PROBLEMS AND RESULTS IN GRAPH THEOQORY AND
COMBINATORIAL ANALYSIS

P. ERDOS
University of Cambridge

I have published durang my long life many papers on
this subject. In this paper I will restrict myself almost
entirely to finite problems and will concentrate on new
problems, older questions will be mentioned only if they
seem to me to be exceptionally attractive or if they have
been (in my opinion) undeservably neglected. It is perhaps
unnecessary to state that I do not claim that the problems
discussed here are the most important ones, my choice of
them is much more subjective - I ineclude them because I am
interested in them and have given them some thought - as
stated in a previous paper this method of choice has the
advantage that I am likely to know more about them than the
reader.

First of all I give references to some of my previous
papers on solved and unsolved combinatorial problems.

1. Problems and results on finite and infinite graphs,
Recent advances in graph theory, Proc. Symp. Prague 1974,
Academia Praha 1975, Editor M. Fiedler, 183-150.

2. Problems and results of combinatorial analysis,
Symposium held in Rome September 1973 will appear soon.

3. Seme unsolved problems in graph theory and
combinatorial analysis, Combinatorial Math. and its
Applications, Oxford Conference 1969, Acad. Press, London
1971, 97-108.

4, Problems and results in chromatic graph theory,
Proof techniques in graph theory, New York Acad. Press 19689,
27-35,

“ROC, S5TH BRITISH COMBINATORIAL
"NF. 1975, pp. 1£9-122.



5. Problems and results in combinatorial analysis,
Proc., Symp. Pure Math. Vol. XIX, Combinatorics Amer. Math,
Soc., 77=89.

6. (with D. Kleitman) Extremal problems among subsets
of a set, Proc. second Chapel Hill Conference, Univ. of
North Carolina, August 1970, 146-170, see also Discrete
Math.

7. Extremal problems in graph theory, Theory of graphs
and its applications, (M. Fiedler, editor) Proc. Symp.
Smolenice 1963, Acad. Press, New York 1964, 29-36.

B. OCn some new inequalities concerning extremal
properties of graphs, Theory of graphs, Proc. Coll. Tihany
1966, Acad. Press and Akadémiai Kiadd 1968, 77-81.

8. Some recent results on extremal problems in graph
theory, Theory of graphs, International Symposium Rome 1966,
117-130.

10. Topiecs in combinatorial analysis, Proc. second
Louisiana Conference on Combinatorics, Graph Theory and
Computing, (R.C. Mullin et al editor) Louisiana State Univ.,
Baton Rouge 1971, 2-20.

11, Extremal problems on graphs and hypergraphs,
Hypergraph Seminar held at Columbus, Ohio 1972, Lecture
Notes in Mathematiecs 411, Springer Verlag, 75-83.

Finally, two papers in the Boca-raton Conference on
combinatorial analysis February 1974 and March 1975
published I believe by Utilitas Math.

I will refer to these papers by their number in this
listo

1. Lovdsz and I investigated the following question:
Let f(n) be the smallest integer for which there is a family
of sets {Ak}, 1<k s f(n), |A ] =n, |Akl n Ak2| 2 1 and

the family can not be represented by n-1 elements. In other
words: If || = n-1 there always is a k so that  na Ay = a.



We proved
(&8 5P < £(n) < n¥/2%E,
The upper bound is (1) can probably be improved to
f(n) < e nlogn, but we have no idea if f(n) < en is true. I

offer 50 pounds for a proof or disproof.

P. Erdds and L. Lovdsz, Problems and results on
3-chromatiec hypergraphs and some related questions, Infinite
and finite sets, Coll. Math. Soc. J. Bblyai 10 (Bdlyai-North
Holland, 1975).

2, Faber, Lovasz and I conjectured that if [Al = n,

i sk s<nand |A nA | 1, 1<k, <k, £n then one can

kl k2 1 2
n

colour the elements of the union U Ak by n colours so that
k=1

every set has elements of all the colours. It is very

surprising that no progress has been made with this problem
and I offer 50 pounds for a proof or disproof.

3. A family of sets {Ak} is called a strong A system if
the intersection of any two of them is the same i,e. the
intersection of any two of them equals the intersection of
all of them. It is called a weak A system if the
intersection of any two of them has the same size. Rado and
I and Milner, Rado and I settled all the problems on the
existence of strong and weak A systems for infinite sets,
but very challenging finite problems remain. Denote by
F(n,r) the smallest integer so that if {A.}, IA [ = n,

1 £ k £ F(n,r) is any family of sets then there always are r

of them Akl""’Ak which form a strong A system. Rado and
r

I conjectured if C is a constant which only depends on r then

(1) F(n,r) < Cp.

