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1. INTRODUCTION

Recently several authors have investigated the question of approxi-
mating certain functions by reciprocals of peolynomials under the uniform
norm on the positive real axis. Perhaps these results have some applica-
tions in industry and elsewhere (cf. [I, 36]). Our present motivation is
to give a detailed list of all the known results with simplified proofs in
some cases and many new results “and finally many open problems,
Gonchar's article [14] may be of great help to people interested in finite
intervals,

Long ago Chebyshev has shown “for any function f(x) continuous on
the whole real axis and having the finite limit lim, ... f{x) = C, there
exists a sequence of continuous rational functions of the form R (x) =
P00, (x) (where P, (x) and O,(x) are polynomials of degree n) such
that him || f{x) — R, ()t ¢-w.«1 — 0. But Chebyshev never discussed
the rate of convergence of the error to zero, This kind of result has been
obtained by Freud and Szabodas [13] in 1968.

In 1955, Hastings has shown [15] by computation functions such as

can be approximated under the uniform norm very closely by reciprocals

of polynomials on [0, oo), In 1969, Cody, Meinardus and Varga have

shown [4] that ¢=* can be uniformly approximated on [, o0) by recip-
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rocals of polynomials of degree m with an error (2.298) " In 1973,
Schinhage has shown [33] that ¢ can be approximated uniformly by
recipracals of polynomials of degree n on [0, o) with an error 3% but
not much better. In 1974, D. J. Newman has proved [18] that ¢~* cannot
be approximated on [0, <o) under the uniform norm by general rational
functions of degree n with an error better than (1280) . Recently Freud,
Newman, and Reddy [12] have shown that e/ can be approximated by
reciprocals of polynomials of degree # on (—co, 420) with an error
Cy{log a}/n but notlike a Cyfn. Further, Freud, Newman, and Reddy have
shown that ¢~'7! can be approximated on (— oo, -+ o) by general rational
functions of degree n with an error like a Cpe '™ but not like a
Coe=€ov™, In 1970, Meinardus and Varga [16] have extended the results
of [4] to reciprocals of certain entire functions of perfectly regular
growth. In 1974, Reddy [20] has extended the results of [16]. In 1972,
Meinardus, Reddy, Taylor and Varga [17] have obtained some direct
and converse results. Subsequently in a series of papers by developing
certain new techniques, Erdts, Newman, and Reddy[3], Erdés and Reddy
[6-11], Newman and Reddy [37-39], and Reddy [19-28] have obtained
many results,

We present results in this article not according to the chronological
order but according to certain pattern, perhaps convenient to the readers
to follow. At the end we mention a few results for certain unbounded
domains of the complex plane.

2. DEFIKITIONS AND NOTATIONS

Let £(Z) be a nonconstant entire function. As usual write M,(r) =
Mi{r) = max .| f(2)|; then the order p and the lower arder 8 of f{Z)
are defined thus

. sup loglog M(r) p T LS,
Irim inf —Iugr g (0 = 8= p = i) (2.1)

If 0 << p = oo, then the type = and the lower type w of f are:
Tim ?up log M(r) T

P " il

=o <7< w) (2.2)

If p = 0, then we define the logarithmic order p;, = A + | and the lower
logarithmic order 8, of [ as:

sup loglog M(r) py . T
fI-al-OI:Q. inf —-—]“g ]ng"—'r = rai == 7] "|' 1 {I e |Ei = e 'ﬂ.—}j, {2.-3}

boT/21/1-6
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If p = 0, 0 < A < =0, then we define the logarithmic types =; and «w,
of f as:

sup log M{r] = o - Saeal

rowe inf (logr) Wisan sm Sl @4

An entire function f(Z) is of perfectly regular growth (p, 7) [35, p. 45]

if and only if there exist two (finite) positive constants p and = such that

lim log A {rj

Fa r

Let f(Z£) = Yp0 @ Z% be an entire function with nennegative real
a{a; = 0). Then set S,(Z) = Ty @, Z* and

ton = s (7) = 2t | — 75 | @9

where =, denotes the class of all ordinary polynomials of degree at most n.

For given s > ] and r = 0, let B{r, ) denote the unigue apen ellipse
in the complex plane with foci at & = 0 and x = r and semlm.uor and
gemiminor axes @ and & such that djla = (& — I}{x o

Denote My(r, 5) = sup{| F(z) : Z & B{r, 9}

Let &(x) be a real nonnegative continuous function on [0, 4 20) such
that, for all x large, #(x) = 0, and A'(x) exists, is nonnegative, and
satisfies

lim A'(x) = 0. (2.6)
Defining generically the set H,, 0 = 5 = 1, in the complex plane by

Hi={Z=x+uox =0and [ v] = Shix)} (2.7)
Hy={Z=x+ivi0=<x == Cd, coa(n~%= and |y | = Difx)}. (2.8)

Set for a real ¢ = |

: 'vs.r—l
4 R = 1. 2.9
J?J_I (2.9)

Let S{f) denote generically the infinite sector

SOy ={Z: |arg Z| = 8} (2.10)
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€y, Cay Oy €y iy € are suitable positive constants may be different
on different occasions. f and 8 also have different meanings in different
theorems,

3. THeoREMS
Tueorem | (Chebyshev [34, p. 19]). Let f(x) be continuous on
(—=c, +o0) and
]ir&_f{x] = linm_f{\} ==
i finite, then
Iﬂ“};i Six) — Ru[x}”l-m{—n.ﬂ = 0. (3.1)

Tueorem 2 (Freud and Szabados [13, p. 201]). I f(x) satisfies the
assumptions of the above theorem, then

1F(¥) — Ro()lefom,m) < 4Bus{lfm), m=1,2,3,..,

wihere w(B) i the module of contimaty of the function f(tan t/2) on the
interval [—w, 7).

