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1 . Introduction

plane, what is the

We will be discussing some old and new problems

and results in Combinatorial Geometry . We begin with

some old problems .

Some time ago the senior author conjectured that

a convex polygon in the plane always has a vertex which

does not have three vertices equidistant from it . In

L3) it is mentioned that Danzer disproved this . It

is stated there that Danzer also considered the

following general problem and settled it in the

affirmative :

Given k > 3, does there exist a convex polygon

of nk vertices so that every vertex has k other

vertices equidistant from it? However, Danzer now

says he only has the result for k=3, hence the

problem is still open for k > 4 .

Some time ago the senior author posed the

following problem : Given n distinct points in the

maximum number f(n) of lines that

can have exactly k points on them if no k+1 points

lie oii a line? Karteszi. showed that f(n) > ckn log n .

B . Grünbaum has recently improved this to

f

	

+ 1/(k-2) .k (n) >, c kn 1

	

Here, as always, c's denote

positive constants . S . Burr, B . Grünbaum and
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N .J .A . Sloane in bl obtain a result of the form
2

	

2
f 3 (n) > 6 - cn, and clearly f 3 (n) < 6 .

2
For k=4, f4 (n) < 12 trivially and we conjecture

2
f 4 (n) = o(n2 ), but we can't even show f4 (n) < (1-E) 12'

for any positive c .

2 . Someproblemsinvolvingpoints inGeneralPosition

Let f2(n) denote the maximum number of pairwise

congruent triangles that can occur among all the triples

formed from n distinct points in the plane . In a

previous paper ~61 we showed that fc(n) = o(n 3 ( 2 ) . We

now add to this the lower bound f2 (n) > en log n . We

can actually prove this lower bound under the restriction

that the points are in general position--no three on

a line .

We have

Theorem 1 Let f(n) denote the maximum number of

pairwise congruent triangles that can occur in the

plane among n points if no three points lie on a

line . Then
n

f (n) > n log3
9 log 3'

We postpone the proof until later .

Many of the problems considered in 6 and 2

.can be looked at with the new restriction that we

have no three points on a line, and we discuss some

of these in this section .

Theorem 2 Let f(n) denote the maximum number of times

that unit distance can occur among n points in the



plane if no three points lie on a line . Thenn
f(n) >

	

2n log 6
3 log 3

Remark Without the restriction of no three points

on a line, it is shown in [2] that

f(n) > n l+ c/log log n .

Proof Clearly f(2) = 1 . We start

(1)

	

f(2n) > 2f(n) + n .

We represent the points by complex numbers . Let

S = { zl, . . .,znI be a set of n points with unit

distance occurring f(n) times . For any a of unit

modulus the number of unit distances occurring in

S k)(S + a) _ {zl, . . .,zn, z1+a, . . .,zn+a} is at least

2f(n)+n, since there are f(n) occurring in each of S

and S+a, and Iz i+ a-z i I _ jal = 1 for all i . We shall

show that a can be chosen so that no three points

will lie on a line .

Let z i and z
i

be fixed, and let t be the line

through them . For each point z k , the locus of points

zk+a such that a has modulus one is a circle

intersecting Z in at most two points . Hence for

each of the
lnl

pairs of points in S there are at

most n(2) choices for a that must be avoided to

prevent a point of S+a being collinear with two points

of S . Similarly there are only a finite number of

choices for a to be avoided to prevent a point of S

from being collinear with two points of S+a . Since

there are infinitely many choices for a there will be

by showing



one avoiding collinearity, and (1) follows, We next

show

(2)

	

f (3n) ? 3f (n) + 3n .

Let S be a set of complex numbers {z1, . . .,zn}

with f(n) unit distances . If a is a complex number

of unit length, and w

	

+_

	

j2 (a primitive cube root

of unity), then 0, a and wa form an equilateral

triangle of side one . We seek an a such that

SLJ(S+a)L)(S+wa) has no three collinear points, from

which (2) clearly follows .

The collinearity of two points in one set with

one point of another set can be avoided by excluding

only finitely many choices for a, as in the proof

of (1) .

Suppose three points from different sets are

collinear : z i , zi+a and zk+wa . Then z i - X(zi +a) +

+(1-a)(zk+wa), where a is real . Solving for a, we

c+ad	get a = a+(1_a)w, where c = z i -z k and d

	

z k-z J .

Since jai = 1, we have

(c+ad)(c+ad) _ {a+(1 a)w}{?-4(1-a)w} . Hence a satisfies

a quadratic equation Aa 2 + Ba + C = 0, where

A - dd - 1 - arw + w + w = I zk - zd 12 + 1 0 0 .