I find (1) one of the most challenging unsolved
problems and offer 300 dollars for a proof or disproef. (1)}
would have many applications in number theory and
combinatorial analysis. Instead of (1) Rado and I proved
(2) Fln,r) < c;“nz



Our value of C;__ has been improved by Abbott, Hanson and
others but it is not yet known whether for every A and
n > n,(A,r).
(3) F(n,r) < A™"n!
(1) and (3) are unsolved even for r = 3. Abbott and Hanson
also proved F(n,3) > lonfzn-c. Abbott and Gardner further

proved F(3,3) = 21,

Denote by f(n,r) the smallest integer so that if {Ak},
1Al
which form a weak A system. In our paper with Milner and

=n, 1 sk < f{n,r) then there are always r of them

Rado we conjectured

n
24
51-8

f(n,r) < ¢

but cannot even prove f(n,r) < n . Trivially £(2,3) = 6
and Hanson proved £(3,3) = 11, f(u4,3) 2 26, It is easy to
gee that f(a+b,3)-1 2z (f(a,3)-1)(£f(b,3)-1) thus

lim f(n.3)1/n exists but we do not know whether it is
ns= =

finite or infinite.

Denote by g{n,r) (respectively g(n,r)) the smallest
integer go that if 1] = n and {Ak], 1l < k £ g(n,r)
(respectively A(n,r)) is a family of subsets of #f then our
family has a subfamily of r sets forming a weak
(respectively strong) A system. Abbott called attention to
the fact that it is not obvious that
(4) lim g(n,3}/n= =,

n = o
Szemerédi proved a much stronger result: for every t

lim g(n,3)/nt = =,

n = =
It is easy to see that
lim g(n, )™ ¢ ¢ and  1im Hn,)>™ = ¢
nz= n = o

exists and the probability method easily gives C > 1.
Abbott just informs me that he and Hanson gave a
constructive proof for ¢ » 1. We could not prove c < 2,
C < 2 would follow from 1.



P. ErdSs and R. Rado, Intersection theorems for syste
ms
of sets I and II, J. London Math. See., 385 (1360),

by (1969), u467-479,

P, Erdds, E. Milner and R. Rado, Intersection theorems
for systems of sets III, J, Australian Math. Soc. 18 (197u4),
22-40,

J.L. Abbott and B. Gardner, On a combinatorial theorem

85-90 and

of Erdds and Rado, in W.T. Tutte, ed., Recent progress in
combinatorics, Acad, Press, New York (1969), 211-~215,

H.L. Abbott, D. Hanson and N. Sauer, Intersection
theorems for systems of sets, J. Combinatorial Theory (1972).

4. An old problem of Hajnal and myself states: Is
there a function f(k) so that every graph of chromatic
number f(k) contains a subgraph which has no triangle and
has chromatic number k. As far as I know no progress has
been made with this interesting conjecture. I offer 50
dollars for a proof or disproof. More generally we
conjectured that there is a f,(k) for which every graph of
chromatic number fl(k) contains a subgraph of girth £ and
chromatic number k.

For infinite graphs we conjectured that every graph of
chromatic number m (m is an infinite cardinal) contains a
subgraph of chromatic number m which contains no triangle,
or more generally whose smallest odd circuit has size 2 2£+1.
(By one of our theorems if m > Ho must contain all even
circuits and in fact a K(n,Nl) for every integer n.)

P. Erddés and A, Hajnal, On the chromatic number of
graphs and set systems, Acta Math. Acad. Sci. Hungar. 16
(1966), 61-99,

5. Let ﬁ be a graph of 5n vertices which contains no
triangle, Is it true that 4 can be made bipartite by the
omission of (at most) n’? edges? Is it true that ,c!? can
contain at most n® pentagons? It is easy to see that if
true then these are best possible. Both of these
conjectures of mine are old and as far as I know no progress



has been made with them. Clearly many related more general
problems can be raised,

6. Edwards ard I proved that every graph of m edges
contains a bipartite subgraph of % + cm% edges and Edwards
determined the best possible value of ¢, Lovdsz and I
proved that if /) has m edges and contains no triangle then
it contains a bipartite graph of at least ? + szla edges
for every C if m » mO(C}. The above result no longer holds
if % is replaced by 1 - €. Our results are not yet
published,

C.S. Edwards, An improved lower bound for the number of
edges in a largest bipartite subgraph, Recent advances in
graph theory, PFroc. Symp. Frague 1974, Academia Praha 1975,
Editor M, Fiedler, 167-181, see also Some extremal
properties of bipartite subgraphs, Can. J. Math. 25 (1973),

475-485,

7. Dirac calls the k-chromatie graph eritical if the
omission of any of its edges decreases its chromatic number,
Denote by fk(n) the larsest integer for which there is a
g(n;fk(n)) which is k-chromatic and critical (%(n;i) denotes
a graph of n vertices and 1 edges)., Nearly thirty years ago
I asked whether for k z & £, (n) > cknz. Dirac prgved
felun+2) = tn? 4+ &n + 2 and Toft proyed fu{n) > %ﬁ'
Simonovits and Teft proved f,(n) < %r + en. I conjectured

(1) 1in £y (n/n? = nlimmf3k+1(n)/n2 = (n)/n? = 1(1-5).