Treopem 3. Let f {‘:‘]I be comfrnuons maintains sigh and tends to sero
an the pus:tme real axis. Then there exist a sequence of polynomials

P, (x) = Zi o @™, where {n,} is a sequence af mi‘.uml numberx satisfying
the assumptions that 0 = n, << ny <<y <+ < g and Ty 1/n;, = 0,
for awhich

fim | I —0, .
'“““’:' f{t‘ Pm-{'ﬂ ||meﬂ.1-i 32)
Remark. 'There exist functions which can be approximated by
general rational functions on (—oo, +o0) but not b}' reciprocal of
polynomials on [0, o0). One such example is fa) = 1 + ¢—=,

Froof. It is known [3, p. 391] that f(x} satisfying the assumptions of
Theorem 3 can be approximated uniformly on any finite interval [0, 25]
as close as we like by reciprocals of pul}mﬂmmls {P,,} of the form,

*

Py (x) = E an',

T
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where |n,| satisfies the above conditions, In other words

[ I

UTl _}‘{-ﬂ By (x} |'£.m[n.su1 @33

for every finite interval [0, 25].
Now we choose € =0, b = 0 and sufficiently large and a nfq > k)
guch that

o e = —m{x} o7 M (3.4)

This is certainly possible since e(x/b)™ tends to zero very fast for
b= a =0, if b = &, ¢ being very small (3.4) is certamly valid.

Now we divide for convenience [0, oo) into [0, b] and [b, @), where
i sufficiently big finite interval, For all & = &, f(x) will be very small and

P, () -+ (s
grow very fast for all large k, hence

1
P T letoe) W

I
li F—
FIIIE | Jr::‘} _L_th,_.!.}

We get the result (3.2) from (3.4) and (3.5).

Remarks. 1f 1/f(x) 12 not entire, then the following theorems indicate
that, it is not possible to approximate f(x) very closely by reciprocals
of palynomials.

Tagorem 3A (Erdos—Newman—Reddy [5]). Let f(Z) = Sio apZF,
a, = 0, az =0 (k = 1) be an entire function of order p (0 < p < 20)
type T and lower type w (0 < o < 7 < ). Then for all large n,

b lo T
“"“[f{q )= {cmg{; 7 | f[(m“} )

Tueorem 3B (Erdos-Newman—Reddy [5]). Let f(Z) = T apZ¥,
ay > 0, ap. =0 (k = 1) be an entire function of order p(0 < p < o)
type T and lower type o0 = w <+ < @), Then

-1

Ao {ﬁJ = Cy(log n)tin n=2,
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Tureorem 3C (Erdés-Newman-Reddy [5]). Let f(Z) = Ef_u a.zk,
ay =0, ap =0 (k = 1) be an entive function of order pll < p < m)
type T and lower type w(0 < w = v = w). Then there is a polynomial

P (x) of degree n for which

0 Ll
B e e ey = — Cnti#),
I fl=)  Pyix) ||Lml1.c¢:l ek

Tueorem 3D (Erdés-Newman-Reddy [5]). Let f(Z) = ¥,_q a 2¥,
ay =0, @, =0 (k = 1) be an entive function of order p(0 < p < 1)
type v and lower type w0 < w = v << o). Then there is a polynomial
P(x) of degree n for which

| = | i L
|| f{_-!} K m EL;JLMJ = r_'xp(-—C (Ing ﬂ] )'

Turorem 3E (Erdés-Newman-Reddy [5]). Let f(Z) = Ty 2, 2%,
ag = 0, @, =0 (k = 1) be an entire function of infinite order. Then there
is @ polynomial P (x} of degree n for which for infinitely many n

ey T B —1n
75— 7 li gy G008 RS | gy [0,

THEOREM 4 (Erdds and Reddy [I1, Theorem 1]). Let f(x) be con-
tinuous non-vanishing and tends to o on [0, oo). Then there exist poly-
nomials P, (x) satisfving the assumptions of the above theovem for which,

lim !

- .m - m |if.mlﬂ.=ﬂ =9

Tueorem 5 (Erdés and Reddy [11, Theorem 2]). Let f(x)(=0) be a
conirnuous juucfmn defined on [0, «0). I;f' there exist a sequence of polvnomials
P, (x) = '}' 1o @ X" for which

I 1
Mk oy iz cathiite =it
T P e

where (0 = ny << my << ny <<+ < my and Ty 1/ng << co. Then f(x) is
the restriction to [0, w0) of an entive function F(Z).
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Tureorem 6 (Reddy and Shisha [30, Theorem 1]). Let f(x) be a
comtinuous function (=0) defined on [0, o). If there exist a sequence of
polynemials [P (x)v_, , with nonnegative coefficients such that

i = — &1 -
oo f{x:l .n{.x} I'LEE"F"J’
Then f(x) is the vestriction to [0, ©©) of an entire function F(Z),
Tueorem 7 (Erdés and Reddy [7, Theorem 1]). Let f(Z) = X, a1 2%

ay = 0, and a,. = 0 (k = 1) be any entire function. Then for every e = 0,
there exist infinttely many n for which

"]I'll n = EXp (ﬁ)

Remarks.  For functions which grow regularly, the above conclusion,
is valid for all large n. For a slightly general result see (Erdos and
Reddy [9, Theorem 1]).

Tueorem 8 (Erdos and Reddy [7, Theorem 2]). Let f(Z) be an
entire function of infinite ovder with non-negative coefficients. Then for
cach € == 0, there exist infinitely many n for which

Ay = 7

THEOREM 9. Let f(Z) = Tio a2 a, >0, a, =0 (k= 1) be a
transcendental entire function of finite order p(0) = p == o). Then for
every constant ¢ == 0, for all large n

Ngaa= Ljnt, {3.6)
Progf. By definitions for 0 < x < r = (0/2)Vrte el ¢ = 0.

