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On Asymptotic Properties of Aliquot Sequences

By P. Erdős

Abstract. Put s( l )(n) = a(n) - n, a(n) = E d 1 nd. sk(n) = s(1)(s(k-1)(n)). In this note we
prove that for every k the density of integers satisfying

sk(n) = (1 + r(l))n((c(n) - n)/n)k

is 1 . Several unsolved problems are stated .

Denote by a(n) the sum of the divisors of n . Define

so (n) = n

	

sk+ 1(n) = a(sk(n)) _ 5k(n)

Catalan and Dickson conjectured that the sequence s k (n), k = 1, 2, . . . , is always
bounded, i .e . either s k(n) = I for some k or the sequence becomes periodic . It is a
curious fact for which nobody seems to have an explanation that relatively few cycles
of size greater than two have been found and none of size three . The Lehmers, and
Guy and Selfridge, made extensive numerical investigations . As one consequence of
their work, the Catalan-Dickson conjecture is now verified for n < 276 . Guy and
Selfridge have various convincing heuristic arguments which seem to indicate that the
Catalan-Dickson conjecture is in fact false . The nicest way of disproving the Catalan-
Dickson conjecture would be to find an n so that for every k,

sk(n) > sk-l (n) .

It seems likely that such an n does not exist, but there does not seem to be much
hope of deciding this question .

H. W. Lenstra proved that for every k there is an m so that (s 1 (m) will for
simplicity be denoted by s(m))

(2)

	

s°(m) < s(m) < . . . < s k (m) .

As far as I know, the proof of Lenstra is unpublished; and since it is very short, I
give his proof here :

Let pi be the ith prime (p, = 2) . It is easy to construct a sequence (t i) i-= 1 of
natural numbers ti with the property that

p;
i+ I Io(1 i+11) for i > 1 and t l = 2 (define for instance

(~`)

	

t-+1
(~,

t l = 2, ti+I = 0(P

	

(pi+I - 1)) for i > 1, where 0 is
Euler's 0-function) .
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We define for l > 1 : A I = ( m I m natural number and p,' Jim for 1 < i < 1} .
Here p' II n means pa I n and p'+ 1 { n . Then

(**)

	

for m E A l , t > 2, we have s(m) > m, and s(m) E A,_1 .

Proof of (**) . From I > 2 it follows that 121 m, hence s(m) > m . Furthermore,
m E A l , hence m = pit

	

p~'B with (B, m/B) = 1 and s(m) = a(m) - m =
a(p11 )

	

a(pi')a(B) - p11 . . . p tlB . Now for 1 < i < 1 - 1 we have pl' Il m and (by
use of (*)) pÍl+ 1 I a(p t+ ,) I a(m) which implies p t ' I I s(m) ; conclusion : s(m) E At-, •

Repeated application of (**) yields m < s(m) < . . . < s'-1(m) (EA,) for
m E A t . Q.E.D.

In the present note we prove the following sharper result :
THEOREM 1 . For every k and 5 > 0 and for all n except a sequence of density 0

(3)

	

(1 - 5vz ~
s(n)

) t < s'(n) < (1 + 5)n ((n))
t ,

	

1 < i < k.

Before we prove our theorem we make a few remarks . First of all, since s(n)/n
> 7/5 for all n - 0(30), the lower bound of (3) clearly strengthens (2) .

It would be very desirable to strengthen Theorem 1 by showing that (3) remains
true if k tends to infinity (not too slowly) together with n, e .g . for k = (log n)E . I
do not see how this can be done .

Guy and Selfridge have fairly convincing heuristic arguments that for infinitely
many values of m, (2) holds for k < (log I see no way of proving this, but
the problem does not seem to be completely hopeless .

The lower bound in Theorem 1 we will prove in full detail ; we will only outline
the complicated proof of the upper bound .

Before we start our proof we make a few simple remarks which we will need in
our proof. Let S 1 , S 2 , . . . , Sk be k sets of primes and assume that for each j,

1
(4)

	

EI p = W.p

Then it easily follows from the sieve of Eratosthenes that almost all integers (i .e . all
integers if we neglect a sequence of density 0) have a prime factor py E Si . This result
is well known and we leave the simple proof to the reader .

LEMMA 1 . Let t and k be integers . Then almost all integers n have k prime
factors q 1 , . . . , qk satisfying

q 1 = - 1 (mod t),

	

qj _- - 1 (mod q~1 ),

	

1 < j k - 1 .

The lemma follows immediately from the previous remark and the classical
theorem of Dirichlet . Denote by S 1 the set of primes satisfying p, =- - 1 (mod t)
and Si is the set of primes pi =_ - 1 (mod pl 1 ) where pá_, E Si . The theorem of
Dirichlet implies that (4) is satisfied ; thus our lemma follows .