Toft disproved (1}. In fact he showed

o E
nlimaf3k+l(n)/nz > 3Q-g) for k 2 2.

faxe2

It wouid be very interesting to determine
tim ?k{n}/n7 Fep. o koY it is not even known whether
1 os, we T
the Ylimir sxists,

@, Dipan, # property of 4-chromatic graphs and some
remarxs on oritical pravhs, J. London Math., Soe. 27 (1852),

i
88«2y



B. Toft, On the maximal number of edges of critical
k-chromatie graphs, Studia Sei. Math. Hungar. 5 (1970),
461-470.

8. Is it true that every graph of girth greater than
four can be direected in such a way that it contains no
directed circuit and if one reverses the direction of any of
its edges the resulting new digraph should also not contain
a directed circuit? I asked this question several years ago
(p.99 of 3) but as far as I know there are no results.

9. M. Rosenfeld told me a few weeks ago the following
very pretty conjecture. The weak Rosenfeld conjecture
states as follows: Every finite graph 5 which contains no
triangle can be imbedded in the following graph gH' The
vertices Of‘§H are the points of the unit sphere, two of
these points are joined if their distance is greater than
Y3. The strong Rosenfeld conjecture states that this
imbedding can be made to be faithful. In other words if é
has n vertices Xy5e..,X We can find n points Yyse-esY, ON
the unit sphere so that the distance from y; to v, is
greater than v3 if and only if'xi is joined to Xy e Clearly
if these conjectures hold Hilbert space can be replaced by
the unit sphere of n dimensional space and it might be
interesting to determine which graph 4(n) needs the unit
sphere of highest dimension - perhaps K.?

10. Let é(r)(n;l) be an r-graph of n vertices, % edges
and c?igﬁ??ifl?g?ber k. TIs it true that for k > k,(r)
i{z ( r }J. Equality only for the complete r-graph
KT ((k-1)(p-1)+1). For r = 2 it is easy to see that the
conjecture always holds i.e. k » kOCrJ can be omitted. For
r = 3 we already run into difficulties since the conjecture
certainly fails for r = 3, k = 3. The smallest three
chromatic 3-graph is given by the seven triples of the Fano

plane and not by the 10 triplets of K(3>(5).



11l. The feollowing interesting conjecture is due to Jean-
Claude Meyer: Let {Ai}, 1s<4i=s<n, lAil = h be a family of
sets satisfying Ay on Aj @, 1 <1< 3j s n., Further the
family is maximal with respect to these properties i.e. if A
is any set of h elements there always is an i, 1 s i s n for
which A n A = 0. Conjecture: Let h = pu + 1, p prime.
Then n 2 h® - h + 1, We clearly have equality for the lines
of a finite projective plane.

12. The following surprising conjecture is due to
Chvatal: Let F be a family of subsets of a finite set sf
such that X € F, Y < X implies Y ¢ F. Then there is a t ¢
such that every intersecting subfamily G of F satisfies

6] s I{X € F: t e X}|.

A family is called intersecting if any two of its
members have a non empty intersection.

Problems 10,11 and 12 are not new they appeared in the
Hypergraph  Seminar Lecture Notes of Math. 41l Springer
Verlag. I restated them here because I find them
particularly attractive.

13. In a recent paper of Chvatal the following question
is posed: Let |l = n. A family {A } of distinet subsets
of of is called m intersecting if any m of the At have a non
empty intersection, Assume row that all the At have size k
and denote by f(n,k,m) the largest m intersecting family of
subsets ofzf of size k, Chvatal conjectured

(1) fln,k,m} = (n l), for 1 sm < k and n 2 m+ 1

.

-

For m = 1 this is the well known theorem of Ko,Rado and
myself. For m = 2 I conjectured (1) in 9 of the
introduction. f(n,2,2) is simply Turén's theorem that every

graph of n vertices which has no triangle has at most
27
ij edges, Chvatal proved my conjecture for k = 3,

V. Chvatal, An extremal set-intersection theorem, J.
London Math, Soc., (second series) 9 (1974), 355-359,



C. Ko, P. Erd8s and R. Rado, Intersection theorems for
systems of finite sets, Quart. J. Math. Oxford 12 (1961),
313~-320.

Now I discuss a few extremal problems in graph theory.

(r)(n;m) denotes an r-graph of n vertices and m edges (i.e.

r-tuples)., f(n; (r)(k.i)} is the smallest integer for which
every (r)(n;f(n;é?r)(k;l>n contains a g(r)(k;z) as a
subgraph. New and interesting complications arise if we
also prescribe the structure of 5(P)(k;z). K(r)(t) denotes
the complete r graph of t vertices (K<r}(t) is of course

identical with.ﬁcr)(t;(ﬁ))h Turédn's well known old problem

states: Determine f(n;K(r)(t) for every t > r and also
determine the structure of the extremal graphs. Turdn
completely solved this problem for r = 2 and every t > » but
for r » 2 nothing is known, though Turan has some plausible
conjectures, Put

(1) im £k e M ™ = ate,r

Turadn proved a(t,2) = 1 - ?%-1-, but for t > r > 2 none of
the a(t,r) are known.

I will now state some new prcblems and will try to
restrict myself to recent and unpubliched ones, but first I
give some literature which is heavily biased in favour of
papers of my collaborators and myself.

1. M. Simonovits, A method for solving extremal
problems in graph theory, stability problems, Theory of
graphs, Proc. Ccll, held at Tihany, Hungary 196%, Acad.
Press, 279-319.

