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1. Let A = {a,,a,,...} (where ¢, =0<a,<...<@,<...) be an
infinite sequence of non-negative integers. The sequence of numbers,
which can be written in the form a; +a;,+... +a;,, is denoted by h4
(for h =1,2,...). Furthermore, let A* = {a¥, af, ..., ak, ...} (for
EF=1,2,...).

If there exists a number & such that

@) RA ={0,1,2,.0,m,...}

holds then A4 is called a basis (more exactly: an additive basis of finite
order), and the least %, satisfying (1), is called the order of the basis A.

F. Dress raised the problem whether there existed sequences B,
C such that B is a basis but B® is not a basis, while on the other hand,
C is not a basis but C* is a basis?

The purpose of this paper is to construct such sequences B, C.

In the second section, we shall give two lemmas implying that a
sequence is not a basis; it should be noticed that the basic idea of the
two criteria is the same one: if a sequence A is such that for some ir-
rational number a (resp. for an infinity of convenient rationals «) the se-
quence aA = {aa,, ad,, ...} is badly distributed mod 1, then A is not
a basis. Note that one can find a larger list of similar criteria in Stéhr [3].

Both criteria may be used to construct sequences B and ¢ with
the required properties, but we shall use the “analytic’ criterion (Lemma 2)
in the third section, in order to construct the sequence B since it gives
a fairly explicit result, and the ‘“‘arithmetic” criterion (Lemma 1) in the
fourth section since the construction of the sequence C is altogether el-
ementary.

For a real number #, we shall write: e¢(0) = exp(2in0), {6} for the
fractional part of 6, and ||0|| = inf({0}, 1 —{0}).

One more notation:




122 J. M. Deshouillers, P. Erdos and A. Sarkézi

Let a, m be integers, m > 0. The integer #, uniquely determined
by the conditions
& = r (mod m),

HRENE

(i.e. the absolute least residue of » modulo m), will be denoted by r(a, m).
Clearly, for any non-negative integer ¢ and any positive integer m

(2) [rla,m) <a for a=0

holds, furthermore, for any integers a, b, m (m > 0),

(3) r(atb, m)| < [r(a, m)|+[r(b, m)|
and
(4) Ir(@—b, m)| = [r{a, m)|—|r(b, m)|.

The last definition: let 4 be a sequence of non-negative integers,
m be a positive integer, n, & be non-negative real numbers. 4 is said to
have property P(n,e m) if aed, a=n imply that [r(a, m)| < em.

2. In this section, we are going to prove two lemmas that we need
in the construction of both sequences B and C.

LevMA 1. Let A be a given sequence of non-negative integers. Let us
suppose that there ewists an infinite sequence P, < P, < ... < pp<... of
natural numbers greater than one, and an infinite sequence £y, oy «nvy &y +on
of positive real numbers with

(5) lim ¢, =0
k—-too
such that, for some infinite sequence ny, ny, ..., Ny, ... of non-negative real

numbers, A has property P(ny, &, pi) for k = 1,2, ... Then A is not a basis.

Proof. Let us argue indirectly and suppose that there exists a positive
integer ! for which

(6) 1A ={0,1,2,...,n,...}.

By (5), clearly, there exists a subsequence p; < p; <...<py, of
the sequence p,, Py, ... Pg,y --. such that

1

(7) 4<g for §=1,2,...,01+1
and
p‘j—[—l y
(8) T>max{nil,niz,...,n,,j} for j=1,2,...,1.
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(To find such a subsequence p; , P;,, ooy Pipy all we have to do is to
choose i;,, to be sufficiently large depending on 4,, %, ..., i;, after begin-
ning with an arbitrary 4, such that e; <1/8l.)

Let m be any integer satisfying

Py ;
(9) romyp)l = | 52| for G =1,2,..,0141.

(6) implies the existence of integers a, a,, ..., @&, such that
(10) m =a;+a,+...+q, and agjeA for j=1,2,...,1.

We may suppose that

(11) a"l 2 a£2 ; e } I‘I'gg.

We shall prove by induction that, for j = 0,1,2,...,1,

i

Pi;_
(12) m— Y a, > —fsfi.

v=1
In this way, we obtain a contradiction. Namely, the difference on the
left-hand side of (12) is positive alse for j =1 by (12), while, on the
other hand, the same difference must be equal to 0 by (10). Thus to
complete the proof, we have to prove (12).
For j = 0, (12) asserts that

Piyy
= %

m >

Indeed, by (2) and (9),

P Pi ¥
I+1 - I+1 - 1+1 .

m = [r(m, Pf_:_.,_.l” =[ 2 4 3

Let us suppose now that (12) holds for some j (0 <j<1—1); we
have to show that this implies that (12) holds also for j+1, ie.

