = 22* has property P. 1 will prove this conjecture. By the way property
P is only interesting if lim "1;2* < oo and in fact I cannot prove that such a
sequence with property P exists if (m, n;) = 1 is also assumed. I do not know
if there is a sequence nx with property P for which m does not tend to infinity
very fast.
To prove our Theorems we first need the following simple lemma:
LeMMA. Let ny < ... satisfy (3) for every k. Then
- A
i=1 ki mIT [Tt

The proof is very easy. First of all it is clear from (3) that the number
of m < x is at most xV/'*¢; thus from (3) we easily obtain

& 1 1 1 [
F — —_— e «

- 1 n ) e o 20

k+1 . Ti+ =+

= Miyi Mgyl T>n}ﬁ."’i;‘" "."“H‘

which proves the Lemma.

Our Lemma almost immediately implies Theorem 2. To prove that « is
a Liouville number it suffices to show that for every s there is a & so that

& 1| k
-=—}:—<-—, (M Hm). (6)
i=1 M 1
To prove (6] let r = r(e, s5) be sufficiently large and choose k such that
n" 5> al forevery j < k. (7
Such a k exists by (4). Thus by (7)
M < n}r‘j'l' 2 (8)

(8) and our Lemma immediately give (6) for sufficiently large 7 which
proves Theorem 2.

The proof of Theorem 1 will be more complicated. First of all assume
that for every 7 there is a k so that

M1 > M} . (9
@
(9) easily implies the irrationality of Z.‘ 1. Assume « = 5 Multi-
=1 ni

ply both sides by dMi. We obtain that bM; 2.‘ al-— is a positive integer and

=1
therefore = 1. From (9) and Lemma 1 we thus obtain

ballt ingdlte 2 1
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4 IRRATIONALITY OF THE SUM OF INFINITE SERIES

which is clearly false for / > ITH and sufficiently large k. This contradic-

tion proves the irrationality of «.
Henceforth we can assume that there is an [ so that for every k&
Mg < M. (10)

(10) implies by induction that for every k
me < 20+DE, (11)
To prove Theorem | we now distinguish two cases. Assume first that
for every k > ko
me > 2%, (12)

(12) implies £ 1< 128—:;"'." 0(1). Thus by the same argument as
np < X Og -
used in the proof of our Lemma we obtain that (12) implies that for some

absolute constant ¢ and every &

b L{rlogm_ (13)
i=1 Mk4i ng

Put n}/2* = L,. By (1) lim sup Ly = e Thus it is easy to see that for
-0

infinitely many &

Lo > (1 -}?],) mex L;. (14)

1<) &k

If (14) would hold for only a finite number of values of k let ko be the largest
such k and then for every r > ko

L€ max L IT (l——%z)cc

1€k <k k< ky

which contradicts (1). As far asT know this simple and useful idea was first
used by Borel, but I cannot give an exact reference.

(11} and (14) easily imply the irrationality of . Assume a = g and let &£

satisfv (14) and be sufficiently large. As before we obtain that

L4 ] .
M ™ (15)
i=1 Mkagi
Thus by (13) and (15)
be My log mie =1. 16
Mi+1
By (14)
I l :I.-I-l
Miar > My, [1 e I‘l) : -
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Thus from (16) and (17)
zt
Ni4y > EXP [( bc]

which contradicts (11) for sufficiently large kK > ko(l); her.ce « is irrational.
Thus finally we can assume that for infinitely many &
m < 2k, (18)
As in the previous cases to prove the irrationality of « we show that
hm inf My :-2-'1 ?{:: =0. (19)
To prove (19) we shall show that for every € > 0 there is a k = k¢ so
that

ML —<e. (20)

To prove (20) we will use (I8), (10), (11) and (2). Let A4 = Af¢) be
sufficiently large and let k; be the smallest integer for which

Li, > max L > A (L = n}?"). (21)
k < ky

By (2) such a k exists. From our Lemma we have

= 1 1
3r P S .
=t Mags T = o e
Let k> be the greatest integer not exceeding k, satisfying (18). By our
assumption such a kz exists. From (13) and (22) we have for every

ka < k < ky

- | clog mest , 1
I — < SRR o 23
im 1 Mt T nji 1)

Observe that 1}/ 2% 1, 0!/ ~e0. Thusasin (14) there is a k2 < k < ki
for which

g 1 _
' F 73 . 4
Lis > (l + kl) k,Tf’é kL; (24)

Let in fact ko be the smallest k satisfying (24). [Observe that from (10)
anc (11) it is easy to see that Ly, < C and k; — ko — «]. From (24) it
follows as in (17) that

1\2h |
Nigs1 > Mg, (] + E}) .-\f*‘; .
But from m, < 2%, My, < 2%, Thus

2kq T 2%
Pikgrl > "‘f-"o (l -+ k—l:) 2_k| > Mk‘(l - “.,}T%) . (25}
(1] “hgt
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6. IRRATIONALITY OF THE SUM OF INFINITE SERIES

Now from (25) and (23)
= ) i 4 ~e/14
Mi, f. = % (1 +3p)  CloBmen + Mg (26)
Now by Ly, < C, My, < 2} we have
My, < C'24 < o,
But 1, > A?". Thus for sufficiently large 4
l ] "’k‘ 3 __‘i;.'
—_ -+ a+270 27
M, E: o < (l ! 2k3} ¢ log rye—1 T (27)
(27) and (13) implies (20) and (19) and thus our proof of the irrationality
of « is complete.
Itis easy to prove by the same method that if lim inf nl2* > 1 and
lim n!®" does not exist then £ — is irrational.
k=2 k1 N

Now we prove

THEOREM 3 We have m = O(mod 22°), m > 0 and wish to prove that

-4l ST . 7
a= I i irrational. Observe that we did not assume that the sequence
&

-

{m} is monotonic. Reorder it as a monotonic sequence my < ma < ... . We
evidently have ny = 22*. Thus we can assume
lim sup m)/?* =C < o (28)
-

for otherwise the irrationality of « immediately follows from Thecrem 1.
(28) and nix = 22 imply as in the proof of our Lemma that

‘E : <= (29;
=1 M Mi+1

At least two of the my’s, 1 < i < k are divisible by 22 Thus
My < Ny i (30)

where N is the least common multiple of the my, 1 < i < k and M, is their
product. Let now m;_be a sequence satisfying

mg, > (C—e), e >0ask, — oo, (31)
To prove the irrationality of « it clearly suffices to show that
im My, £ —— =0. (32)
P -0 My i
Thus by (29) it suffices to show that
lil'E J’lvf;"_-i mg_ = 0. (33)
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By (28), (31) and (30 we obtain by a simple computation that for every
§> 0if r > rof8)

my, > N, —y(1 + 872 > My 12271 + )~
which implies (32) and therefore Theorem 3 is proved.
I cannot decide whether there is a sequence ux having property P and
satisfying ul"zk —~ 1, or e > C?", (1, u;) = 1. 1 would tentatively guess that
such sequences exist.
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