There are at most two such a, and once A is fixed,

a is determined . As we range over all triples of

points, we see that only finitely many choices of a

have to be avoided, and (2) is proved .



m-1

	

m-1

	

4 .3m-f log 3 m-1

	

2n log(')4(n) > f(4 .3

	

) ? 4 g(3

	

)

	

log 3

	

'_

	

3 log G3

Finally, if 2 .3 m < n < 3m+1~ then, by (1),

m

	

m

	

2 .3m log 3m

	

2nlog(), andf (n) > f(2 .3) > 2f(3) >>

	

log 3

	

>

	

3 log 3

the theorem is proved . At the moment it is not clear

if the restriction of no three points on a line really

decreases the number of unit distances . We may also

ask how many unit distances you get if there are no

four points on a circle .

Proof of Theorem 1

We now sketch the proof of theorem 1 . Let g(n)

be as in theorem 1, except for equilateral triangles

of side one . Clearly g(3) = 1 . We shall show that

(3)

	

g(3n) > 3g(n) + n

and then theorem 1 will follow . Let S be a set of

n points (z	z n I in the complex plane with g(n)

equilateral triangles . If a

iT
2 '

S~)(S+a)~)(S+wa) contains the n equilateral triangles

z i , zi+a, z i+wa of side one, and 3g(n) others . By

the same argument as in the proof of theorem 2 we can

avoid three points on a line, and (3) follows . Hence
ng(3 k ) > n to n and it follows that g(n) > 2-10 x 0) .

3 log 3

	

- 9 log

unit modulus and w = h +

is a complex number of

then thee set

It follows immediately from (2)
k ) > 3k log 3k

that

f(3 log3

Let 3 m < n < 3m+1= m > 1 . If 3 m < n < 3 3m , then

a log 3 m > 3nf(n) > f(3m ) log 4 n Iflog 3

	

-

3 3 m < n < 2 .3m then, by (1),

4 log 3



How many isosceles triangles can occur among n

points in E k no three on a line? Let the maximum

number be gk(n) .

Theorem 3

(n-2)(n-4) < g2 (n) < n(n-1) . Further, if n is

even and not of the form 3k+1 then g í2 (n)_ (n-

1)(a-2)-Proof

We first prove the lower bound . Let n be even

and let P1, . . .,Pn-1 be a regular (n-})gon inscribed in

a unit circle with center Q . No three of the points

Q,P 1' ,P n-1 are collinear . If Pi and P
i

are distinct

points, then the triangle QP iPj is isosceles, and

~n-
2

1
J1 triangles are obtained in this way .

If P i and P
3

are distinct points, then since n-1

is odd, there is a point P k equidistant from P i and

Pi so that P iFi
Pk is isosceles . Equilateral triangles

get counted three times in this way . If n = 3k+1, then

there are k equilateral triangles, and the number

of distinct isosceles triangles P iPj P k
is (nzl} - 2(3 1)

and the total number o£ isosceles triangles is therefore

2

	

s 3(n-1) (n-2)-2(n-1) _ n-J2~ 2

	

3

	

-3 -

	

- 3- f~3n-b=2)

3(n-1)(3n-8) . If n is not of the form 3k+1, then

g~(n) ? 2( n 2 1 ) _ (Ti-1)(n-2) .

	

If n is odd, thenr
g2(n) > g2 (n-1) ? 3(n-2)(3n-1) ? (n-2)(n--4) .

	

Thus we

have obtained the lower bounds claimed .



Y
To obtain the upper

n points in the plane . For fixed x i and x j the

points xk forming isosceles triangles with x i and

x j lie on the perpendicular bisector . Since at

most two points are on a line, this gives

g2 (n) < 2(2) = n(n-1), and the theorem is proved .

We can also consider the same problem with the

additional restriction that no four points lie on

a circle . However, we can't even show that the

number of triangles would be

Theorem 3 is related to a problem of L . M . Kelly :

Is it possible to find n points such that every

perpendicular bisector of two points has two points

on it . It is possible for eight points, but Kelly

conjectures that it is not possible for any other

number . A proof of this conjecture with quantitative

results would strengthen our upper bound

bound, let

o(n 2 ) .

x 1 , . . .,xn be

on g 2 (n) •

Kelly's figure actually contains fewer than

g 1 (8) isosceles triangles, since it contains eight2

equilateral triangles and therefore 56-16 = 40

isosceles triangles compared with 42 for the

example of our lower bound .