i+l p%

(13) m— Z‘ a, >

=]

(10) and (12) imply that
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Thus, by (11),
1
a,

(14) 4, = max @ > = v Py p"""“.
ti+1 vejtr Lol l—] 8(1—j)~ 8
(8), (11) and (14) give that
(15) 8, >0,>...> P
‘l/atzf.../a,j+]> 81 >‘ﬂr‘£ j

By our assumption, A has property P(nqﬁ’_, Ty j); thus (7) and (15)
imply that

pil—-j "
(16) (@, Pi!_j)] < &y ;Py_; < L_SI_, v=1,...,53—1.
We obtain from (2), (3), (4), (9), (10) and (16) that

i+1 itl

m— 3 > |r(m— 3 a, py_)
pe=]

A pii—j ¥ _pl';_j
> Ir(m, py_)l— D) Ir(@y,, pq_JI > —(+1) —
¥=1

Py, 3 Piy_; _ 13«:;_,'

4 8l 8

Thus (13) and also Lemma 1 is proved.

LuMMA 2. Let A be a sequence of non-negative integers, and let us sup-
pose that there ewists an irrational number a such that the set of the fractional
parts of the elements aa (where a belongs to A) has only a finite number
of limit points.

Then A is not a basis.

Proof. Let @,, z,, ..., #, be the set of limit points of the set of the
fractional parts of the aa’s, and let £ be a positive real number; we write:

(17) A, = {acd| Yje[1, k]: llaa—a;| > &},

(18) A,; ={0ed]| llaa—zll<e} for j=1,...,k,
k

(19) A, = A,
1

(i) By (17), (18) and (19) it is clear that A is the union of A, and A,.
By hypothesis, 4. is a finite set, and the sequence 4, has upper asymptotic
density
dA, =limsup*{a < N| aed}/N

N-—ro0
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which does not exceed 2¢k, because the sequence (an), is equidistributed
mod 1. This is true for all g so that
dA = 0.

(ii) Suppose now that, for some positive integer &, dhA = 0. Clearly,
we have
(20) (h+1)A = (A, +hA)U(h+1)A,.

The sequence A -+ hA is a finite union of sequences which are obtained
by translating h4, and so we have
(21) d(A,+hA) = 0.

Let B, be the set of the fractional parts of all the sums ; ey -
E, is a finite set with at most k" elements. The 3equence (h+1)A4, 15‘.
included in the set of the integers m for which there exists a # in E, such
that:
llam — || < (A+1)e.

From the equidistribution mod 1 of the sequence (am),., we get

(22) d((h+1)4,) < 25" (R +1)e.
From (20), (21) and (22) we deduce:
(23) d((h+1)4) < 28D (h 4 1)s.

Since (23) is true for all ¢, d((h+1)4) equals 0

(ili) By induction, we see that for every positive integer h, the se
quence hA has a zero upper asymptotic density, and so A cannot be
a basis.

(Note that we shall use only a special case of this lemma, where
k=1 and », =0, ie. lim{aa} =0.)

Bie)

3. In this section, we shall construct a sequence B having the desired
propertieg. From now on, we write p = (1 +V’5)/2. We need two more
lemmas:

LeMMA 3. Let P be a positive integer, h a rational integer with absolute
value less than 0.75 P, w and v two arbitrary integers and a a real number;
we have:

P
(24) } _): e(ohn® + an) ‘ < TPY2(1 +1hM)
n=1
and
w4+ P v+F
(25} LYY e@otmany) | TP ).
ny=u+l no=1v+1

2 — Acta Arithmetica XXX.2
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Proof. (24) is obtained by combining the so-called fundamental
inequality of van der Corput (ef. [1]), and Lemma 8a of Vinogradov
(cf. [4], p. 24).

(25) is a trivial corollary of Lemma 10b of Vinogradov (cf. [4], p. 29).

LeMMA 4 (J. F. Koksma, cf. [2]). Let a and b be two positive integers
(a < b), and 0 a positive real number not exceeding 1, M an integer greater
than 200, f,, fo, fa three functions from [a, b[ X [a, b[ into R; we write:

S ZS(“?b: 6) = #{(ﬂnﬂ«s)l agﬂ‘f<bi {ﬁ(?ll,ﬂg)}gﬁ (.7 =13253)}!
307 ¢ Ak #£0,
L P if h=0,

b—1 b-1 3

7= 3|3 3 e nin no))| oapapiys

hysho,hy my=mang=a  j=I

where the first summation is taken over the triples (hy, hy, hg) such that:
0<Iyl<M (j=1,2,3) and hi+hi+h; #0.