1 1 = - :
0= 5 @S ( 2. rdkr*) Cy << Cy™ Y ayfre)t

et =1+l
= Oy "Mire) = C) exp((rePts —n)-= Cie /2, {3.7)
On the other hand for x = r.
1 1 1 ST
SEM W S5O S5O Sf—er
b G .
= Tir) = 7% =" (3:8)

(3.6) follows from (3.7) and (3.8) by properly choosing C; , C;, and Cj .
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Turorem |0 (Meinardus, Reddy, Taylor and Varga [17, Theorem 3]).
Let f(x) be a real continuous function (£0) on [0,00) and assume that there
exist a sequence of real polvnomials | P (x)}iy, with P, e m, for eachn =0,
and a real number g = | such that

J 11
lim sup | f

i 4'“ ﬂl—‘f} - %M ”Lxlﬂ,n:}li

Then, there exists an entive function F(x) with F(x) = f(x) for all & =0,
and F(Z) is of finite ovder p, i.e.,

Jim sup Jog log Mylr) - P

poed log r

< % = (3.9)

In addition, for every 8 = 1, there exizt constants K = K{S, q) =0,
0= 8(S,q) =1 and ry = ry(8, q) = 0 such that

Me(r, 8) < (K[| flleom)®  forall r=r.
If, for each 8 = 1, (8) is defined by
{ log Mg{r, S}

litm sup : — 05
: Feam 3 ! jﬂﬁliﬂ!c.m[n.r] | { :I
when || f| ;o1 i unbounded as r — o, and 8(S) = | otherwise, then the
order p of F satisfies
!
5 < jnf h.:g EI'[S} |
51
'i 'lt.'tg[ —l— )I l.

and this_upper bound for the order p is in general best possible.
Remarks. It is very likely that F{Z) may satisfy that

lien log log M (r)

oo logr =p (0<p<m)

It is easy to give examples of entire functions of zero order for which
(3.9) fails,

Tueorem 11 (Meinardus, Reddy, Taylor and Varga [17, Theorem 5]).
Let f(Z) = EJ.: o @25 be an entive function with a, = 0 and a, =0 for
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all k = 1. If there exist real numbers 4 =0, 8§ = |, B =0, and ry =0
sueh that

Melr, S) < A{||flepon)®  forall v =7,

then there exist a sequence of veal polynomials | P, (x)17, with P, e =, for
each n == 0, and a real number g = SV = | such that
| e
ii 'I" E —
s = P kg g
Remarks. Quite recently the assumption @y > Oand a, = 0(k = 1)
has been weakend by Blatt [2] and Roulier and Taylor [31].

TrrorEm 12 (Meinardus, Redd}r, Tnylnr and Varga [17, Theorem 6]).
Let f(Z) = Yy @y 2%, ay =0, @ = 0 (k = 1) be an entive function of
order p(0) < p < o0) type v and lower type w() << w < v < ®). Then
there exist a sequence of veal polynomials {F,(x)}5_ for which

iz “| I | L i

M ]:J_:{;} L l0.0) l'

Traeorem 13 (Reddy [23]). Let f(Z) = e G2 e == 0; 8 =0
{k == 1) be an entive function of order p(0 < p < wo) type v and lower
type wil) << w = v < ). Then

e, | 10 (IS " e < exp (-2 ).
wam - ULF(x) TR @ e f0,m) 2 pre - po

_ Remark. There exist functions which fail to satisfy the assumptions
of the above theorem but for which the conclusion is valid in a slightly
different form. One such example is

= logkyk
2)y=14+% Z|—).
f(2) 3 (-%=)
Turorem 14 (Reddy [20, Theorem C]). Let f(Z) = Y, a.Z%
a, = 0(k = 0) be an entive function of order p{0) < p < @), type T, and
lotwer type o, (0 < w =< 7 < @) and v << 2w, then

! 14 7 R0
lim sup (/" < ()
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where xy is the largest and x, the smallest voot of the equation,

x loglxle) +wlr = 0.

THEoREM 15 {Rt:rld}' and Shisha [29, Theorem 14]). Lt f(Z) =
Yio @ Zk ay, >0, a, = 0k = 1) be an entive function and suppose there
exist constants & = 1, C =Le=0and )< C, < Cy <1 for which,
for all large r,

Mr8) = {M()}",  swhere #= % %_sz e

Then for every sequence (P, (x)|5_y , where each P (x) ix a real polynomial
aof degree <m, positive throughout [0, o0), we have
I i fi.fru

- # I|II I ool
lim i e — ) 2 C >
't"\cl:‘E i :I

THEOREM 16 (Erdés and Reddy [9, Theorem 3]). Let f(Z£) =
Yoo @25, a; = O(k = 0) be an entive Junction of order p(0 < p = )
type v, and lower type (0 < o < ¢ < o). Then

o H et
]u&ﬂgﬁnf{ln.n]lan = ( B3 |- IT_-'-T-T

TreorEM 17 (Reddy [22]). Let f(Z) = Te_g ap®, a = 0(k = 0)
be an entive function of order p(0 < p < o) type + and lower type
7 < ). Then

fim in (h, )10 = (2#4/ero (%]”" » ,)‘{

)-'Blhl#g

e <o =<

THLDRH‘[ 18 (Meinardus and Varga [16], Reddy [20]). Let f(Z) =
Yroo l¥, ap = Ok = 0) be an entire function of perfectly regular

growth (p, 7). Then
= lim sup (A, J/"® = 2%

e e
Tueorem 19 (Reddy [20]). Let f(Z) = Ypo ai2%, a, =
be an entive function of perfectly regular growth (p, 7). Then

1
ll.m 1|1f (Mg, u)t" = > 5575

0(k = 0)
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Tueorem 20 (Cody, Meinardus and Varga [4]). Let f(Z) = £%. Then

1
f: = limsup (Mgt j BT

Wi

Turorem 21 (Schonhage [33]). Let f(Z) = #2. Then
lim (A, )" = .