3-

n points in the plane, what is the maximum

of triangles of the same area that can occur, and we

showed

c I n log log n < f(n) < c2n 5/2 .

We now discuss a related problem .

Theorem 4 Let g(n) be the minimum number of triangles of

different areas which must occur among n points in the

plane, not all on a line .

TrlanAles of different areas

In [51 we discussed the following problem :

Then c I n 3 / 4 < g(n) < e 2 n .

Given

number f(n)

Proof The upper bound comes from considering the

points (i,j) for l < i,j <

	

and observing that every

area is half an integer and bounded by

We now prove the lower bound . It follows from

theorem 4 .1 ~81 of L . M . Kelly and Leo Moser that if

you have n points, with no n-4 on a line, and you

form the lines through pairs of points, then there are

at least cn 3 / 2 different lines .

Let i be a line with points P , ,, . .,Pm in order, and

let Q be a point not on f . Then the areas of triangles

QPoP V i - 1,2, . . .,m form an increasing sequence . We

may therefore certainly assume that less than n-)/ -n points

lie on any line, so that we have at least cn 3 i 2 different

lines .

Suppose that no direction has

parallel lines . Then there are lines

n
2

more than En 3 / 4

cn 3 / 4
in

	

£

	

different



dírectíoas .

Let 2 be a line determined by A and B and

consider the lines parallel to it . Assume that p

points are covered by these lines . Three uncovered

points P 1 , P 2 and P 3 cannot give rise to triangles P I AB

of equal area, since this would imply that two of the P i

were on a line parallel to R . Hence the uncovered

points give at least nn-p different

For the covered points, let h i be the number of

points on the i th line parallel to t, 1 < i -1 r . Then

the number of pairs determining this direction is ~t 2 1 1 .

Since ~k i = p, we have L (211> h? > (cn3/4 -- 2 > n3É4

for a small. enough . The number of directions is at

cn 3/4
least

	

a

	

Hence the total number of pairs is at
1 5 / 4 cn 3

/
4

	

nleast En

	

E

	

> ~2~ for a sufficiently small, which

is absurd . Hence some direction has more than en 3Í4

parallel lines . Choose one line L through A and B and

one point from each of the other lines and you get at
3/4_ 1

least en 2

	

different areas for some c > 0 . Hence the

theorem follows .

Remark If the following old conjecture is true, then by

a proof similar to the above g(n) > c a n and the order of

magnitude of g(n) is known :

Given n points in the plane with no (1-E)n on a

line, where E > 0, there exist positive c and N such

that there are more than cn 2 lines if n > N .

areas .



4 .

	

Covering lattice points by circles and lines

Theorem 5 Let f(n) be the minimum number k such that

there exist k points in the n by n lattice Ln so

that the lines through any two of them cover all of the

points of Ln . Then

f( n ) , , n 2/3

Proof Let k points be

1 _' i < k . Let

shall show that the

lines i . is at mosti

We may suppose

+ y i, the diameter

R i cannot excede

ck-l Y`2n
Li=1 ~x *y

We shall show that

given which satisfy the above

hypothesis, let x o be one of these points, and consider

the points of L n covered by the lines through x o and

the other points xl, . . .,xk_1 . By moving the origin,

we may suppose that xo = (0,0) and x1 =
(x i ,y í ),

ki be the line through xo and x i . We

number of points covered by all the

cnvk .

that the (x i ,y i ) are distinct and

primitive . The distance between consecutive points on

of Ln is less than/2n,

and so k . covers at most l +

	

n

	

points of 1, .i

	

~rg~

	

n

The number of points excluding x o covered by all of the

this sum is bounded above by

cnY'-k even without the restriction to primitive points .



The maximum is clearly obtained when the points all lie

within a circle of radius r =

	

+ 0(1)

	

11ence
,r2-n rk-1

	

1

	

< 2/2n

	

1
i=1 x

	

-

	

L T~+V
0<u i <v . <r
(u i' v d (0,0)

< 2jn

	

1 + 2Y"n L	 2
1£ < 4 2 nr < cnrk .v,

	

ru .+v,
1 <v i <r

	

1<ui <v i <rl

Hence, as claimed, the total number of points on lines

through the fixed point x 0 is at most cn v~, and so all

of the lines cover at most cnk 3i2 points .

	

Since the n 2

points of Ln are covered, we must have c'k 3 / 2 > n, or

k > c n 2/3 , as stated in the theorem .

We are unable to prove f(n) = o(n) but we conjecture

this .

Theorem 6 Let f(n) be the minimum number of circles

needed to cover all of the points of the n by n lattice .

