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On the greatest prime factor of 2°—1 for a prime p
and other expressions

by
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1. For a natural number a, denote by P(a) the greatest prime factor
of a. Stewart [10] proved that there exists an effectively computable
constant ¢ > 0 such that

P2P—-1
m PED S 4 ogpy™
P
for all primes p > ¢. In § 2, we shall prove that P(2? —1)/p exceeds constant
times log p for all primes. In § 5, we shall prove that for ‘almost all’ primes p,

Pe"—1) _ _ (logp)®

p ~ (loglogp)®’
For the definition of ‘almost all’, see § 5. Let w > 3 and & > 2 be integers
and denote by P(u, k) the greatest prime factor of (w+1)...(u+k). It

follows from Mahler’s work [6a] that P (u, k) > loglogu. See also [6]
and [8]. In § 4, we shall show that for u > k**

(2)

P(u, k) > ¢, kloglogw

where ¢, > 0 is a constant independent of w and k. It follows from well-
known results on differences between consecutive primes that P(u, k)
>wu-+1 whenever &k <u < %> Let a <b be positive integers which are
composed of the same primes. Then, in §3, we shall show that there exist
positive constants ¢, and ¢; such that

b—a > cy(loga)®.

Erdos and Selfridge [5] conjectured that there exists a prime between a
and b. ‘

The proof of all these theorems depend on the following recent result
on linear forms in the logarithms of algebraic numbers.

Let n > 1 be an integer. Let a, ..., a, be non-zero algebraic numbers
of heights less than or equal to 4., ..., 4, respectively, where each 4, > 27.
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Let B, ..., f,_1 denote algebraic numbers of heights less than or equal
to B (= 27). Suppose that a;,..., o, and 8,1, ..., f,_, all lie in a field of
degree D over the rationals. Set

A =logd,...log4,, E = (logd+loglogB).

LeMMA 1. Given e > 0, there exists an effectively computable number
C > 0 depending only on & such that

|Blogay +...+ B, 11oga, , —loga,|
exceeds
exp ( — (nD)*" A(log A)* (log (AB)J B*"+*+°)

provided that the above linear forms does not vanish.

This was proved by the second author in [9]. It has been assumed
that the logarithms have their principal values but the result would
hold for any choice of logarithms if ¢ were allowed to depend on their
determinations.

The earlier results in the direction of Lemma 1 (i.e. lower bound
for the linear form with every parameter explicit) are due to Baker [1]
and Ramachandra [8]. Stewart applied the result of [1] to obtain (1).
We remark that the result of [8] gives the inequality (1) with constant
times (logp)"?/(loglogp). The theorems on linear forms of [1] and [8]
also give (weaker) results in the direction of the inequality (2) and the
other results of this paper.

2. For a natural number @, denote by o(a) the number of distinct
prime factors of a.
Leyma 2. Let p (> 27) be a prime. Assume that
P22 —-1) < p
Then there exists an effectively computable constant ¢, > 0 such that
» (2P —1) = ¢ Jogp/loglogp.
We mention a consequence of Lemma 2.
THEOREM 1. There exists an effectively computable constant c¢5> 0
such that
P(gpgl) = csplogp
for all primes p.
Proof. Assume that
P27 —1) < plogp.

Without loss of generality, we can assume that p > 27. Then P (27 —1) < p2
By Lemma 2, we have

(27 —1) > ¢, logp/loglogp.
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By using Brun-Titchmarsh theorem ([7], p. 44) and the fact that the
prime factors of 22 —1 are congruent to 1 mod p, we obtain

P(22—1) = csplogp
for some constant ¢, > 0. Set ¢, = min(1, ¢;). Thus
P(2P—1) = e;plogp.

This completes the proof of Theorem 2.
Proofof Lemma 2. Let 1 > & > 0 be a small constant to be suitably
chosen later. Set

r = [e,logp/loglogp]+1.

We shall assume that
o2®P-1)<Lr

and arrive at a contradiction. Write
22 1 =q1... ¢
where for ¢ =1,....%, ¢, < p® are primes and ;< p are non-negative
integers. We have
277 = (2P —-1)27P 1| = |¢¥r... ¢}r27P —1].

From here, it follows that

(3) 0 < |uylog g, +-.. +ulogq, —plog2| < 272+,
By Lemma 1, it is easy to check that
(4) [uilogqy ... +u,logq, — plog2| > exp( —p1?)

where D > 0 is a certain large constant independent of e,. If we take
g, = 1/4D, the inequalities (3) and (4) clearly contradict each other.
This completes the proof of Lemma 2.