Trarorem 22 (Newman [18]). Let P(x) and O(x) be any real poly-
nomials of degree less than n. Then

Plx) | L _'
O} lp o) = (1280) °

TueOREM 23. Let f(Z) = T 2%, ay = 0, a, = Ok = 1) be an
entive function of perfectly growth (p, 7). Then for every non-vanishing
polvnomials P{x) and O(x) of degree at most n, there is a constant € = 44+1/e
for swhich

lim inf :" e

> 02, (3.10)

, 1 P@y e
lim sup | 75~ O |u.,,cfn.1.~
Remarks. (a) 1f P(x) is a constant then (3.10) 15 known in a better form
(cf, [22, Theorem]). (b) The proof adopted here is different from the one
used by D, J. Newman.
We need the following lemma for our purpose.

Lensaa ([34], [9, p. 68]). Left Plx) be any algebvaic polvnomal of
degree at most n. If this pelynonial is bounded by M on an interval [a, b)
then at any point outside the tnterval we have

| Px)| < MT, KM}I

b—ug
where
AT (x) = (x - vVEE— 1P+ (v — V@ — 1)

Proof of Theorem 23. Let M{r) = max,, ., | f(3)|. Then by assump-
tion
log Mi(r) < P u:t:nll

lim —————~ =+ .
FE re E 0 =<0
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Hence for each € = 0 and & = |, there is an r, = ryfe), such that for
all ¥ = ryle),

M(r8) = [M{r)}im-ebitie, (3.11)

L.et us assume on the contrary the theorem is false. Then for all larcge #,

I Py | .
I = e P 312
176 = 26 e %
Since lim,, . | P(x)| = oo, there exist arbitrary large r for which
| P(r) = | P(1)l, forall t=r. (3.13)

For each of these values of r for which (3.13) is valid, we can find
sufficiently large » and a constant C > 4'*1/7 such that

f)y=(€— o (3.14)
Then at this point ¥ = r, we get
J
1% | < e (315)
If (3.15) is not valid, then
%% =0 (3.16)

From (3.14) and (3.16), we obtain
SO )

Ot < (C— P — O S s — s (317
(3.17) clearly contradicts (3.12). Hence (3.15) is valid.
At x = 8 = 7(C/4), we have from (3.11) and (3.14)
Fr8) 2 {f{r)PP-aiitin 5 (€ — e, (3.18)
Since P(x) == 0, we get from (3.15).
1O(r)] < | Plr)) Cn. (3.15")

Now by applying lemma to | O(r})| over the interval [0, #5], we get
|0(r8)] < | P(7)] 2028 — DO (3.19)
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From (3.13) and (3.19), we get by choosing t = rj,
| l < (2(25 — 1)C~. (3.20)

Clearly (3.18) and (3.20) contradicts (3.12) for all those values of n for
which (3.14) is valid, Since ¢ being arbitrary
Pira
C-t < (8 — DO+ — (€ — i)™ < i) — o

Hence the theorem is proved.

Tueorem 24 (Reddy [21]). Let f(Z) = Shoo a2, ay = 0, a = 0
(k == 1) be an entire function of order p(0 < p < @), type v and lower
type wl) << w = v < o). Then one canmot find for n =0,1, 2.,
polynomials P,(x) and O, (x) with nonnegative coefficients and of degree at
mast n for which

g o,
ot ] 75— 0y e <53
Tueorem 25, Let f(Z) = Tpg @ 2% ay > 0, a, = 0(k = 1) be an
entire function of order p and maximal type or of { fimite) order p + €. If P,(x)
and O, (x) are, for n = 0,1, 2,... polynomials with nomnegative real
coefficients of degree at most n, then

1 P(x) |
fx) 04w !

Proof. 1f (3.21) is not valid, then for all large n,

> (.75 (3:21)

hmmp'-' e ln-].

b ELe), — (2.75)-n/ 2
flx) Ofx) -|r.,_tn..-| (2,73 : 22

By our assumption f () is either an entire function of order p(0) < p < o0)
and maximal type or of order p + «fe = 0), then it is known ([3], p. 8)
that

)
fimsup ) _ o, (3.23)

s

where M(r) = Max ., | f(Z)l. From (3.23), it follows that there exists
arbitrarily large values of r for which

log M(r ;p _ log M(f)
r "

D<r<r (3.24)
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From (3.24) we obtain for all those values of #, with
h=CH% o Bl
Mir) = [M)]"r" <= [M]5" (3.25)
For sufficiently large r, we can find an » such that
M(CYey)y = (27506, (3.26)
At this point, that is at ¥ = C}r,
":;,i{{% < (2.75)"% where 0 <€, < Cy<1. (3.27)
(3.27) follows easily from (3.22) and (3.26). But at x = r, we get by
(3.25) and (3.26),
M(r) = [M(O15* = (2.75)s, (3.28)

Because of the assumption that the coefficients of P(x) and O(x) are
nonnegative, we get along with (3.27),

Q(r (E ﬁ, C* #{"—i't fa k "IP{.'{,I Ly ) = { ol an: Fl 2 {2 ?5}1\1 ) Cy C i

F[:rj fossd P(rC ”"‘} =
{3.29)
From (3.28) and (3.29) we get at x = r, with C, = 0.945, €, = 0.95.
b B T Tt 1 (~mfaby ronin L —n/p = e {rl _.!:__'_
(2.75)7" < (2.75) s @I < s =g+ 330)

This flatly contradicts (3.22), hence the result is proved.

THeEOREM 26 (Erdés and Reddy [8, Theorem 1]). Let g(n) be any
sequence tending to infinity arbitrarily fast, then there is an entire function
of infinite order such that for infinitely many n = n,

|
0ip W ”
Tueonent 27, Let hin) be any sequence tending to oo very slowly.
Then there 15 an entive function such that for infinitely many n

Ayin 2 Ty

The proof of this is similar to Theorem 2 of [T, hence the details are omitted.
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Treorem 28 (Erdos and Reddy [10, Theorem 1]). Let f(Z) =
i ay =0, ap = 0 (k == 1) be an entire function of finite order
plO < p <= a). Then for every € = ), there exist infinitely many n for
whicit

= .
r""lil.'m ) W .

