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Introduction . Let k be a positive integer and F(x, k) denote the number of integers
n < x which have a divisor in every residue class prime to k. Erdős (1) proved that for
every fixed e > 0, we have F(x, k) - x when

k < 2(1-6)10910g x x--cc

281

and conjectured the following result, which we prove in this paper .

THEOREM . Let c be any fixed real number and k and x satisfy the relation

k = 2109 109 x+(e+o(1)) "'(109109 x)

	

(1)

then as x --> co, we have

F(x, k)	 x JetU2 dy.

	

- ( 2)
á(2n) f "'e

Remarks . Let v(n) denote the number of distinct prime factors of n, so that n has
at least 2" (n ) divisors. It is well known that

card n < x : P(n) -l ogx) x > c} - ~(27T, f e4y2 dy,

	

(3)
1))

	

o

so that an intuitive statement of the theorem is that the numbers with sufficient
divisors to fill the required residue classes almost surely will do so .

The result was proved by Hall (2), subject to a hypothesis about the Siegel zero (if
such exists) of the Dirichlet L-functions (mod k), which is stronger than Siegel's
theorem . Precisely, if 6(k)->- 0 arbitrarily slowly as k--oo, and the L-functions (rood k)
have no real zero in the interval

(i - exp (- 6(k) log1 k),1)
then (2) holds. In our proof we need no information about the precise location of the
Siegel zero, only that there is at most one, and that it is the zero of an L-function
induced by a real Dirichlet character, which is well known .

The following lemma about finite Abelian groups is the fundamental result needed
in the proof.

LEMMA. Let G be an Abelian group of even order N, and H be a subgroup of G of index 2 .

Then for any 8 > 0, the number of choices of t elements g1, g2, . . ., gt of G of which pre-
cisely r lie in H, and such that not every g E G has a representation in the form

g = E1 g1 + e2 g2 + • . . + et gt, (each ei = 0 or 1),
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does not exceed

whenever r < t and
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8
(r) ( 2) t

	

(4)

t log 2 _> log N +log i + to
log N

+ 5 .8

	

g log 2

Remarks . The condition r < t is plainly necessary : if r = t we can only represent
elements of H. If every element of G is to e represented, we must have 2t >, N and
our condition on t is not much stronger than this .

The result is an extension to Theorem 2 of Erdös and Rényi (3) where there was no
restriction on the choice of the t elements 9,,,q21 . . ., g t . The upper ound corresponding
to (4) was BNt, and the essential feature of the present result is that (except when
r = t) the upper ound in (4) is always a proportion 8 of the num er of possi le choices
of the elements .
Proof. For any particular choice of gl, 92, . . ., g t let R(g) denote the num er of repre-

sentations of g in the required form . Then
t

R(g) = 1 E x (g) 11 (I+ x(gi))N x

	

i=i
where the sum is over all characters x of G. Hence we have

2t 2

	

1

	

t

9
(R(g) - N) =N E 211 1 1 +x(gi)1 2 ,

x xo -

where xo is the principal character . Let xl e the character such that xl + xo and
xl(h) = 1 for every he H . We must have X, (g) _ -i whenever g 0H so that xl is
unique. For any set of t elements of G we write

t
s =

	

xl(gi)
i=1

so that s = 2r - t if and only if precisely r of these elements elong to H. We now form
the sum

Ezs

	

2t 2
g~ (R(g) - N) ,

where the sum is over all choices of t elements of G, and s and R refer to the particular
choice . From the a ove, this is equal to

1

	

t
E [ E zx~(9) I 1 +x(g) 2]

Nx$xa gcG
and the inner sum is equal to N(z+ i/z) if x + xl (since x is then non-principal as a
character of H), and equal to 2Nz when x = xl • Therefore

2 t 2
YzsgE (R(g) -N) _ ( 1-

2
N) Nt (z+

i
z)

t +Nt-1(2z)t .

For convenience we refer to a set of t elements of G of which precisely r elong to
H as a (t, r)-set, and we denote y E(, ) summation over all (t, r)-sets. Equating
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coefficients of z2r-t in the a ove, we deduce that
2t 2

	

t

	

2
~cr)

	

R(g) -N) = r) (1
-2XT)

Nt, (r < t),
gcG

and

Y-ct> E (R(g) - N) 2 = ( 1-N) Nt+2tNt-1 .