We have
1200

(26) 8 —63(b—a)? < T+ (b—a)? .
We are now in a position to prove
THEOREM 1. Let

B = [neN| {gn?} <1930~"2), where o = (14+V3)/2;

the sequence B is a basis of order at most 3, whereas B* is not & basis.
Proof. It is clear from Lemma 2 and from the definition of B that B*
is not a basis.
Remark first that all the integers which are less than 3.193!% are
in 3B; thus it suffices to prove that any integer N greater than 2.160'?
is in 3B. Let

(27) 8 = 193N 11
and
(28) P =[¥N/[2].

It suffices to show that there exist two integers n, and n, satisfying
the conditions:

1<n <P, 1l<n<P,
{oni} <6, {emii<B, {o(N—n—ny)?}<6,

since then #,, n, and N —n, —n, are elements of B.
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We shall use Lemma 4 with the following notations:
a:=1, b:=P+1, M:= [P,
fl(”‘ls”z):zé’”ff fo(ny, M) i = Qﬂgr fs(“lyﬂz) := o(N —n; —ny)?
We have to evaluate the sums
(29)  U(hy, by, by) = )j 2 (o(an3 + homl + hy(N —my —ma)?))].
ﬂ]_ lﬂzﬂl

Let us consider three cases:
(i) hy+hy % 0; by (24), we have:

(30)  U(hy, by, hy) < Zl 2 (o(hy+ ho)n} + fny) | < TP (14 (220"

”32-1 ny=

(ii) hy+ k3 # 0; we obtain the same majorization in the same way.
(iii) hy = —hy = —hy; by (25), we have

P P
(1) Ulhyy hayfis) = | 3 3 e(20hs(ny— N)ny— )| < TP*2(1+(2.)").
ﬂl=l ng=1
In order to apply Lemma 4, we require alto the inequality

M 5 M
30\° 30 30
(32) E Py Py Py = 8( _El 7) +24 (k 51’7) +24 k‘: T)

hyhg g
1 30\°
<8 (1 1 ——) < 250000 (Log M)s.

With the notations of Lemma 3, {26) becomes, in view of (29), (30),
(31) and (32),

(33) |8 —6* P2 < TP (1+V2P") 2500004~ (Log P)* +1201P"*.

Since P is greater than 1602, LogP is less than 4.82P"* and (33)
becomes

(34) |18 — 6°P% < 6.16-10° P14 < 7.34-105 N~V P2,
By (27) and (28), we have
(35) 03P > 7.34-106 N~ p2,

Comparing (34) and (35), we see that § is positive, and the proof of
Theorem 1 is now complete.



128 J. M. Deshouillers, P. Erdés and A. S4rkézi

4. In this section, we will construct a sequence C such that C is
not a basis but 02 is a basis (of order at most 6). We need one more lemma.

LEMMA 5. Let p be any odd prime number, a any integer. Then there
exist integers x, ¥, 2 such that

(36) 22+ 92422 = a (mod p?)
and o
(37) r(z, p)| < V3p, Ir(y, )l <V3p, Ir(z,p)| <V3p.

Proof. If p = 3, the lemma is trivial, so we suppose p > 3. Since
p? is congruent to 1 mod 8, we may write

(38) e =rp-+s (mod p?),

where 7, 8 are integers, such that

(39) o0<r<p
and
(40) 1<s<3p, and s not eongruent to 0 or 7TmodS8.

By Legendre’s theorem, there exist non-negative integers b, ¢, d such that
(41) 2424 d? =s.

(40) and (41) imply that

42) 0<b<Vs<V3p, 0<e<Vs<V3p, 0<d<Vs<V3p.

By (40), at least one of the numbers b, ¢, d is positive; we may suppose
that & > 0. Then

1<b<V3p

which implies that (b, p) = 1. Thus also (2b, p) = 1 (p is odd); therefore
there exists an integer » such that

(43) 20b = r (mod p)

holds.
Let

v=vp+b, y=¢ z=d.
Then we obtain from (38), (41) and (43) that

2?4yt +e? = (op+b)2+c24-d? = v2p2 4 20bp + b2 424 d?
= 2p2+2vubp+s =rp+s = a (mod p?),

whence (36) holds.
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Furthermore, by (2) and (42),

Ir(@, p)| = Ir(sp+D, )| = Ir(b, )| << V3p.

The other three inequalities in (37) follow immediately from (2) and
(42). (Clearly we need not put equality signs in (37)).

THEOREM 2. There exists a sequence C such that C is not a basis but C*
18 a basis (of order at most 6).

Proof. Let p, (k =1,2,...) denote the kth odd prime number:
P1 =3, py =5, ps =T, ... Let
(44) ny = 12(P1Ps...px)' for k=1,2,...
Let us define the sequence C in the following way: let

Cn[0,n,] ={0,1,2,..., m}.

