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INTRODUCTION

lhefollowing problem was raised by H .-J . Stoss [31 in connection with certain questions related

the complexity of Boolean functions . An acyclic directed graph G is said to have property
plpl,n) if for any set X of m vertices of G. there is a directed path of length n in G which does

ptintersect X. Let f (m, n ) denote the minimum number of edges a graph with property P(m, n )

un have . The problem is to estimate f01% n ) .
Ia this paper we shall restrict ourselves to the case m = n . We shall prove

cin logn /log logn <f(n.n)<c,n logn

	

(1)

ivbtre c, c 2 , . . . , will hereafter denote suitable positive constants) . In fact, the graph we
construct in order to establish the upper bound on f (n, n ) in (1) will have just c a n vertices . In this
case the upper bound in (1) is essentially best possible since it will also be shown that for c,
sdciently large, if a graph on c,n vertices has property P(n, n ) then it must have at least
r,n log n edges .

A PRELIMINARY LENINIA

In order to establish the upper bound in (I) we first need the following result .
Lemma . For all 5 > 0 there exists c = c (6) such that for all t sufficiently large, there exists a

bipartite graph B = B(6 t) with vertex sets A and A' so that :

(i) JA S=!A' ;=t :
(ii) B has at most c (6 )t edges ;
(iii) If X C A, X' C A' with ~Xj ? St, '~X'I > dt then (X, X') = {{x, x', : xEX, x' EX'} contains an

edge of B.
proof: We use a simple probabilistic argument to show the existence of B . Form a bipartite

graph Bon the vertex sets A and A' with +A i= IA's = t by selecting for each aEA a random
subset B(a) C A' of cardinality d = d(3) (to be specified later) . Call B "bad" if there exists
XgA, X'C A', with IXI >- 5t,',X'J > 6t, so that (X, X') contains no edge of B. For fixed X and
X', the probability that B is bad because of these two subsets is at most

1(1
d
Ö)t\°' /t)('-sn/Cd/ .

Hence, the total probability that B is bad is at most

(5't) 2 « ' d'1 &' (d
A simple computation shows that if d is chosen suitably large, for example, so that

(1 - 5 )dő < 114,
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then for t sufficiently large (e .g ., t > d15) - this probability is less than 1, and so, a graph
B =B(5 ; t) must exist which satisfies the requirements of the lemma .

CONSTRUCTION OF G

The next step in the proof of (1) is the construction of the directed graph G . For large n,
G = G(n) will have as its vertex set V = {0, 1, . . . , 2" - 1} . If v and m are positive integers, then
D. (m) will denote the set {v, v + 1, . . . , v + m - I} n v. Similarly, D*(m) will denote the set
{v, v - I ' . . . , v - m + 1} n V. In general, E,, E2, . . . , will denote suitably chosen fixed positive
constants to be specified later . The edge set E of G is formed as follows :

(i) For veV, the pairs (v,x), xeD,. .,(4n), are in E ;
(ü) For each t with n /2 :5 2' < 2", and each i as specified below a copy of B (E, ; 2') is formed

between the vertex sets A = D-.2'(2') and A' = D(_,;).2,(2'), 0 :5 m < 2"', where i = 10
(or if i cannot assume the value 14 because (m + 10)2' > 2", then it ranges from I to 2" -' - m) . All
edges are directed from x to y with x < y.

An elementary calculation shows that

THE UPPER BOUND

Theorem 1 . For a suitable E > 0, G (n) has property P (E . 2", E . 2") f or all sufficiently large n .
Proof : The theorem will be proved by a sequence of claims. First we show that G(n) shares

with the graphs B(E ; t) the following property .
Claim l . If m ? 2n and X C D.Y (m), X' C Dx-„, (m), satisfy JXJ >- E2m, IX'J? E 2nt, then

[X, X'] _ {(x, x') :XEX, x'EX'} contains an edge of G(n ) .
Proof of Claim : Let 2' s m /2 < 2"' . Thus, m14 < 2' so at most five of the intervals D,_ 2 =(2')

intersect D. (m) and at most five of them intersect D,,- (m) . Since JXJ >- e 2m then some Dr . 2 =(2')
and D, , .2'(2) have

Thus, there are at most

JE1 < c bn2" .

ID, .2' (2') n Xj >_ E 2m /5, ID,- .2 , ( 2') n X'J >_ E 2m 15 .

	

(3)

But we must have Ir' - r~ < 10 so that by the construction of G(n) there is a copy of B(E l .2')
between D,.2=(2') and X- 2 '(2') . Thus, if 1-215>e, and rn?2' then the property of B(E, ; 2')
guaranteed by the Lemma implies that [X, X'] contains an edge of G(n) provided that t is
sufficiently large (which is guaranteed by choosing n large enough) . This proves the claim .