It follows from the first relation that provided r < t, the num er of (t, r) -sets which
fail to represent at least AN 22-t elements of G does not exceed

A (r) ( 2)t

	

(5)

for any A > 0 . Notice that this is a proportion 1/A of the total num er of (t, r)-sets.
The idea of the remainder of the proof is as follows . We egin y considering (t l , r,)-

sets, where rl < t l < t : given such a set, which we suppose already represents a large
num er of elements of G, we add t - t l further elements to the set one at a time, at
each stage considering how many more elements of G may e represented. We can
expect that the num er of elements represented is a out dou led at each stage . In
order to fix our ideas, we suppose that the (t, r)-set is constructed y choosing the
elements which do not elong to H first : we are interested in the case r < t and so
when we have chosen tl of the elements we have a (tl , r,)-set where

rl = max (0, t, - (t - r)) < tl
as specified a ove .

We use a counting argument and the language of pro a ility is appropriate. The
elements gl , . . . , gt are chosen independently of each other, the first t - r at random
from the complement of H and the remainder at random from H itself. Within H or
its complement, any element has an equal pro a ility of eing chosen. .

P( . . . ) denotes the pro a ility of the event in rackets, and E(. . . ) the expectation
of the random varia le in rackets. P( . . . I A) and E( . . . I A) are conditional on the
event A .

Let 8 > 0 e fixed and d e a positive integer, which will depend on 8 only. Set
flogN

tl

	

log 2 +d+ 1, íi = 2/8.

It follows from (5), su stituting tl and rl for t and r, that if Nl is the num er of elements
of G not represented y a (t l , r l )- set then

2

P N, ~> A 2t1 )

	

.

Denote y A, the event

and choose a further element gal+, at random from H or its complement as the case
may e, denoting y N2 the num er of elements of G which still cannot e represented.
If g is one of these elements, neither g nor g - gtl+1 could e represented y the original

2

2t

	

2d ,
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(t l , rl)-set, and for fixed g, the pro a ility that g-gt,+, could not e represented does
not exceed 2N11N . Hence

and
E(N2 I A 1) < 2A 2N/22d .

It follows from Markoff's inequality that
3

P N2 >1 4224 I A1

	

2~
Again, let A 2 e the event

4~13N
N2 < 22d .

By a similar argument, if we add another element at random (from the appropriate
part of G) to our set and suppose that N3 elements of G remain which cannot e repre-
sented,then

and

P (N3 > 128Á7N

	

1
3

	

24d

	

`g 1Á21 4i1 .

We continue this process . Let A k denote the even /t
2(2 k+2k-1-k-2)Á2k-1N

Then we have

The joint event A 1Á 2 . . . Ak occurs with pro a ility exceeding

1- -- . . .-2k11Á >2A
and in this event,

Nk < Mk < ~4A 2k-1
2d N.

We choose d so that 2d , 8íi = 16/8, i .e .

d Clog i/81
+ 5log 2

	

,

and
_ i

	

(logN) jk

	

log 2 1og log 2 + 1,

and we deduce that with pro a ility exceeding i - 8, we have the event Nk < 1,
that is, every element of G is represented y the set constructed ; ut this is a random
(t, r)-set where t = t l + k, and this is the result stated .

Nk <Mk =

E(N2 I NI) < 2N2IN

E(N3I A1A2) < 32A6N
2411

2(2k-1)d

P(Nk i Mk I '41-42 . . . '4k-l) -< 2k
1
-1A .
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Proof of the theorem . This is modelled on the proof of Theorem i in Erd6s (1) . Let
I(x) e the interval (g, h] where

tog g = (tog tog x ) 3' tog h =	log x
(log log x)3 '

and for each n < x set
f (n) = 11 pa .

We may assume in the following that f(n) is squarefree, indeed that its prime factors
lie in distinct residue classes (mod k), since the num er of integers n < x for which
this is false is o(x) . Moreover the familiar variance method of Turán shows that
v(n) - v(f(n)) has normal order 6 log log log n, hence we may assume that

v(n) - v(f(n)) < 7 log log log x.