2. M. Simonovits, Extremal graph problems with
conditions, Combinatorial Theory and its Applications, Coll.
Math. Soe. J, Bolyai 1970, Vol. III, 999-1012 (North
Holland).

3. P. Erdds and M. Simonivits, A limit theorem in graph
theory, Studia Seci. Math. Hungar. 1 (1966), £1l-57.

4, P. Erdds and M. Simonovits, Some extremal problems
in graph theory, Coll, Math. Soc. J. Bolyai 1970, Vol. I
378-392,



§. P. Erdds, On extremal problems of graphs and
generalised graphs, Israel J. Math. 2z (1965), 183-190.

6. W.G. Brown, P. Erdds and V. T. Sés, Some extremal
problems on r-graphs, New directions in the theory of graphs,
Proc. Third Ann Arbor Conference on Graph Theory, (Ed. F.
Harary), Acad. Press 1973, 53-63, also On the existence of
triangulated spheres in 3-graphs.

B. Bollobds, Three graphs without two triples whose
symmetric difference is contained in a third, J. London
Math. Soc.

I will refer to these papers by their number and to
avoid confusion if I refer to a paper of the introducticon by
number I will state that I refer to the list in the
introduction.

14, Sauer and I investigated the following problem:
Denote by f(kjn) the smallest integer so that every

{n3;f(k3;n)) contains a regular subgraph of valency (or

degree) k. Trivially f(23;n) = n. It seems likely that

l+e

f(ksn) <n for every k and every € > 0 if n > no(k,e),

but we cannot even prove this for k = 3, The best upper
bound we have is f(3,n) < cnaiB. Chvatal observed

£f(33;n) » %? - ¢, As far as we know f(k;n) < e,n has never
been disproved. It is not known whether

3 1
lim -ﬁ-f(}c;n) = C

ns= =

. k
exists.

Sauer and Berge conjectured that every regular graph of
valency four contains a regular subgraph of valency three,
Chvatal conjectured that to every k there is an a, so that
if n > no(k) then every é%n) each vertex of which has
valency 2z a, contains a regular subgraph of valency k. This
beautiful conjecture if true would of course imply

Teksn) < cyni

k



Szemerédi asked: Denote by F(kjin) the smallest
integer so that every 4(n;F(k;n)) contains a spanned

regular subgraph of valency k. Determine or estimate

F(ksn). I proved F(3,n) < en®/3. In fact I showed that

every (n;[cn5/3]) contains K(q)

or a spanned K(3,3).
Unfotunately we could not prove

1im %F(B;n) : o,

ns=m=
15. Let A4 be a bipartite graph. Simonovits and I
conjectured that there always is a rational a, 1 s a < 2 for
which

(1) lim f(n; y/n® = ca(g).
ns=e
Conversely we conjectured that for every rational

1l < & < 2 there is a graph A4 which satisfies (l). We are
very far from being able to prove any of these conjectures,
We have at present no guess about the possible values of the
constants ¢  (4). Ne proved (see 4) that a does not have to
be of the form 1 + E or 2 - E‘

The situation is certainly much more complicated for
hypergraphs. Szemerédi recently proved that

(2) f(n,é(3)(6-3)) = o(n?)
and Ruzsa proved that for every € > 0 and n > ng ()
(3) £ 3 (653)) > n?7E,

The joint paper of Ruzsa and Szemerédi will be published
soon, (2) and (3) implies that (1) certainly does not hold
for hypergraphs, I hope and believe that for every
hypergraph %(r
lim log f(n;ﬂ(r))llogxx

exists and is ratiogal.
16. Let 4 be a graph of chromatic number X([). 8(5) is

the smallest non negative number for which there is a

sequence of graphs ét with e( t) -+ = (e(l) is the number of

edges of §4) so that any subgraph of

{B+E)e(§;£

%t having more than

edges contains as a subgraph.



For ordinary graphs (r = 2) this concept does not seem
to be fruitful. A well known theorem of Stone, Simonovits
and myself (see 3) asserts that

findp)
(1) 1.-;m__"§—=1-1

n == (g) K-T

Clearly for every g, B(é) is not less than the limit in (1)

1
=5 In

other words B(g) is assumed if ﬁ is the complete graph.

and it is easy to see that in faect B(A4) = 1 =

On the other hand it is not impossible that for
hypergraphs new and intersecting situations will arise,
Define g{a)(2n;(n-13n2) as the hypergraph of vertices
nd Yysrees¥, and edges (xi,xj,yg); (yi,yj
lsi<jsn,1ls & <n. Perhaps the following result

xl,...,x ox!‘}'
holds; TFor every € > 0 and n > nj, (e) every subgraph of our
(3)(2n (n-1)n?) having more than (§+e)n edges contains a

X*(4). 1If true then B(K )(h)) 2 3., On the other hand
Turdn observed in 1940 that a(u,3) 2 g in other words if my
conjecture is true the value of B is not given by the
complete graph.