(The points are covered by a circle if they lie on its

perimeter .) Then

f (n) <
8n 2 log n
n c/log log n

Proof As usual let the n by n lattice L be then

set of points (i,j) such that 1 < i,j < n .

	

It follows

from theorems in number theory--see C 2] theorem 2 for

details and references-that there is an absolute

positive constant c so that some circle contained

entirely in L n , centered on a lattice point, has at

least t = nc/log log n lattice points on it .

Let our first covering circle be that circle and

let r denote its radius . Any circle of radius r



cantered on a point of L n will contain at least 4 points

of L .

	

We shall choose circles succesively as follows .n
Suppose that k ? I and that the first

	

k circles have

been chosen . Let N K, be the number of points of L n not

covered by them .

	

We shall show that the next circle

may be chosen so that
t

(!+)

	

I`k+l - Nk 1 _ 4n"

To see this, consider the circles c i of radius r

centered on the N .k uncovered points .

	

Each c i contains

at least 4 points of L n . Hence some point P of Ln

must belong to at least tiv-4n circles c 1, .

	

For our next

covering circlee we choose the circle with center P and

radius r . This circle covers at least 4n
new points,

and so

tNk

	

_ t
Nk+l - hk - 4n2 - N k (1

	

4n2 ) '
Hence (4) is proved, and by induction Nk < n 2 (1 -

Hecice N
K.
,

	

1 when k

	

and sotlog(1

	

t 4n7')

f(n}

	

8n 2 1og n

n c/log log n'

5 .

	

Congruent subsets of a .set.

Theorem 7 Let f(n) be the c:ay-imam number of congruent

subsets of a set of n pointy that can occur in the

plane . Then

f(n) = o(n. l l`) .

Proof Let (x,,. _ %I be a set o` n points in the

plane., and let tA j , • . .,Am

	

be a fixed subset .

	

By a

theorem ?I

	

E . Fannwitz [9J the maxinun~ distance d

t ) k .
4n



occurring among A l ,

	

,Am can occur at most m times .

By a theorem of S . Jozsa and E . Szemerédi ~7] the number

of pairs of points x i xi
at distance d is o(n 3 / 2 ) .

For each line segment A íAj and xr x s there are at most

four ways of placing {A,, . . .,Am} onto {xl, . . .,xm} so

that these line segments coincide . Hence the number

of ways of placing {A,, . . .,AmI congruently in {x l , . . . . xn }

is o(4mn3/2) = o ( n 5/2) .

Corollary Given n points in the plane there are more

than ~ns7zn incongruent subsets, where *(n) tends to

infinity .

Theorem 8 Let f(n) be the maximum number of congruent

subsets of a set of n points that can occur in E k . Then

f(n) < cn 2k+2 .

Proof Let {xl, . . .,xn} be a set of n points in E k , and

let A - {AI, . . .,Am} be a fixed subset . Let t be the

dimension of A and assume without loss of generality

that A,	AX+i span the subspace generated by A .

For each of the less than ~i+1) subsets of {B,, . . .,Bi+i}

congruent to {A,, . . . . A1+1} and for each of the less than

(Rn+i) subsets {yi, . . .,yi+l} of {xl, . . .,xn} congruent to

{A,, . . .,Ai+l} there are at most

the simplices B1 B 2 . . . B,+1 and yl • • . y .+, coincide .

Hence f(n) _<( i 1l f,n1)(i+l)!<
cn2k+2 . We suspect that

in fact f(n) < cn k/2 for even k .

Corollary Given n points in E k there are at least

(R+1)! ways of making



c2n

	

incongruent subsets .

nZk+2

In Hilbert space it is possible to have a countable set of points

such that only countably many incongruent subsets occur . Simply take

the sequence {Ei } , where Ei is the ith coordinate vector . Subsets

of the same finite cardinality are congruent, and the countable subsets

are all congruent .

However if m > K
0

and S is a subset of Hilbert space of power m,

then there are always 2 m incongruent subsets of S . To see this, observe

that there are at most c sets congruent to any subset S, of Hilbert space .

Thus if 2m > c our statement immediately follows . If 2m = c then S

contains a convergent subsequence {Yn I and it is easy to see that the

sequence contains c incongruent subsets .

For some further problems in Hilbert space see [4]p .541, where the

following problem is given : In Hilbert space, does every set of c points

have a subset of c points without any right triangles? In E k the answer

is affirmative .

We are indebted to Ernst Straus for stimulating discussion o£ some

of the problems of this paper .
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