DCTHEDREM 29 (Erdos and Reddy [I1A, Theorem 2]). Let f(£) =
Pao by by =0, B =0, b =0 (k= 1) be an entwre function of
order p and lower ovder B (0 < 8 < p < o0). Then there exist an entire
Sunction WZ) — Z:_u a, Z" ( for convenience we let a, = C, ny = 0)
Sformed from the sevies f {f) for sohich

ot P ()] <o (1 5)

Tueorem 30 (Erdos and Reddy [11A, Theorem 3]).  There is an entive
Sfunction of positive lower order for which

im i Dzl —
Tim inf (A, 1/ loworn — 0,

Tneorem 31 (Erdds and Reddy [11A, Theorem 1]). Let f(Z) =
o Gl dy =0, @ =0, ap = 0(k = 1) be an entire function of lower
order B and order p(0 < B = p < ). Then for every e = 0, there is an
ny = ngle), such that for all n = nye),

Ao = exp(—ntti—einilee),

TueoreM 32. Let f(Z) = Spoa 2% ay = 0, @, = 0 (k = 1) be an
entire function of order p and lower order B0 = 8 << p = ). Then for
all large n = nyle),

Moy = exp(—niiied/iii-e), (3.31)

FProof. Let us assume (3.31) is false. Then there exist infinitely
many # for which

1 |
e T | — gyl el Al :
| @~ P hgom = 2 ) (3.32)
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By assumption f{x) is increasing, hence for every large # and any e = 0
there is an r == 0 such that

nptl*—c'l.;ﬁﬁl—el
£(r) = exp (——p—)- (3.33)
By assumption for each e = 0, there is an ry = ryfe) such that for all
r = rple)

exp{r’”‘"'}l = {l’:} mp{rptud} {1_34)

In {3.33) we choose s so large such (3.33) and (3.34) valid simultaneously.
From (3.32) and (3.33) it is easy to see that

gl i+l iR (1—]
gt 039
From (3.33) and (3.34) we obtain
r ;: n'l .".']‘fl—-l.l#—'.l.|"+":'|*1!'1 [3‘361

Now at x = 78, where & satisfies the assumption that sé*i—¥ =
ettt 20— g3l follte) ywe have from (3.36) along with the definition
of lower order,

F(8) = expl(rBy-41] = exp [a

:__-,.-3 cxpE:].“ntl +e] (L —:J]1

(3.37)

auli £} )Hllﬁ!l."nﬂ J-rlj]

But by using lemma of Theorem 23 we get

ﬂn[l ol Jlil—e}

P r8) = (48)" Polr) < (48)" exp (_-- 3

) < exp(pettieit-dy (3,38)

(3.37) and (3.38) clearly contradicts (3.32), hence the result is proved.

Turonen 33 {[;rclﬁs and Reddy [11, Theorem 4]). Let f{£) =

SeobiZE by =0, by =0 (k= 1) be an entive function of order
pl0 < p < r} r_vpe ¥ ar:-:i lower type w, satisfving the assumption that
0<w< § < v <z oo. Then there exist an entive function h{Z) =

R L farwd [fram the vevies of {(2) for which we get

e TN

tim int (%0 () <5
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Turorem 34 (Meinardus, Reddy, Taylor and Varga [17, Theorem 7).
Let f{Z) be an entire function of logarithmic order py = A + 1 {0 < A < @)
and logarithmic types ) and w (0 < w; < 7 < @). Then

lim (A o) == 0.
Remark. 0 < w; < 7, <. @, guarantees the following
0 < lim 2BREMI) _ 44y e,
r« loglogr
On the other hand
e B s ) <
ﬂ-::lri_:;- = =/ +1<wo

may not imply that 0 < @, <X v; < o,

ExamprLES
- z..
A =1+ 2 o o ]

i B e o
AA =15 L aplinion )
It is easy to verify that for
)‘I‘.z]" A=l=ﬂl_lt Tlﬂﬂ,
fo{Z), A=1=—1, Wy = 0o,

Treorem 35 (Reddy [19] and [22]). Let f(Z) satisfy the assumptions
of Theorem 34. Then

= it e (51
o ( (4 + DA + l}Tﬂifii“) < lim sup (o.0) W < T

Theorem 36 (Reddy [24]). Let f(Z) be an entive function satisfying
the assumptions that

e g - et

lim (" = 0.

Then



RATIONAL APPROXIMATION g5

Tusores 37. Let f(Z) = TioaZ¥, ay >0, a; =0 be an entire
function satisfying the assumptions that 0 < A << o0, 5 < 2oy < 21, < 0.
Then

llm lﬂf{}.‘.j"_{lﬂhﬂ =

'!I‘--

The proof of this theorem is very similar to the proof of Theorem 32,
with the only difference we use here

f{r} - exp I petLia l
and
[1 4}!#%—1 plia g A
log 8 = [yl — )Jri4+ [6r {1 = )i/t -

We omit all the details to the reader.

Tuzorem 38 (Erdos and Reddy [9, Theorem 6]). Let f(Z) =
Yoo 2%, ag > 0, ay = 0 (k = 1) be an entire function of logarithemic
order py = A 4 1 < oo, Then

i i (470 < 1.

Theorem 39, Let f(Z) = Yoo a 2%, ay > 0, ay = 0 (k = 1) be an
entire function of logarithemic order py = A - | < o, Then for each
e =0,

Tim sup (A, 0% < 1.
The proof of this theorem is very similar to the proof of Theorem 9, with
the only difference we use here

A = limsyp — B8,
log Elug ZH
instead of
log log M : I
iy g SR o — g S
8|

hence we omit the details to the reader.