For any integer » > 0 and relatively prime integers a, b with ¢ > b > 0,
we denote @, (a, b) the nth cyclotomic polynomial, that is

"
@,(a,0) = [[ (a—2'b)
i=1
(Tn)=1

[=

where [ is a primitive nth root of unity. We write
P, =P(D,(a,b)).
Stewart [10] proved the following theorem.

THEOREM 2. For any K with 0 < K < 1/log2 and any integer n (> 2)
with at most Kloglogn distinet prime factors, we have

P, [n> f(n)
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where f is a function, strictly increasing and unbounded, which can be specified
explicitly in terms of a,b and K.

The proof of Theorem 3 depends on Baker’s result [3] on linear
forms in the logarithms of algebraic numbers. If that is replaced by
Lemma 1 in Stewart’s paper [10], then the method of Stewart [10] gives
the following result for the size of f.

THEOREM 3. We have
f(n) = ¢, (logn)*/loglogn
where 4 =1—Klog2 and ¢; > 0 '58: an effectz'vely: computable number de-
pending only on a, b and K.
3. Let b> a>2 be integers. We recall that ¢ and b are composed

of the same primes if

Vs

(5) 6 =pyt...pd, b =pit... pg
where p,, ..., p; are positive primes and ¥, ..., %, ¥;, ..., ¥V, arve positive
integers. We prove the following

THEOREM 4. Let b > a > 2 be integers that are composed of the same
primes. Then there exist effectively computable positive constants ¢, and ¢,
such that

b—a > ¢;(loga)™.
Proof. Let 0 < &, <1 be a small constant which we shall choose

later. Without loss of generality, we can assume that a > ¢, where a,
is a large positive constant depending only on &,, since

b—a=>=2 = (2/logay)loga, = (2/loga,)loga
whenever a < a,. We shall assume that
b—a < (loga)=

and arrive at a contradiction. Recall the expressions (3) for ¢ and b. Notice
that
Py P < b—a < (loga)®.
From here, it follows that
s 8¢,logloga
= loglogloga

Further observe that P(a) = P(b) < (loga)®? and the integers #; and v;
do not exceed 8loga. Now
loga

b 1
(—— —1) =—(b—a)<—— < a2
a @ a
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Further
-1/2 b ! Uy — Ug—7,
am > |— —1) = Ipy*™7 . pTR 1
a

> % |(u, —v1)logpy +... +(u; —v,)logp > 0.
From these inequalities, we obtain
(6) 0 < (1 —01)10g Py -+ + (g — ) log p| < a™.
By Lemma 1, it is easy to check that
(7) (2 — ©1)10g Py 4+ - + (1 — 0,) logp,| > exp (— (loga)®*)
where F > 0 is a certain large constant independent of &,. If we take
e, = 1/4F, then the inequalities (6) and (7) clearly contradict each other.
This completes the proof of Theorem 4.

Let b > a > 2 be integers such that P(a) = P(b). Then Tijdeman [11]
proved that

THEOREM b.

b—a>10""logloga.

The proof of Tijdeman [11] for this theorem depends on Baker’s
work [2] on y2 = #3+k. We remark that Theorem 5 follows easily from
Lemma 1. The details for its proof are similar to those of Theorem 4.

By using Baker’s work [2] on y* = 2®4k, Keates [6] and Rama-
chandra [8] proved

THEOREM 6. Let w (> 3) be an integer. Then

P{(n+1) (u+2)) > eologlogu.

Theorem 6 also follows immediately from Lemma 1. The details
for its proof are similar to those of Theorem 4. We shall use Theorem 6
for the proof of Theorem 7.

4. In this section, we shall prove the following
THEOREM 7. Let « > 3 and k > 2 be integers. Assume that

(8) = k.

Then there exists an effectively computable constant ¢y, > 0 independent of u
and k such that
P(u, k) > e;;kloglog.

Proof. In view of Theorem 6, we can assume that k> %, where k,
is a large constant. Erdos [4] proved that P(u, k) > ¢, klogk for some
constant ¢, > 0. So it is sufficient to prove the theorem when

(9) logk < loglogu.