I expect that interesting new phenomena will occur for
ordinary bipartite graphs 4 if the definition of B(f) is
modified. Let B(4) be the smallest number for which for
every € > 0 there is a graph gl with e(ﬁl) arbitrarily large
every subgraph of which having
(2) (e(ﬁl))‘“ﬁ’”
edges containszg as a subgraph. For C, (Ck is a circuit of
k edges) it follows from results of Folkman and Szemerédi
that B(C, ) = ? (see 3 of the 1ntroductlcn p.97). The
complete graph would give the exponent F'

By the way perhaps (2) can be replaced by the simpler
expression (c(4g) + o(l))(eﬁﬁl))s and it could very well be
true that B must be rational. Some of these conjectures are
formulated while I am writing the paper - I hope not too

many of them turn out to be nonsensical.



F.R.K. Chung and R.L. Graham, On multicolor Ramsey
numbers for complete bipartite graphs, J. Combinatorial
Theory, Ser, B 18 (1975), l6u4=169.

17. V.T. 86s and I last week investigated the following
question: Denote by S(l}(n) the smallest integer so that

every %(3)(n;8(l){n)) contains at least one Steiner triple

system, S;l)(n) is defined as the smallest integer so that

every é(a)(n Sél)

belonging to a set of size L. It will no doubt be extremely

(n)) contains at least one Steiner system

difficult to determine

8] vim )/} and 1im Sll)(n)/( s
n = ® n
It is easy to see that the limits in (1) exist. We expect

that it will not be difficult to prove that for n > Ny
S(l)(n) = Sgl)(n) though we did not carry out all the
details. In fact equality probably holds for all n.

In view of the difficulty in handling these questions
(2)(n) ig the smallest
(n;S(Z)(n)) there is a

subset A, |A| > 3 so that to every x ¢ A, y € A there is a

we introduced two new functions,

integer for which for every (3)

z € A so that (x,y,z) is one of the edges of our
) n;8 2 nyy. s

the condition z ¢ A is dropped. S;l){n), i = 2,3 can

(n) is defined similarly except that

clearly be defined similarly and all these problems can be
asked for r-tuples instead of triples. There is no shortage
of definitions and problems but a regrettable shortage of
(l} (2)
(n) 2 8

It seems that Sczj(n) is nearly as hard to handle as

(1) (2) - <(2) (3)
S (n), perhaps $'""(n) = 85,7 (n) = f(n; (4,3)) but we
had no time to lock into thls. s (3n) S n? + 1 is easy to

theorems. (n) 2 8(3)(n) is of course obvicus.

prove and it will not be difficult to determine 8(3)(n).
Bollobds and I discussed the following questlon: Let g
be a graph, Iﬁl = n, denote by A(4;n) the smallest number of
triples of,g sc that the graph spanned by the edges of these
triples should containlﬁ as a subgraph. We observed that it



easily follows from known results that

l+e
3!2/6

A(Cy35n) = (1+0(1))n - A(Ci3n) > n is easy to prove

but we have no asymptotic formula say for A(Cs,n) and in

fact do not even know the best possible value for € It

might be of some interest to investigate A(K(r,r,r)?n}.

18. Denote by Cz(g) the number of K,'s contained in‘g.
Determine or estimate

min(Cz(é(n;f(n;K1)+u)) = B(nji,u)

as a function of n and u where the minimum is to be taken
over all graphs of n vertices and f(n;KL) + u edges.
Important work on this problem has recently been done on
this subject by Bollobds and Lovdsz-Simonovits which in fact
was reported at this conference by the authors., Many
unsolved problems remain. In particular let u = en?
determine

lim B(n;%,cn?)n" % = gy(c).

n = o
As far as I know this is unsolved even for & = 3.
Denote by g(n) the complementary graph of 4(n) (i.e.
the edges of gkn) are the non-edges of A4{n)). A. Goodman

determined min(Csté(n))+ Cs(g(n))). I provedz

-(2)
min(C, (h(n)) + ¢ (hm))) < 2(p2
and conjectured L)
1-(
g 7 -1 2
lim min(C (f(n)) + C,4(n))) ()™ = 2 .
PRSI L] + GG

P. Erdds, On a theorem of Rademacher-Turdn, Illinois J.
Math. 8 (1962), 59-60.

P. Erdés, On the number of complete subgraphs and
circuits contained in graphs, aasopis Pest, Mat. 94 (1969),
180-296.

P. Erdds, On the number of complete subgraphs contained
in certain graphs, Publ., Math, Inst. Hung. Acad. Sci., 7
(1962), #59-u64 - gee also "The Art of Counting" 145-150,



The paper of Bollobds will appear very scon in Proc.
Cambridge Phil. Soc. A part of the paper of Lovasz and
Siminovits will appear in the Proceedings of our
conference,

19, Simonovits and I a few days ago considered the
following problems. Two bipartite graphs gl(kl;ll) and
ﬁz(kz;lz) are said to be equivalent if for every n > n,

(1) £(nif (ky38p) = f{n;ézckQ;zz)).

Several problems can be posed which seem interesting
but are perhaps very difficult. Is it true that (1) implies
that there is a é(k;l) which is a subgraph of bothlgltklgzl)
and 4, (k,3%,) and for which
(2) f(n;gck;z) = f(n;ﬁl(klgzl)) z f(n;ﬁszQ;lz))?