Next, let us choose an arbitrary fixed set X of vertices with IXl, s E . 2" . The vertices in X will
be referred to as the marked vertices of G ; the remaining vertices of G will be called the
unmarked vertices of G.

Let us call an unmarked vertex yeV bad if for some m >- 1 either at least cam vertices in
Dy (m) are marked or at least E3m vertices in D*(m) are marked. Otherwise, an unmarked vertex
of G is called good .

Claim 2 . There are at most E,2" bad vertices .
Proof of Claim : Let y, denote the least unmarked vertex of G (if it exists) for which for some

m, ? l, at least E3m, vertices in D,,(m,) are marked . In general, if y	yk and m,, . . . , Ink have
been defined, lei ykI, be the least unmarked vertex of G following yk + Mk -1 (if it exists) for
which for some mk, ? 1 at least E3mk+, vertices in D,,,y,(mk+,) are marked. We continue this
process until it no longer can be applied, so that, say, y	ys and m,,.. . . , ms have been
defined. Similarly, let y* denote the greatest unmarked vertex (if it exists) for which for some
m t ? 1, at least E 3m * vertices in D * i (m *)are marked, etc. In this way, we define y*,.. . , y*, . and
m *,

	

M * 	 .
It follows from the preceding construction and the definition of a bad vertex that all bad

vertices are contained in the set

Y= U D,.k (m k ) U U D*t.(m t)

iI'f`-Y-mk+Ym*
k=1

	

k=1
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ád vertices . However, by our construction there are at least (E 3/2)M marked vertices in Y. Since
by hypothesis there are at most E . 2" marked vertices in V then we have

(E 3I2)M < E .2",

M < ( 2E/E3)2 ' < E42 n ,

which proves the claim .
For an unmarked vertex x, let P,(m) denote the set of all unmarked vertices in D,(m) which

an be reached from x by directed paths which contain only unmarked vertices .

Claim 3 . If x is a good vertex and jD,(m)J = m then

I P, (m )i > E,tn

	

(4)

Proof of Claim : If in <_ 4n then since x is good, at least (1 - 63) 01 vertices in D,(m) are
unmarked and x has edges directly to all of them . Suppose m > 4n . Let m' denote [m /2) . Since
pm')l =m' then by induction JP, (m')i > Esm' . Since x is good then at most E 3m vertices in

D,(m) are marked . Hence, at most E a rn vertices in D, - , (m') C A(m) are marked . Since m' >_ 2n
anj i, > e, then there are edges from P x (rn') to at least (1- E2)m ' vertices in Dx _- (m') . But at most
E,m<3E3m' Vertices in Ds ~m (rn') are marked. Hence, P,(m') must have edges to at least
(I-eZ -3E3)m' unmarked vertices in D- , (m') . Since I - EZ- 3E3> 3E 5 then

1Px (m)l > 3E5m' > E S m .

The claim now follows by induction .
Inexactly the same way if follows that if P *(m) denotes the set of all 'unmarked vertices in

p,(m) which are connected to the unmarked vertex x by a directed path containing only
unmarked vertices, and .r is a good vertex and D *(M) = in, then

P*(m )~ > E sm,

	

(4 )

Claim 4. Let x and x' be good vertices with x < x' . Then ,r' EP, (2") .

Proof : If x'- x <_ 4n then the claim is immediate since by construction there is an edge from x

tox' . Assume x'- x > 4n . Let y = [(x + x')/21 and let m = y - x + L Consider the intervals A (m)

and Dt (m) . Either they are adjacent or they have the single element y in common . Since x and x'
are good then by (4) and (4')

!Px (m )i > Esm, ~P * (m )~ > E Srn .

	

(5)

Since Es > EZ then by Claim l, there is an edge in G from a vertex of P x (m) to a vertex of P *,,(m) .
Thus, there is a directed path from x to .r' containing no marked vertices and the claim is
proved .

The proof of the theorem is now immediate . By Claim 2 there are at least (I - E4 - E)2' good
vertices in G. By Claim 4 we can form a directed path which contains only unmarked vertices and
which contains all the good vertices (since x' can always be chosen to be the next good vertex
following x) . Since I - E,-E> E then the theorem follows (where it is easily seen how the
appropriate values of Ek and c k can be chosen) .

THE LOWER BOUND

The following result will establish the lower bound in (1) .
Theorem 2 . LetH be an acyclic directed graph with at most c 7n log n/log log n edges where n

is a large fixed integer . Then there is a set of at most n vertices of H which hits every directed
path of length n .

Proof : Let us denote the vertex set of H by V = {1, 2 > . . . , a}. We may assume that all edges
are of the form (i, j) with i < j. For an edge e = (i, j) of H, let length (e) be defined to be j - i.