6o /2r1-7
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THF,EREM 40 (Erdds and Reddy [9, Theorem 4]). Let f(£) =
| + B ZE(did, <o d)) with doyy >d. >0, k= 1,2,3,.., be an
entive function of finite order p. Then for any € =0, we have for all large n,

dydy o dy <Ay & dydy ey ( ey )

Z'T'ffﬂp""f pidgn < dyy e thy 1 nsn ** dug Niagyy — day I
ExaMPLES,
i 2
(1 &) =1+ ??:.1 Jlogigiogs .. plomE ~
For this funetion, /1 = oo, But
H {;lﬂmhtl-':llﬂgn j— é'

(2) A2y =10 2%"%, [(I<=8=r)

=1

For this function /1 = 0. But
1

" 1_..11_11 1) .y
1'“:'; (Mg, ) Hix

i P

For this function &1 = 1, -y = 0. But

lim {)L“ )lfn”lngn = g1/,
A==
THEERI:M 41 (Erdés and Reddy [9, Theorem 7]). Let f(Z)=
1+ %y &, 2™, lim inf . fpqfn, =8 =1 be an entire function of
order p (0 << p < ). Then

HI.TI il'.l.f .?ﬁ toded fn =
A E ﬂ-ﬂ} S

1
e, 3.39
vl l: )

Remarks. We stated this result in [9] without proof. Now we present
d FI-'l'DDf‘

Proof. By assumption for each ¢ =0,

fim " 0. (3.40)
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From (3.40) we get for a sequence of values of k and all 1 = &,
my A < a0 (3-41)

Now as usual by definitions for 0 < w < r — §1/#relgrl™ along with
(3.41) we get

0= 1 I = E &,‘*?‘Nr = Z &—hq.":‘.tu-rd] -.{.\; ﬂ—rlw'ﬂ{ﬂ-l—q’_:l{:rﬁi [142-}

4 -5«,{1} _ﬂ_x:i " bl e |

On the other hand for ¥ = r = #1200 g7lin,

PO (N TSI QPO SR
0< Sﬂt .1‘} _”.‘b'j = wa(r} = g T SE " {343}

(3.39) follows from (3.42) and (3.43).

Treorem 42 (Erdis and Reddy [10]). For all large n = ny(c), we have

" 1 | _clagn
= = Gl
Ef_n e E,:"_“ x® |;_;:{ﬂ_¢; i

Tueorem 43 (Erdés and Reddy [10]). There i&s a polynomial P,(x) of
degree at most n for which

B g

i

|: {x e 5t = Pyx) |5men.~rl

THioREM 44 (Erdés and Reddy [10]). For every polynomial P, (x) of
degree at most n, we have

| i - d
&5 77~ P b= 1O

Tueorem 45 (Reddy [26, Theorem 4]). Let f(Z) = T, apZ¥,
a > 0,0, =0 (k= I} be an entire function of order p = 2, type = and
loswer type wivh < o < 7 < o) or order p(2 < p < o), type v and
fotver type w(l < w = 7 < @), Then it is not possible to find exponential
polvnomialy of the form Yo buetT (b = 0) for which

|ru;.'.I ints
= el

£ 0,00}

kit i '

It
wer | ) Y b |
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Exampres. Let f(Z) =1+ Ef_I e2k(112235 ... k% This is an entire
function of order g = 2 and type + = 0. 'This function fails to satisfy the
assumption of Theorem 45, But for this function it is easy to show that

. | 1 Tinlogn Sihi
s e = T S

==

L)

(2) The following example suggests the assumption p = 2, v = 0
is not sufficient for the conclusion of

TaeorEM 45. Let

]

f(z) =}

k=it &

eEmy

£t :
0= <Pt <Py <Pp < <Py <o

pﬂ-l-l

lim 2L = o,
ey

This is an entire funetion of order p = 2 and type = > (. For this
function we can show easily

h I I i i
1071 541 e T et e =
i : flx) - 'ew_ﬂ!

| s e F O S

Tugorem 46 (Reddy [26, Theorem 5]). Let f(Z) = Epy apZt,
ag =0 ap. =0, ap =0 (k= 1) be any entive function of orvder p
(1 <p < o) type v and lower type w0 < w < v < oo). Let ${Z) be
any transcendental entive function with non-negative coefficients satisfving
the assumption that

log Myfr) _ o 1.

0= 1!_11 {log r)*

Then for every p,(x) = Z:-u bl x)}k, with by, == 0, we have

| | i logad Lloglogs)

1 1
O T T BN e 0.0

= gt

limn inf
Ao
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Remark. There exist entire functions of infinite order, whose
reciprocals can be approximated by reciprocals of 'y, [¢(x)}¥(k!) or
[0, oo}, with an error C™ (0 < C < 1). For example let

o= 5 2,
where

7
$(Z) = 1 +E."i';§"=’3"s“ """" -

clearly f(Z) iz an entire function of infinite order. For this function we
can show easily

1 fn
=

lim sup

- |
b I‘ f{ § {qﬂ{x}}*‘ I
k- |f it}

Tueoresm 47 (Saff and Varga [32]). Asswme that g is a continuous
Sunction (=0) on [0, co), and assume that there exist a sequence of polyno-
mials {P (x5, , with P, €=, for each n = |, and a real number q > 1
such that
1 7] i’l’ﬁ 1

e |y~ Pl g <

Then as s known [17, Theorem 3], there exists an entive function G(Z) of
finite order with G(x) = g(x) for all x = 0. Next, assume that h 15 a
conttnuous function on [0, +o0) with Mx) = 0 for all ¥ = 0, and such
that h'(x) exists, is nonnegative for all x large, and satisfies lim,,.. h'(x) = 0.
Assume further that no zeros of P, lie in the interior of H, (defined in (2.7))
Sor all n sufficiently Earge If mtfsﬁe: (2.9) and if G is nonzero on the
vertical segment {Z£ = iy: | v | = Dh(0)}, then

lim sup

s ’ GEJII P(Z) lr a0} 1—-D

1 1 I i,].n':n. 1 -+ D
: sLel
Tueorem 48. Let g(Z) = ¥y o ZFa~, where a = 2, and let 8,(Z) =
g Z*a"ﬁ Then, on every closed sector S(0) (defined in (2.10)) ewith
0<#d=<
i,l.n'ﬂ‘ - 1

fim —
> £ t8a Via

i1
ﬂmf..g

= I8
S,
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TueorEM 49. Let f{Z) = 1o B p i didy o dy, with dy ;>
d. =1 (k= 1) be an entire function of order p < 2. If there exist a
sequenice of pﬁfjmafmmfr {P.(x)5_; with P, €w, for each n = | and a real
constant g = 1 such that