Assume next that (1) holds and that.ﬁl(kl;Ll) is a
subgraph of‘§2(k2;t2) and that k; = k,. In other words
ﬁz(kzazz) is obtained from 51(kl;£1> by adding some
edges. Estimate L2 = 11 from above and below. Perhaps
Ly = L o< clk always holds and By = 2y > c2k is possible for
suitable graphs gl(kl;Ll) and gz(kz;zz).

It is not possible that if we assume that (1) holds for
a sequence n, tending to infinity then it will hold for all

sufficiently large n.

Two graphs are called weakly equivalent if for n = =
(3) f(n;gl(kl;zl)) = (1+o(1>)f(n;§5(k2;£2))
and very weakly equivalent if
(4) clf(n;jltkl;zl)) < f(n;ﬁz(kz;lz) < °2f(";él(k1‘11))'
It seems certain that (3) and (4) will hold if it is
assumed to hold for a sequence 0y tending to infinity. The
analogous questions for weakly or very weakly equivalent
graphs are probably easier than for the equivalent ones.

For non=bipartite graphs this concept of equivalence is
less illuminating since all the odd cycles are equivalent.



20. NHow I discuss a few problems on Famesey numberes.

For the "older" literature I refer to the excellent survey
paper of S. Burr. Several papers on these problems are
published in the Proc. of the Colloquium on Finite and
Infinite Sets at Kenthely 1973 held in the memory of the
poor old author of this paper, and Harary has a paper om
Ramsey theory in the Proceedings of our Colloquium.
rk(él""ﬁfk) s/’ is the smallest integer with the property
that if we colour the edges of KG#) by k colours then for scme
i, 1 £ i £ k the i=-th colour contains y @8 a subgraphs
Usually it is very difficult to obtain exact results for
bk(&l""ﬂfk)' In a paper of Burr, Spencer and myself which
will appear very soon in Trans. Amer. Math. Soc. we obtain
very accurate (and in fact often exact) estimates for
rk%gl"" k} if k tends to infinity and all the 5'5 are
identical.

The graph g ig said to have edge density c if c is the
smallest real number so that for every subgraph,%' of‘g we
have e({') £ cv(4') where e(f) and v(/) denotes the number
of edges and vertices of respectively. Burr and I
conjectured that for graphs of bounded edge density the
Ramsey function has linear growth., More precisely: There
is a function f(c) so thatif Lhas edge density s ¢ then

(1) r(/g.,ﬁ) s f(c)v(é).

We proved (1) for many special cases but are very far
from being able to prove (1) in full generality. (1) may
hold for a sequence of graphe of unbounded edge density too.
One of our most challenging problems with Burr states: Let

n) be the skeleton of the n-dimensional cube. Is it true
that
(2) r(ﬁ(n),ﬁtn)) < cl2n.

(2) if true is in scme sense best possible., The
probability method easily gives that if is an infinite
sequence of graphs satisfying r(ﬁn, n) < ev( n) then
e(én} < c'vf,gnJ log v(ﬁn) for some c' = ¢'(c) and we have



V(ﬁ(n>) = 27, ef‘™?y = (n-13271,

For further unsolved problems see also my papers with
S. Burr and R.L. Graham, Colloquium on Finite and Infinite
sets, Kesthely 1973, North Holland 1974, A paper of Harary
in our conference states eight challenging unsolved problems

in this subject. (S.A. Burr, Graphs and Combinatorics, Springer,

Berlin (1974) §2-75,
21, V.T. Sés and I considered a few weeks ago the

following problem. Denote by gia)(n) the largest integer so

that if we colour the triples of Lgl = n by two colours

there always is a monochromatic Steiner system of size
gis)(n). It is probably very difficult to estimate gi3)(n).
Thus as in problem 17 we introduced géa)<n) and géS)(n).
g(a)(n) is the largest integer for which there is a set

Ji € J, L51| = géB}Cn) so that there is a monochromatic
triple system on,Jl so that to every x ¢ #%} y € J; there is
a z c,Xi for which (x,y,z) belongs to our monochromatic
system. gga)(n) is defined analogously only the condition

z ¢ .31 is replaced by z ¢ J. It is easy to see that

gga){n) = %? + 0(1). We did not try seriously to estimate

g§3)(n). -

For r » 3 even the determination of g3r (n) leads to
non=-trivial problems. In fact Lovdsz and I proved
(1) 33“)(n) clog n.

First I repeat the definition of g;u)(nJ. It is the
largest integer so that if we colour the quadruplets of
J. kfi = n by two colours, there always is a subset
Jl Cﬂg. kfil = g;u)(n) so that there is a monochromatic
quadruple subsystem for which for every triple (x,y,z) Ofgfl
there is a w € 4 60 that (x,y,z,w) is a quadruple of our
monochromatic quadruple subsystem. It easily follows from
the probability method that if one coloursthe edges of a
K{n) by two colours then every K(£), £ 2 clogn contains a
menochromatic triangle, This colouring of the edges induces
a colouring of the quadruples as follows: If a quadruple of



Jcontains one of the monochromatic triangles Tthen it et

the same colour as the triangle, otherwise its colour is
arbitrary. Observe that a quadruple cannot contain two
monochromatic triangles of different colours, thus our
procedure really gives a colouring of the quadruples. This
colouring proves (l1). It seems likely that gguj(nJ > ¢ylogn
holds. Clearly many more problems remain, some of them may
lead to interesting new phenomena.

