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Introduction. Let k be a positive integer and F(x, k) denote the number of integers
#t < « which have a divisor in every residue class prime to k. Erdiis(1) proved that for
every fixed ¢ = 0, we have F(x, k) ~  when

k< 2l-elloploge 5
and eonjectured the following result, which we prove in this paper.

TreoruM. Let ¢ be any fived real number and k and x satisfy the relation
Je = Do log oHotoll) vilie log x) (1)

Flz, k) ~ ﬁﬂ'[:e—iyldy. (2)

Remarks. Let v(n) denote the number of distinet prime factors of n, so that n has
al least 2™ divisors. It is well known that

1-{'.*!-} Iaa]agm

card{pn < KGR > of s o
so that an intuitive statement of the theorem is that the numbers with sufficient
divisors to fill the required residue classes almost surely will do so.

The result was proved by Hall(2), subject to a hypothesis about the Siegel zero (if
such exists) of the Dirichlet L-functions (mod k), which is stronger than Siegel’s
theorem, Precizely, if £(k) — 0 arbitrarily slowly as k-+o0, and the L-functions (mod k)
have no real zero in the interval

| (1 —exp (—£(k) logt k), 1)
then (2) holds. In our proof we need no information about the precise location of the
Siegel zero, only that there is at most one, and that it is the zero of an L-function
induced by a real Dirichlet character, which is well known.
The following lemma about finite Abelian groups is the fundamental regult needed
in the proof.

Lunma, Let G be an Abelian group of even order N, and H be a subgroup of @ of index 2.
Then for any & > 0, the number of choices of t elements gy, g, ..., gy of G of which pre-
cisely r lie in H, and such that not every g & G has a representation in the form

g6 h¥egat...+6 0, (eache =00r1),

then as x - oo, we have
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does not exceed _ )
o)) g

log N
log2 +

whenever v < ¢ and

tlog2 = log N + lﬂg%+lng

Remarks. The vondition v < ¢ is plainly necessary: if r = t we can only represent
elements of H. If every element of & is to be represented, we must have 2t > N and
our ¢condition on #is not much stronger than this,

The result is an extension to Theorem 2 of Erdés and Rényi (3) where there was no
restriction on the choice of the f elements gy, g5 ..., . The upper bound corresponding
to (4) was 4N, and the essential feature of the present result is that (except when
r = t) the upper bound in (4) is always a proportion & of the number of possible choices
of the elements.

Proaf. For any particular choice of g,,,, ..., g¢ let R{g) denote the number of repre-
sentations of g in the reguired form. Then

i i
R(g) = F IR 11 (1+x00)

where the sum is over all characters y of &. Hence we have
ot 2
R |
3 (B0)-F) =53 1 It+al,

X+ad
where y, is the principal character. Let y, be the character such that y, 4+ y, and
Xi(h) = 1 for every he H. We must have y,lg) = —1 whenever g¢ H so that y, is
unique. For any set of { elements of ¢ we write

[
A= _?1 xaloy)

o that & = 2r — 1 if and only if precisely r of these elements belong to ., We now form
the sum

s= 3 (Ro)-3)

g

where the sum is over all choices of ¢ elements of 7, and ¢ and R refer to the particular
choice, From the above, this is equal to

H[Z 249 |1+ x(g)| ]

and the inner sum is equal to N{z+ 1/z) if ¥ + ¥, (since y is then non-prineipal as a
character of H), and equal to 2Nz when y = y,. Therefore
2 2 1 L3
zt 3 (Ro)-F) = (1-5) 3 () + 3rar

el

For convenience we refer to a set of ¢ elements of  of which preecisely r belong to
H as a (t,r)-set, and we denote by X, summation over all (f,r)-sets. Equating
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soetficients of 2* in the above, we deduce that

= 2 (Ro-5) = () (1-3) 3 <o

e T
and
o B 26¢ 2 N4 atNt-1
Zit) EU( {9’]'—?) = (l—ﬁ) + 2N
It follows from the first relation that provided r < ¢, the number of (¢, r)-sete which
fail to represent at least AN22—t elements of 7 does not exceed

) E) ®

for any A > 0. Notice that this is a proportion 1/A of the total number of (1, #)-sets.