3 68

	

P. ERDÓS et aL

Partition the edges of H into classes Co, C	C, where

Ck ={e :24' t « " « n <length(e)<24(k+ploglogn }

and r = [log v /4 log log n ] .
Since H has at least c gn log n /log log n edges then it follows that v > csn" and

r a c, o log n /log log n . Hence some class C° with 0 :5 a < r has at most c 11 n elements. Let us
delete all vertices in H incident to any of the edges in C° . Furthermore, we also delete those
vertices x E V which satisfy

0 x - m -2 4a log log n (1+22 log log n ) < 24a log log a

for some integer m >_ 0 . This latter step removes at most

	 2	
G, log log n _ 1 v = 0(n)

11

vertices, since v <_ 2c,n log n /log log n . Hence we have deleted at most c l2n vertices altogether .
However, any directed path remaining has at most

/2 (4a+2) log log rs _ 24a log log n`
24(a+1)loglogn

	

U =0(n)

(4a+2) log log nedges, since we cannot go more than 2

	

- 2 4a log log n steps without using an edge whose
length exceeds 2 4a 1 .191.g

" ; and the length of such an edge actually exceeds 24`°+`)'°g'°g ". This proves
the theorem .

By using a different partition of the edges of H, namely, into the classes Có, . . . , C ; • where

Ck ={e : 2` 1,k <_ length (e) < 2`1,(k+')}

for a suitable constant ci3, we can establish the following result.
Theorem 3 . If c 14 is sufficiently large then any graph G on c 1 4n vertices having property

P(n, n) must have at least c, 5n log n edges .
The graphs G(n) used in Theorem 1 show that the result in Theorem 3 is to within constant

factors best possible .

SOME RELATED QUESTIONS

We now consider several problems for ordinary (undirected) graphs . Let F,(n, n) (resp .,
F (n, n)) denote the smallest integer for which there is a graph with F e (n, n) edges so that the
deletion of any n of its vertices there still remains a connected component of n edges (resp .,
vertices). We shall prove by probabilistic methods that

F(n,n)< c16n,F(n,n)<crn .

	

(6)

The method we use is the same as that in the work of Erdös and Renyi[1], [2] . It turns out that
almost all graphs have the desired property .

Theorem 4. For every a >0 there is a c = c(e) so that all but 0~( (2Zgraphs G with
cn

(2+ e)n vertices and en edges have the property that after the omission of any n of its vertices, a
connected component of at least n vertices remains .

Proof : It suffices to show that if n vertices are omitted and the remaining n(1 + e) vertices are
split into two classes S, and S 2 with IS11 ? En, S,J ? en, then there is at least one edge joining a
vertex of S, to a vertex of S2 .

Consider a random graph G on (2+e)n vertices and cn edges (where c will be specified

later) . There are ((2 + e )n\ ways that n vertices of G can be deleted . The remaining n (1 + e) pointsJn
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p nbe split into two sets S ; and S2 in at most 2"' ' ways. Thus, the total number of splittings
iiolost

MnS, and S,_ there are at least en' potential edges . The probability that none of these edges

Ily occurs in G is less than { I - (~ `cE)n
I

Ery . Thus, if c is chosen so that

p,~xthen we easily see that almost all graphs cannot be split in such a way .
iate

yior c large enough, e .g ., c > 18(e ~ E -' ),

dtWWA Vol. i, No. 314---H

((2+
E)n)2""- ' >

	

< 2 3"-
"

n

n
.~3(!-e)n

	

C1
(2~E))

1
_
(2+

c
e)n)

e E`icz-<"n < e-"""'

--~ 0

gi"l holds . This proves the theorem .
íhzother half of (6) is proved in a similar way . It would be interesting to determine the best

%ole value of c but this does seem to be too easy .
Wt mention here the undirected analogue of (1) . Let g(n, n ) denote the smallest integer for

;hithere is an undirected graph of g(n, n) edges so that if we omit any n of its vertices then
rralsiays remains a path of length n . We believe

g(n, n), . g(n,
n) ~0

n

	

n log n

(7)

,r-cc and hope to return to this question in finite time .
,krelated question is the following: Consider random graphs on n vertices and Cn edges . Is it
-rhatfor large C almost all of these graphs have a path of length n(1 - e)? It is known[4] that
cost all graphs on n vertices and (I/'- + e) n log n edges are Hamiltonian .
itispossíble to introduce another parameter into these questions . Let Fz (t ; n, n) denote the
nest integer for which there is a graph with t vertices and F. (t ; n, n) edges having the
voerty that if any n vertices are deleted there still remains a connected component with at least
,vortices .If t(n ~c >2 then F,(t ; n, n)Jn-A(c) where A(c)-roc as c-2. (The behavior of

it ;n .n)(n is similar) . We would also omit edges instead of vertices but leave the formulation
(these questions to the reader.
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