22, Finally I state a few miscellaneous problems and
conjectures.

Denote by f(njk,r) the smallest integer so that if F is
any family of subsets of size k of a set of size n then if
|IF| 2 f(n3k,r) there are two members of F having exactly r
elements in common. V.T. 8&6s and I conjectured four years
ago that if k > 3, n > ny(k) then
(1) f(nsk,1) = (R72) 4+ 1,

Katona (unpublished) proved this for k = 4. The proof
does not seem to generalise for k > 4 and as far as I know
our conjecture is still open for k > 4, V,T, Sés and I
easily settled k = 3 here we have
(2) f(4n;3,1) = f(un+1;3,1) = f{un+2;3,1) = 4n + 1,

f{tn+3;3,1) = 4n + 2,

(2) can be proved by a simple induection.

(1) can be considered as a sharpening of ocur well known
result with Ko and Rado. Perhaps for n > no(k,rJ
(2) £njk,?) € max(TPy w5, t(HH ™4,

The reason for the first term is clear, we take all
subsets of size k con%eining the same r + 1 elements. The
second term is explained as follows: [(2)(?)#11 is the
upper beund for the number of k-sets so that every r-set is
contained in at most one cf them. I just thought of (2)
while writing these lines and thus would not be surprised if
it would be completely false or at best not completely

accurate,



Denote now by £f(n;3;r) the smallest integer so that if F
is any family of subsets of J, |4| = n and |F| = fin;r)
then there always are two members of F, Al and A2 satisfying
lay o Azf = r. (In the definition of f(njk,r) we further
assumed that all members of F have k elements.) It is easy
to see that f(n;0) = 2n“l + 1 and it would not be perhaps
difficult to determine f(n;r) for fixed r as n =+ «, For
some time I conjectured the following: Let en< r< (i-g)n,
Then there is a e, > 0 so that

(3) flnir) < (z-cs)“.

(3) would have immediate application to a geometric
problem considered by Larman and Rogers, but unfortunately I
was not able to prove (3). It would be very interesting to
determine f(njr) explicitly for every n and r but perhaps
this is hopeless, and asymptotic formulas or good
inequalities may be almost equally useful. If [Ai n Aji =r
is replaced by !Ai n Ajl 2 r the problem has been completely
solved by Katona.

G.Y. Katona, Intersection theorems for systems of
finite sets, Acta Math. Acad. Sci, Hung. 15 (196u4), 329-337,

P. Erdds, C. Ko and R. Rade, Intersection theorems for
systems of finite sets, Quarterly J. Math. 12 (1981),

D.E. Larman and C.A. Rogers, The realisation of
distances within sets in Euclidean space, Mathematika, 1¢
(1972), 1-24,

23. Denote by g(n;k) the largest integer with the
following property: Let 1 = 8y <eee< @y be any sequence of
integers, consider all the integers bl < b2 i bp which
can be written as the sum or product of k distinet a's. Then
minr = g(n;k) where the minimum is taken over all sets of
distinet integers {al,...,an}. I conjecture that for every
 and n » n.(k)

4 k-€
(1) gln3k) > n .
1+e

I have not even been able to prove that g(n;2) > n .



It does not even seem te be easy to prove that
c2) lim g(n3;2)/n—* =,

n =
With Szemerédi we observed that (2) will follow from the

results of Freiman., It is easy to see that
2

g(n;2) = o-——JL——F
(logn)
for every r and the true order of magnitude of g(n3;2) is
2 _._logn . :

perhaps n exp[ cIEEﬁﬁfﬁ]' It is very likely that the value
g(n;2) does not change very much (perhaps not at all) if we
permit the a's to be real numbers or more generally elements
of a vector space.

Let 1 = a) <eea<ay be a set of n distinect integers.
Let u) <...< u, be the set of all integers which can be
expressed as the sum or product of distinct a's., Put

g{n) = mins
where the minimum is to be taken over all sequences of
distinet integers. It seems certain that g(n) > nk for
every k if n > nofk) but it is not hard to see that
gln) = o(expns)

for every € » 0. The true order of magnitude of g(n) is
perhaps exp(exp(lngn)“) for some o < 1,

E. Straus proved a few years ago that if we only take
subset sums then we get the fewest distinect numbers if the
a's form an arithmetic progression.

Finally we could consider all possible sums of products
formed from the a's with each a occuring at most once and
define é(n) as the smallest number of distinct integers
which we can represent in this form. For n = 3 we have to
consider the terms al,az,aa,al+ 8,58) +ag,8, +ag,a) +a,+a,,
al.a2,al.aa,az.aa,ala2a3,al+ azaa,ai+ ala3,a3+ 3,8, I have
no guess at the moment about the behaviour of 4(n).

G.A, Freiman, Foundations of a structural theory of set
addition, Amer. Math, Soc. translation of Math. Monographs

vol., 37, 1973.