The idea of the remainder of the proof is as follows. We begin by considering (¢, r,)-
sets, where », < #, < {: given such a set, which we suppose already represents a large
number of elements of 7, we add ¢ —¢, further elements to the set one at a time, at
each stage considering how many more elements of ¢ may be represented. We can
expect that the number of elements represented is about doubled at each stage. In
order to fix our ideas, we suppose that the (¢, r)-set is constructed by choosing the
elements which do not belong to I first: we are interested in the case r < ¢ and so
when we have chosen t, of the elements we have a (I, r,)-set where

rn=max (0,4, —(t—r)) <t
a3 specified above.

We use o counting argument and the language of probability is appropriate. The
elements g,, ..., §; are chosen independently of each other, the first { —r at random
from the complement of H and the remainder at random from H itself, Within H or
its complement, any element has an equal probability of being ehosen.

F(...) denotes the probability of the event in brackets, and F{...) the expectation
of the random variable in brackets. P(...|4) and E(... | 4) are conditional on the
event A.

Let § > 0 be fixed and d be a positive integer, which will depend on & only. Set

_ 108 =
;l_[‘]ﬂg‘;’]+g+1_ A =25,

It follows from (5), substituting t, and r; for { and r, that if N] is the number of elements
of (7 not represented by a (t,, r;)-set then
" N 1
P (1»1 > 12{) <.
Denote by 4, the event

N AN

'lli'-lrl{ AEEE;_EF’

and choose a further element g, ., at random from i or its complement as the ease
may be, denoting by N, the number of elements of (# which still cannot be represented.
If g is one of these elements, neither g nor g —g, . could be represented by the original
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(t;,7y)-set, and for fixed g, the probability that g —g, ., eould not be represented does
not exceed 2N, /N. Hence
B, | Ny < 2NYN
and
E(N;| 4;) < 222N 2%,

It follows from Markoff’s inequality that
43N 1
P (N | Al) ot
Again, let 4, be the event
4A3N

N‘-rzﬂm,

By a similar argument, if we add another element at random (from the appropriate
part of &) to our set and suppose that N, elements of & remain which cannot be repre-
sented, then

325N
E(Ny| 4,4,) < T
and
128A7N
P (NE > —

We continue this process. Let 4, denote the event

i
=

,41:12) <

T B R B

Nh < Mﬂ: — 2@*—11&!

Then we have
1
i

The joint event 4,4, ... 4; oceurs with probability exceeding

PN,z M| 4, 4y... 45 4) <

R 11
S e
and in this event,
421
N. < M, (F) N
We choose d so that 29 > 84 = 16/4, i.e.
_ [toz ]f-:‘.-‘
log2

and

1 log ¥V
;;=[] o83 © g(mgﬂ)]“'

and we deduee that with probability exceeding 1—4, we have the event N, <1,
that is, every element of ( is represented by the set constrocted; but this is a random
(¢, ¥)-set where ¢ = f; 4+ k, and this is the result stated.
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k Proof of the theorem, This is modelled on the proof of Theorem 1 in Erdés(1). Let
I{x) be the interval (g, k] where

log =
= : = Mg logo)t
logg = (loglogx)®, logh {logloga)*"
and for each n < z set
fly= I o~
pel, i |In

We may assume in the following that f(n) iz squarefree, indeed that its prime factors
lie in distinet residue classes (mod k), since the number of integers n < x for which
this is false is o(x). Moreover the familiar variance methed of Turdn shows that
#{n)—v(f{n)) has normal erder 6 loglog log #, hence we may assume that

p(n)—v(fin)) < Tloglogloga.

Those numbers n < & with fewer than (k) divisors cannot contribute to Flz, k).
Bince the number of divisors of n is at most 24" where w(n) is the number of prime
faetors of » eounted according to multiplicity, and ¢(k) satisfies (1) whenever k does
{since kfg(k) = O(loglog k)), we may restrict our attention to the integers n < z such
that

w(n) > loglogae+ (e +o(1))/(log log x).