] L |

If D satisfies {2.9}. then

1 | LS W B
li == =——=] =1.
i I!"F{A’} ,.{2}|L,bmmn!' gl — D)

We need the following lemma for our purpose
Levmaa 2. Let f(Z) =1+ Sy ZEldidy <o dy, be an entire Sfunction
satisfying the assumption that

(l+£)::‘ [ E(iﬁ_ n'}‘

n

Then SZ) =1 —i—f_"l:i_-l I.'d dy - dyy, 1 = n is zero free in a region
bounded by v = Cyd, and § = :I:u"”-"” vl where & = re', and as wsual
Cy, Oy, Oy o are suitable constants.

Proof. Let Z = et b, = a 720 a, = (dydy -+ d, ), and assume
d, = r = d,., thén clearly nth term of f{2) becomes the maximum
term. To be very precise, let r = d, . Then

CIEATES TR Sl TR SR S S P sl o P AR o T

(1Il+ H+ '“—“]-an-k(l +ﬂ++i"_)

rﬂ- tﬂ—k 'rn—t-

! Tois t ! it
T (_‘?.'."5. Sk L SRR _.“i) g {L’“‘- SR }
t, t, I, )

We show here for all & = nllj#lse
bnee = O{tn): (3.44)
By definition

Li—n

o | dy piildy_pia " dy
= o
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Now by using the fact that

G _d C,
L - il - 3
l—f—.&td. aﬁl-i—*.
We get

[ (o) < (1 G <

rlI- L]

If k = /%4 then clearly ¢ ¢¥/™ — (0. Similarly we can show if
k = g\t

lasz = din:l- {3-45}
On the other hand
I | o focksn Hu-l 1% ___g I +_ :
P bug L3
= ] ‘E‘ z - z‘ - 2 | — z‘ ]
d L {3 dy soqie 5oz ¥ dy sy sia h e gy s

<[t () + 2) -+ (2]

= I+C‘,[d‘::’;}+cn( ' 1ﬂ+”, '}'c“'(di::I)il

di.—#-'-l ‘l
= (-;—"‘*
n-kH1
Similarly
- | " f“ -
—'r-:l - “';-:—' + = 4 —r"—n- % Cyn. (3.47)

Hence, we get from (3.44)(3.47).

SfZ) = 1y + 1,Cyn + Cty_y{n — B)C + 1,04
=11 + Cygnt 4 Cp5) +Cln — &)t
= Cyynity + Cyfn — &) 1oy .

SUZ) =0, if Cyite = —Cyln — R)ta

Le.,
52" T 2oy — k) Oy
dydy < dy, () -
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Then clearly
(n— k)

n

¥ = Ol pin@apsg - dy
= Ol ¥ (1 — Kin)
o — Wl 0, 1, 42, 43, 4 o

@+

6 =

Hence S, (Z) is zero free in a region bounded by
= Cﬁdm I = icﬂ.ﬂﬂ_tllflm.'::l'

Proof of the Theorem. From the above lemma it follows that S (7) is

zero free in Hy, Now by adopting the reasoning of Theorem 47 the
result follows.,

Remark, For functions of order p = 2, clearly 3 becomes zero, hence
the theorem is proved for p < 2.

Turorem 50. Let f(Z) =1 + Ty Z¥dydy -+ dy)', be an entire
function withd, | +d, < dy. (0 < a« < 1, k = 2), where d,, is positive
and continuous for all positive values of k = | and increases to + oo with k.
If there exist a in) = n and a £ (0 < & < 1) for which

ijﬂ (A lst) — £

Then on every closed sector S(8), with 0 < 8 < =,
limy (Ao ioind = £,

where
P S |
Z) PuAZ) leason

= inf
1iom PulZien,

w, " denote the set of all complex polvnomials of degree at most n in the
variable Z.
We need the following lemma to prove the above theorem.

Lemma 3. Letf(Z) = | + Xi Zdydy - d) 7, diy + di < dgy
(0 < 2 = 1), where d;, is positive and continuous far all positive values of



RATIONAL APPROXIMATION 103

k = | and increases steadily to + oo with k. Then all the partial sums of
F(Z) have zeros on the negative real axis only.

Progf. letZ =yt 1, = a. 2r @y = (dydy @y T, = | &, | and
assume d, < r < d,.,, then clearly nth term of f(Z) becomes the
maximum term. To be very precise let r = d, ., (0 < x = 1}, then

:’_l.. ] iy H

. e <0 BT e [I 1 I:l::. e I,. i ST )
' iy, e atln iyl

=1y T fay (] o l +_'—"_I+ =fai F o 2'1:'—11)

It is easy to verify that

Therefore

et
o dyy
. 'fru-r- —d -1

Henee S,(2) = t,(1 4 B), where

il dy g :
18] = |r:nj|| (I + i #_1fin_1} . (dﬂjri )(ffswn ﬂ_ﬂd"—l)

= (===}

L d‘l‘l—'l

But by our assumption tfnf(d,,u — d,_,;) = 1, therefore §,(Z) has *n"
zeros in the cirele r = d,., , and (n — 1) zeros in the circle r = 4,
and therefore one zero between the circle d, 5., and d,... L::t

Z = —d,.., then S (Z) has the sign of £, , i.e. of (—1)" and when

foTi21 /18
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£ = —d, ;.. it has the sign of (—1)*~'. Hence §,(Z) has a real negative
zero lying between the circles r = d_,, and d,_ ;... We noted earlier
that only one zero lies between two circles (successive circles) hence all
the zeros are real and negative.