Those num ers n < x with fewer than 0(k) divisors cannot contri ute to F(x, k) .
Since the num er of divisors of n is at most 2`)(n) where m(n) is the num er of prime
factors of n counted according to multiplicity, and O(k) satisfies (1) whenever k does
(since klo(k) = 0(log log k)), we may restrict our attention to the integers n < x such
that

The simple estimate
w(n) > log log x+(c+o(1))V(loglogx) .

{(o(n)-v(n)} = 0(x)
n<x

implies that w(n)-v(n) = o(V(loglogx)) for all ut o(x) integers n < x, hence we need
only consider those n < x for which

log log x+(c+o(1)) V(loglogx) < v(n) < 2loglogx,

	

(6)

the upper ound eing permissi le as the normal order of v(n) is log logn . Since (2)
is an asymptotic formula for the num er of such integers, it will e sufficient to show
that almost all of them contri ute to F(x, k) . Since the o(V (log log x)) term in (6) does
not affect the final formula (2), and in view of all the remarks a ove, it will e suffi-
cient for our theorem to deal with just those integers n < x such that

log 0(k) +logi 0(k) < v(f(n)) < 3log 0(k),

	

(7)

where f(n) is assumed to have all the properties specified a ove .
Let h,12 , . . . . It e distinct residue classes, prime to k . We refer to this as a good set

if 1161122 . . . Itt represents every residue class prime to k as the ei's vary, (ei = 0 or 1 for
1 < i < t), and say that n corresponds to this set if f(n) = PIP2 . . . p t where pi =- li
(mod k) for 1 5 i < t . Plainly if n corresponds to a good set it has a divisor in all the
required residue classes, so that we have to show that all ut o(x) of the integers
n < x, with the properties we assume, correspond to good sets .

Let DO denote summation over ad sets of t classes, where t lies in the range given
y (7) . Since p lp2 . . .pt ~< ht S xihoglogx for large enough x, we may deduce as in
Lemma 7 of Erdös(1) that

card {n < x: f (n) = pl . . . p t} <<	 11

	

1--x

	

it
PiP2 * . . PtpEz(x)

	

P '
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where the constant implied y Vinogradov's notation << is a solute. Hence y
Mertens' formula, the num er of integers n < x corresponding to ad sets is

< x log g

	

ct> 1
t

	

1
< log h t

	

ti i= gyp'

where the innermost sum is over p in g < p < h for whichp =_ li (modk) . Next, Lemma 1
of Hall (2) states that for every l prime to k, we have that

E P &) (1-x1(l)M+E(l))

where the sum is over p in g < p < h, for which p - l (mod k), and

L= ~~ (1 + log y) dy
9

	

y loge y '

1 ('hy,1-1(1+logy)dy
LM - -- /

3 9

	

ylog e y
Here,

I E(l) I = 0((log log x) -4 ),
where the constant implied y the 0-notation is independent of k and l, and,8 denotes
the unique Siegel zero (mod k) if such exists (and otherwise we put M = 0), that is,
L(,8, x 1 ) = 0 where x1 is a real, non-principal Dirichlet character (mod k), and

1- C/log k <,8 < i,

C eing an a solute constant . The num er of integers n < x satisfying the conditions
stated and corresponding to ad sets is therefore

< X loglog
h
g~

t

	

t!
(LIO(k))t~(t) (1-M+E)r(1 I M { E)t- r

where r is the num er of li's in the set such that x1 (li) = 1, and E < ( log log X )-4 .
Now let G e the group of residue classes prime to k under multiplication so that

N = 0(k), and let H e the su group of index 2 on which x1 is principal . Finally set
1/8 = exp (logs 0(k)) . By the lemma,

1(t)(1-M+E)r(1+M+E)t-r
st~l (t) (O(k))t(1-M }

E)r(1 { M I E)t-
T =0 r

	

22
l

	

t
+I"

\
I (1-M+E)t

ot(k){S(1+E)t+2-t(1-M+E)t} << 80t(k)

since 0 < M < 1, Et = 0(1), and 2t > O(k) y (7) . It follows that the num er of
integers corresponding to ad sets is

log g Lt
Sx log h t' t! - °(x)

as L = log (log h/log g) + 0(1), t = 0(L), and 4 -> 0 as x co. This completes the proof.
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