X {w(n) - v(n)} = O(x)

R=x

The simple estimate

implies that w(n) —v(n) = o(,/(loglogz)) for all but o(z) integers n < x, hence we need
only consider those n < @ for which

loglog a4+ (c+o0(1))y/(loglogx) < v(n) < 2loglogx, (6)

the upper bound being permissible as the normal order of v(n) is loglogn. Since (2)
is.an asymptotic formula for the number of such integers, it will be sufficient to show
that almost all of them contribute to #'(z, k). Sinece the o(,/ (loglog z)) term in (6) does
not affect the final formula (2), and in view of all the remarks above, it will be suffi-
gient for our theorem to deal with just those integers n < & such that

log (k) +logh $(k) < »(f(n)) < 3log p(k), (7)

where f(n) is assumed to have all the properties specified above.

Let 1, 1y, ..., I; be distinet residue classes, prime to &. We refer to this as a good set
if i1l ... It representa every residue class prime to k as the €;'s vary, (g, = O or 1 for
1 <i<t), and say that n corresponds to this set if f(r) = p,ps... p; where p, =1,
(mod &) for 1 < i < & Plainly if n corresponds to a good set it has a divisor in all the
required residue classes, so that we have to show that all but o(x) of the integers
7 < x, with the properties we assume, correspond to good sets.

Let £ denote summation over bad sets of ¢ classes, where # lies in the range given
by (7). Since p;py...pp < bt € a'1¥le = for large enough z, we may deduce as in
Lemma 7 of Erdiis(1) that

1
'L : = . L (1__)'
COTT {n o f{n} Py -pf} < Py Po e I ;}El:l;t} F s
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where the constant implied by Vinogradov's notation < is absolute. Hence hy
Mertens’ formula, the number of integers n < @ corresponding to bad sets is

@mlﬂﬁfzz ”nz—

=1

where theinnermostsumisoverping < p < k for which p = I, (mod k). Next, Lemma 1
of Hall(2) statea that for every ! prime to &, we have that

1
L? ¢i-’f}l{1 Xa(t) M+ E(1))

where the sum is over pin g < p < &, for which p = I {mod &), and
7 =J"'{1+lngy}dy

g ylogty '
_ 1y 1 +logy)dy
e ﬂ.[ ylogty

Here,
|E(D)] = O((loglog x)-1),

where the constant implied by the O-notation is independent of £ and I, and # denotes
the unique Siegel sero (mod &) if such exists (and otherwise we put M = 0}, that is;
L{f, 1) = 0 where y, is & real, non-principal Dirichlet character (mod k), and

1—Cflogk < f <1,

! being an absolute constant. The number of integers n < z satisfying the conditions
stated and corresponding to bad sets is therefore

! Lfg(k
lzggz'[ [N 0 (1 — B + By (14 M+ By

where r is the number of I;'s in the set such that y(l,) = 1, and ¥ < (logloga)—.

Now let & be the group of residue classes prime to & under multiplication so that
N = ¢(k), and let H be the subgroup of index 2 on which y, is prineipal. Finally set
1/é = exp (}logt ¢(k)). By the lemma,

=0 (- M+ By (14 M+ Bf <0 3 (1) (52) (-t + By (1420 4 B
+ (k) I-M+E¢
(52) )

< GHE)B(L+B) +2-4(1 — M + E)t} < 8¢5t (k)

gince 0 £ M < 1, Bt = 0(1), and 2¢f > ¢(k) by (7). It follows that the number of
integers corresponding to bad sets is

logg . LF
‘g &lﬂgh%ﬁ = D{:E:i

as L = log (log hflog g) + O(1), t = O(L), and § 0 as z - co. This completes the proof.



The distribution of divisors of integers in residue classes 287

 Exnds, P, On the distribution of divisors of integers in residus classes (mod d). Bull. See.
Math, Gréce 6 Fase 1 (1965), 27-36.
‘Harr, R. R. A conjecture of Erdis in number theory. deta Arithmeticn (to appear).
) Ennos, P, and RExvr, A, Probabilistic methods in group theory. Journal Analyse Math. 14
 (1865), 127-38. '




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