If » > n,, then for some positive integer k, n, < n <#,,,. Then neC
holds if and only if

(45) Ir(n, )| <V3p;, for i=1,2,...,k.
By our construction, the sequence ¢ has property P (nk, ]/—3—, p,l.)
Px

for £ =1,2,...; thus ¢ is not a basgis by Lemma 1.

Thus we have to prove only that €* is a basis. We will show that
(7 is a basis of order at most 6, i.e., for any given non-negative integer
m, - there exist integers C,, C,, ..., Cs such that

6
(46) m= 0
j=1
and
(47) Cie€C for j=1,2,...,6.

For m < n,, the existence of such numbers C,, C,, ..., C; is trivial.
Assume next m > n,. Then

(43) My <M< My

for some integer k.
Let us apply Lemma 5 with ¢ =m, p = p, where ¢ =1,2,..., k.
We obtain that, for ¢ =1, 2,..., k, there exist integers wx;, y;,#; such
that
@i +yi+% = m (mod p})
and

(@2, D) < V3psy,  Ir(¥es ) < V3psy,  Ir(2:, 1) < V3p;.
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Let us denote the least non-negative solution of the congruence system
=g (modp}) (i=1,2,...,k);
y =y;(modp;) (i=1,2,...,k);
resp.
z=2z(modp}) (i=1,2,...,k);
by 0i, 0,, resp. C;.
We may now choose 1;, 4,, 4; belonging to {0, 1}, such that:

3

Z (C; +2P1Ps--.Pr)? = m—1 (mod 4).

F=1
Let C; = Cj+4py...p; (j =1,2,3). Then clearly,
(49) 0<0;<2(pyps...pp)? for j=1,2,3.

By the definition of the a,’s,v/s,2’s and Ofs (i =1,2,...,k,
j=1,2,3),

(50) Ci+03+05=m (m‘)d (P1Ds- --Pk)s)

and

(51) (C;, )l < V3p; for j=1,2,3,i=1,2,...k
(44) and (49) give that

(52) 0<C<m for j=1,2,3.

By the construction of the sequence €, (51) and (52) imply that
C;eC  for j=1,2,3.

To complete the proof that C* is a basis of order at most 6, we have
to show that the number

(53) t =m—(0]+C;+03)
can be written in form

(54) t =0+ 03+ 05
where

(55) 0;e0 (j =4,5,8).

We obtain from (44), (48) and (52) that

=m—(C1+034035) < m < myeyy
and
t = m——(Cf+G‘§+O§) > 0 —12(pyps-..p2) = 0,
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thus
(56) 0 << My,

Furthermore, it follows from (50) and the definition of ¢ that ¢
= 0 (mod (p,...p;)). Let
(67) t = q(P1Ps-- - Di)™

By Legendre’s theorem, there exist non-negative integers q,, ¢, qs
such that

(58) ¢ =¢+q+4¢

since { = 1 (mod 4), and so ¢ =1 (mod 4).
Let

C; = @_sPPe---Pr  (J =4,5,6).
Then (57) and (58) give that

[ 6
(39)  D'C} = D (g-sPrPa--- PR = (DaBs--- PG+ G+ G5)
i=s j=4
= g(p1Pe---Pp)* =1
thus (54) holds.
Furthermore, by (56) and (59),

(60) 0< G <VI<t<my; (j =4,5,6)
and clearly,

(61) [7(Ciy )| = |7(gj_sP1P2---Prs Pi)l =0
(j=4,5,6;4=1,2,...,%).

By the construction of the sequence €, (60) and (61) imply (55), and
thus we have proved that O? is a basis of order at most 6.

5. It can be proved by a similar construction that, for any given
positive integer k, there exist sequences D, E such that D is a basis but D*
is not a basis, while E is not a basis but E* is a basis (only the compu-
tation becomes slightly longer). The same idea even could be applied
- oo

to construet a sequence F such that F is a basis but ) F* is not a basis
k=2

(but the construction would. be even more complicated).

Furthermore, we remark that the sequence B constructed by us
was a basis of order at most 3, while ¢* was a basis of order at most 6
(but neither B* nor (' is a basis). We guess that there exist also sequences
G, H such that G is a basis of order 2 but G* is not a basis, while H is not
a basis but H® is a basis of order 4.
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Finally let L be a set of positive integers; is it true that there exists
a sequence A such that A" is a basis if and only if # belongs to L? The
answer is yes if there is only a finite number of integers which do not
lie in L.

Added in proof. The first named author and E. Fouvry proved in a paper
which will appear in the J. London Math. Soc. that for any set L of positive in-
tegers there does exist a sequence A such that A" is a basis if and only if n belongs

to L; it is clear from their proof that there exists also a sequence H which is not
a basis such that H? is a basis of order at most 5.
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