4 — Acta Arithmetica XXX.3
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We write, for brevity,
P=Pu, k), r=[2x=P)k]+2.
Let us write n = m'm’"’ where v <n < u-+k%k and m' is the product

of all powers of primes not exceeding % and m'’ consists of powers of
primes exceeding k. Observe that

Z o(m’) << a(P).

n H
Hence the number of integers n with w(m'’) > r does not exceed % 2.
Hence there exist at least [k/2] integers n with e(m') < #. For each
prime ¢ < k, we omit amongst these n, one n for which ¢ divides » to
a maximal power. If star denotes omission of these =, then it follows,
by an argument of Erdés, that

” Y m < k-
n
The number of #’s counted in this produect is at least

[k/2]—a (k) > /4.
So there exist, among these n, the integers n,, n, (1, 3% n,) whose m’
do not exceed £*°. Write
Ny = MPIL ... PU, Ny = gyt ... g

where my, m, < k*°, 9y, ...y Dy, Q1,---, g, aTe primes greater than & and
not exceeding P. Observe that for ¢ = 1, ..., v, 4; and v; are non-negative
integers not exceeding 8logw. Using (8), we get

r b d "
- m] B
0 \ logp, — E logp. +1o 16,
(10) < l i:l u,logp, 2. v;logp, + log g !< U

By Lemma 1 and (9), the left-hand side of this inequality exceeds
(11) exp (— (rlogPloglogu)°¥').

Now the theorem follows immediately from (9), (10) and (11).
The following theorem follows from the work of Baker and SprindZuk.
THEOREM 8. Let f(x) be a polynomial with rational integers as coef-
ficients. Assume that f(x) has at least two distinct roots. Then for every integer
X > 3,
P(f(X)) > eyloglogX

where ¢,y > 0 is an effectively computable constant depending only on f.
By using a result of Baker on diophantine equations, Keates [6]
rpoved Theorem 8 for polynomials of degree two and three. The proof
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of Baker and SprindZuk for Theorem 8 depends on p-adic versions of
inequalities on linear forms in logarithms. We remark that it is easy
to deduce Theorem 8 from Lemma 1.

5. A property U holds for ‘almost all’ primes if given ¢ > 0, there
exists 2, > 0 depending only on ¢ such that for every « > 2,, the number
of primes p < # for which the property U does not hold is at most ex/logx.
We shall prove that for almost all primes p,

P(2*—1) _ _(logp)*
P (loglogp)®”

(12)

In fact we shall prove that
THEOREM 9. Given ¢ > 0, there exist positive constants n, and c¢;; de-
pending only on & such that for every n = n,, the number of primes p between n

and 2n for which
P(2%-1)

(13) — < c(

logp \*
p b

loglogp
is at most en/logn.

It is easy to see that the inequality (12) for ‘almost all’ primes p
follows from Theorem 9.

Proof of Theorem 9. We shall assume that n, is a large positive
constant depending only on e. Set '

r = [enflogn]+1.
Assume that there are + primes pq, ..., p, between # and 2» satisfying
PEF—1) . ( log p;
Py loglogp;

2
(14) ) (6 =1,...,7).

By Lemma 2,
log p; logn

2 (9P —1) >0 —att s 2

ol )= loglogp; ~  loglogn
for every ¢ = 1,...,#. Observe that for distinct 7, j (1 <4, j<v), the
prime factors of 2%/ —1 and 2% —1 are distinct. This is because if g is
a prime number and ¢ divides both 2% —1 and 2% —1, then ¢ = 1 (mod p;)
and ¢ =1 (mod p;). Therefore ¢ =1 (mod p;p;). Since p,;p; > n? the
inequality {14) is contradicted. Hence

r

logn
(15) Zco(i)pi—l) > or —2" - g8

r .
loglogn loglogn

=1
Denote by
P = maxP (2% —1).

I<isr
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If a prime number ¢ divides 2#¢—1 for some ¢ =1, ...,r, then

() ¢<P.
(ii) ¢ —1 = ap,; with an integer a.
(iii) 1 < e < (logn)z

By Brun’s Sieve method, we get

r

! . loglogn
He 2,0 D <P o

i=1
for some constant ¢;4 > 0. (For this, see page 207 of a paper of P. Erdos:
On the normal number of prime factors of p —1 and some related problems
concerwing Euler g-function, The Quaterly Journ. of Math. 6 (1935), pp.
203-213.) Comparing (15) and (16), we obtain
logn \?
P> _—
= mh ( loglogn ) ?
for some positive constant ¢,; depending only on & Observe that the
primes P4, ..., p, lie between n and 2n. Now the theorem follows im-
mediately.
logloglog
Remark. In fact the inequality (16) with ¢, P —éao—a)—g—n— is valid.
gn
For this, one can refer to the above mentioned paper of Frdos. In view
of this, the Theorem 9 holds with
P27 —1) (logp)®
P * (loglogp) (logloglogp)
in place of the inequality (13).
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