24, Let 1 = Ay <.eu< a

x be a set of k integers for which
the sums a; + a

50 i # j are all distinct. Is it true that

there is an n, and a perfect difference set Dyyeeasby
mod my , t2 -t + 1 = n,, so that the a's are a subset of the

b's?

An analogous result has been proved a few years ago by
C. Treash., She proved that to every k there is an n, so
that every incomplete Steiner system on k elements can be
imbedded in a Steiner system on nk elements, A family of
triples is an incomplete Steiner system if every two of them
have at most one element in common.

C.C, Lindler very recently proved that n s 6k + 3.
The best value of n, is not yet known = it certainly must
be greater than 2k.

C. Treash, The completion of finite incomplete Steiner
triple systems with application to loop theory, J.C.T. Ser.
A 10 (1971), 259~-285.

C.C. Lindler, A partial Steiner triple system of order
n can be embedded in a Steiner triple system of order 6n + 3,
ibid 18 (1975), 349-351.

25, Let é?n) be a graph of n vertices. Is it true that
if every induced (or spanned) subgraph of,g(n) having [%]

2
vertices has more than %5 edges then 6 contains a triangle?

It is easy to see that %i if true is best possible, More
generally denote by f(a,n) the smallest integer so that if
every spanned subgraph of . (n) of [an] vertices has at least
f(a,n) edges then é?n) has a triangle. Determlne or

estimate f(a,n), By Turdn's theorem f(l,n) = [——] + 1. If
the determination of f(a,n) is too complicated it would be
of interest to determine

lim f(a,n)/n=gla).

n = =

Thus the first step towards our conjecture would be to

prove g(}) = gx.



Clearly many generalisations are possible if the
triangle is replaced by other graphs or hypergraphs. There
is no doubt that one gets interesting and fruitful problems
if the triangle is replaced by larger complete graphs. I am
not sure if new phenomena occur if the triangle is replaced
say by a bipartite graph.

26. Let |4] = 2n, A «© &y 15 4 4 t . Assume that the

number of pairs 1 s 1y < iy, st with Ail n Ai2 = @ is at

2n n+l,

least 277, TIs it true that t 2 (1+0(1))2
sharper form determine the smallest possible value of t, for

which the number of the intersecting pairs is =z 22n. It is

Or in a

easy to see that

2n+1 - min tn -+ w,

Clearly this problem can be extended and generalised in

many ways.

27. The following problem is due to Rothschild and
myself. Let {(n) be a graph of n labelled vertices. Denote
Py C2( n)) the number of ways one can colour the edges of
Aln) with two colours so that there should be no
monochromatic triangle. Clearly Cz(ﬂ(“)} < 2e(§‘“’). We
conjecture that for n > ng B
(1) max Czcg(n)) = 2" a
Equality only for the Turdn graph Kz([%J,L§%~l]).

Probably (1) holds already for quite small n, but it is
easy to see that it dces not hold for all n.

Clearly many generalisations are possible, the number
of colours can be increased, the triangle can be replaced by
a general graph or hypergraph, again there is no shortage of
problems or cenjectures but unfortunately we have no results
as yet.



2B. A group G is said to hawve Propecty AC(k) if it has atr

most k elements which pairwise do not commute. Determine or
estimate the smallest f(k) (if it exists) so that every
group with property A(k) is the union of f(k) or fewer
Abelian groups. This problem is a finite modification of a

problem of B. Neumann.

Isaac proved

(1+)® < £(x) < k12YE,

The exact determination of f(k)} will perhaps not be

easy.

29. Let fl(n) be the smallest integer for which every
and C
k5 t
Ly 2 £2 for which the vertex set of Cz is a subset of that
2

of C;, . f,(n) is the smallest integer for which every

ﬁ(n;fj(n)) contains two edge disjoint ecircuits C

(n;fz(n)) contains two edge disjoint circuits C£ having the
same vertex set. fg(n) is the smallest integer for which

every ﬁ(n;fa{n)) contains two edge disjoint circuits C£ and

1
C!'2 so that if (xl’XZ)"'"<x£l-1’xll)’(x£l’xl) are the edge
of C2 then the edges of Cg are
1 2
(xl,xi ),...,(xi Xy ),(xi ,xl) with 1 < i) <veec iy <
1 £2~l 22 12 2

(i.e. geometrically the edges of C, do not cress each
other). 4

An old result of Pdsa states that every f?n;?n—3) has a
circuit with a diagonal, 2n - 3 is best possible. He has
various refinements from which I think one can deduce

fl(n) < ¢n. 1 do not know about f2(n) and f3(n).

Denote by gi(n) the smallest integer for which every
g(n;gi(n)) contains a Cl with at least i diagonals emanating
from one of its vertices. Pdsa's result gives gl{n) =2n - 3
and the proof of Czipszer easily gives gi(n) s (i+)n + ¢,

gQ(n) = 3n - 8. I conjectured that



tL) gg(n) = (i+1dn - (i+1)? + 1,

(1) would follow if g,(2i) = i* + 1 would hold, but M.

Lecvin disproved this and thus (1) is in doubt. It is easy
to see that if (1) holds then it is best possible.

Pésa's result appeared as a problem in Matematikai

Lapok about twelve years agc. The proof of Czipszer appeared
there too.
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