Proof of the Theorem. From the statement of the theorem it is clear
that f(Z) is an entire function of zero order, For example d, — &'
satisfies the assumptions of the above theorem with A = 0. For this d,
it is known (Theorem 40, example 2) that ¢{n) = 2%, & = (1/5)
(I <3 < =). Now by adopting the rcasoning of Theorem 48, we get

- || 'Iﬁ'liﬂ 3 48
w705~ 5.2 ol A
On the other hand we get easily from Theorem 40, that

E< “T‘ir.'ﬂ (Mg ) 19ind ]iT-i:n' (Ag, o Jurbint, (3.49)

The result follows from (3.48) and (3.49).

Oprex PrROBLEMS

Prosrem 1. Let f(z) = Sio@s®, @ >0, ap =0 (k = 1) be an
entire function of order p (0 < p < @), with the further assumption
that

lim" sup (g )% < 1,
Then there is a ¢ (0 < ¢ < 1) such that
lim inf (A, )1/" 3> .
ProsLem 2. Let f(5) = Yeoaz*, a >0 (k= 0) be an entire

function of order p (0 < p < o0) with the further assumption that
0 < w = 7 < oo. Then there is a § = 1, for which

X I =i
im (o) 51,

Remark. For f(x) = &, § = 3 (cf. [33]).
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PropLem 3. Let f(s) = ¥y ap2® (=0 on [0, @2)) be an entire
function with the additional property that it grows on [0, oo) as fast as
anywhere else in the complex plane, then for each e = 0, there exist
infinitely many n for which

. —M
j'l.'l.ﬂ = EHp (-:[I-GE;I}I—H),

Prosrem 4. Let f(2) = Sroa5% a; >0, @, =0 & = 1) be an
entire function of order p(0 < p << =) type + and Itmer type w
(0 <~ w = 7 <= wo0). Then for any polynomials P{x) and Q(x) of degree
less than n, there is a ¢; == | for which

|
|75~ 06 lestoro

Remark, For f(x) = €%, ¢, = 1280 (cf. [18]).

—~n

Proerem 5. Let () be any nonvanishing infinitely differentiable
and monotonic function tending to -+ 0. Then for infinitely many n

|
{logn) "

=
R

Prosrem 6. Let f(x) be any non-vanishing infinitely differentiable
and monotonic function tending to +co. Then, there exist polynomials
of the form

Ofx) = Z apx!

I=0

with g = 0, my < m, <my < my < *+, Yoy 1/n; = o0, for which for
infinitely many &

|| )T'ET} ¥ _Q% "‘-uf“-m} = (lng ILg :ﬂ,,)'

ProsrEm 7. Let f(2) = Frgast, @y >0, a. =0 (k= 1) be an
entire function. Then for infinitely many & and any ¢ = 1,

o) P
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ProeLem 8. Let f(5) = Sppas®, ay >0, @, =0 (k = 1) be
an entire function of order p(() < p << o) type = and lower type
) < w = 7 = ao). Then there exist polynomials of the form

k

Ofx) = ¥, ax™,

i
where

1
O =y <omy < sy < oy, Eﬂ—=m,
{1

for which for inﬁnitel}r many k

1

1
l7e o lnn<n:

Prosrem 9. Let f(x) be any entire function satisfying the assumption
that lim,_ .. f(x) is finite. Then there exist rational functional of the form
(P (x){0,(x)) of the degree at most a for which for each ¢ = 0 there
exist infinitely many », such that,

1 Pulx) | | —=n
|| = 0,0 I s exp l—{lug H}W}.

ProerLEM 10. Let f(s) and g(z) be entire functions of perfectly
regular growth (p, 1), (p + = 7} respectively for any € = 0. Then for
all large n

Ao nl1F) = Ao w1 /E)-

CoNcLupiNG REMARKS

It is clear frem Theorem 3A continuous functions which maintain
sign and satisfy lim,. .., f(x) = 0 = lim_, f(x) cannot be approximated
well. The method used to obtain a lower bound in Example 1 can
be applied to any function which vanishes at the origin and tends to
zero at infinity. As far as we know no other method is known to
attack this kind of problem. This method was first used in [5] which is
slight variation of the technique we used in [9].

The method used in Theorem 32 can be applied very successfully to
find lower bounds to A, (1/f), where f is an arbitrary entire function.
Unfortunately for entire functions of perfectly regular growth this
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method does not yield sharper bounds. For functions of this category
the method used in [16] and [20] is very successful. Unfortunately the
method used in [16] and [20] is useless for entire functions where lower
order is less than order,

The method used to prove Theorem 13 is very elementary and can be
applied to all those entire functions for which we know the upper bound
of M(r) for all large r.

It is interesting to know, what connection exists between the structural
properties of f and the rate of convergence of

P, jhin

o | =<1
0y L (1)

lirn sup ||% -

i

It is likely that f(x) is quasianalytic in the sense of 5. N. Bernstein.
Let f(Z) = Yio @ Z% a, > 0 and @, =0 (k = 1) be an entire
function satisfying the further assumption that

- i 08 log M{r) ¥
- i Ty i (*)
then it is known ([35, p.43]) that there exist a subsequence {n,} of
natural numbers satisfying the assumptions that

gt |
p= logm,

and
lin 2108 75

Lim =p. (A)

1
|Qg | a -
n

If £ (Z) satizfies the assumption (*) then it follows from Theorems (31)
and (32) that

1
log log
limn -—A_u.': =1 (B)
e logn

From (A) and (B) we get for the above sequence {m,}

n,,,lnglﬂg(r.lu] }h—p'lug|$i.
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It is interesting to observe certain elass of continuous function which

va

nish at the origin and tends to zero at infinity can be approximated

much better by rational functions than by reciprocals of polynomials.
One such example is f(x) = xe—*, this can be approximated by P,/Q,
roughly with an error of 2%, this cannet be approximated by reciprocals

of

L.

L

2,

10,

1L

polynomials even like ¢ log n/n®.
Just recently the Problem 4 has been solved completely in [28].
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