Define fl (n) = II

	

pa.
p Ilrt ;pZt

LEMMA 2. For every k and 1 and almost all n,

(5)

	

fl (n) = fl(s° (n)) for i < k.
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We shall show that for every n > 0 and x > x o (I7) the number of integers n < x
for which (5) does not hold is less than r?x . Choose u = u(-q, 1) so large that u o > 1
and so that for every x > x o(r7) there are fewer than x17/2 integers n < x which are
divisible by a prime power p' > u with a > 1 . This clearly can be done by choosing u so

large that

Now choose L = u!; then

(6)

1

	

,7
p >u ;a> 1 p

fr(n)1 L

for all n < x except the at most 77x/2 integers excluded above .

Put t = L 2 in Lemma 1 ; then p2 fin, 1 < i < k, and hence by Lemma 1,

k-1
(7)

	

s(n) = o(n) - n =- 0 mod rj pi
i=1

But

(8)

	

s(n) 0 (mod p~),

	

1 < j < k - 1,

since o(n) `-- 0 (mod L2 Ill=i p~ ) . Also,

(9)

	

fi(s(n)) = fr(n),

since if p' 11 n, p < I then p2l
I Q(n) by a(n) _- 0 (mod L 2 ) . (By (6), p' I t .)

The same argument gives for every i, 1 < i < k,

1-i- I
(7)

	

si+ 1(n) = c(i(n)) - s i(n) = 0

	

mod

	

pi ,
i=1

(8)

	

si+ 1(n) 0 (mod p~ ),

	

1 < j < k - i - 1,

	

o(s`(n)) = 0

and

(9')

	

fi(st+ 1
(n)) = fl(si (n)) = fi(n),

which proves (5) and Lemma 2 .

Write

o r(n) _

		

n

dlf1(n) d .
LEMMA 3. For every e and 77 and I > 1 0 (e, 77) the number of integers n < x for

which ar(n) > (1 - e)o(n) is greater than (1 - n)x .
We evidently have

	

2

	

2
(10)

	

F (o(n) - ar(n)) <

	

d < E x2 < 1 .
n=1

	

d>1 n<x ;n=0(modd)

	

d>i d

If there would be 17x integers satisfying or(n) < (1 - e)a(n), we clearly would have

(I I)

	

~ (o(n) - oi(n)) > e

	

t > 617
X

	

77X

1

	

22 .
t= 1

(mod L 2 ),



644 P. ERDŐS

(10) contradicts (I1) for I > 2/Erl 2 , which proves Lemma 3 .
From Lemmas 2 and 3 we obtain that for all but nx + o(x)

have that (5) holds and

(12)

	

a,(n) > (1 - e)Q(n) .

From (5) and (12) we have for every 1 < i < k,

(13)

	

a(si (n)) >, o,(s'(n)) > (1 - e)si(n)a(n)/n,

integers n < x we

or

(14)

	

si+1 (n) = a(s i(n)) - s=(n) > (1 - E)si(n)
Q(n	

n-
	 n = (1 e)s (n)

	

.

From (13) and (14) we immediately obtain that for every i < k,

si+1 (n ) > ( I _ e)i+i
((nn))

	

n >(I -5)(sn ) t+1
n if e < e(S),

which completes the proof of the lower bound of (3) . It would not be difficult to
prove that the lower bound in (3) is valid for k < log,n where log,,n is the r-fold
iterated logarithm (r > 2), but I do not at present see how to get any reasonable bound
for k .

With a little more trouble I can prove that if we neglect a sequence of density
0, then

( 15)

	

fl (n) = fi(s(n))

holds for all t < log log n, and that this is no longer true for 1 = (log log n), +e I do
not give the details .

Now I outline the proof of the upper bound of (3) . We restrict ourselves to
outlining the proof that for almost ad integers n,

a(s(n))/s(n) < (1 + e)a(n)/n .

The proof is similar for i > 1 .
In view of Lemma 2 (or (13)) we only have to show that the contribution of the

large primes to a(s(n))/s(n) is negligible . This statement easily follows from the
LEMMA 4 . To every e > 0 there is an I so that for all x,

X

	

1 < ex .

=1 p 1s(~p>t p

Unfortunately, I have at present only a very messy proof of the lemma and this is the
reason that I suppress it. I am fairly sure that an elegant and simple proof exists .

Finally I state without proof a few related results . Denote by f(n) the number of
p I n for which there is another prime q In with q = 1 (mod p). Then for almost all
integers, f (n) _ (1 + o(1))log log log log n . The reason for this weird result is that pIn
"usually" has the above property if p < log log n . Similarly, if F(n) denotes the number
of p In for which there is a d I n satisfying d = 1 (mod p), then for almost all n, F(n) _

(1 + o(1))logloglog n .
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Denote by g(n) the largest r for which there is a sequence of prime factors p i of

n satisfying pi+ I - 1 (mod pi ), 1 < i < r, and by G(n) the largest s for which there
is a sequence of divisors d i , 1 < i < s of n satisfying di+ I =- 1 (mod di), 1 < i < s .
Clearly G(n) > g(n). By the method used in proving Lemma 1 it easily follows that

for almost all n, g(n) --~ ~ . On the other hand, g(n) and G(n) tend to infinity very

slowly, in fact
x

X
E G(n) = o(log r x)
n=1

for every r where logrx denotes the r times iterated logarithm .
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