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ON A PROBLEM OF HIRSCHHORN
PauL Erpes anp MikLOS SiMonoviTS

Introduction. Hirschhorn gave the following problem [1]: Let ¢, > 1 be given and
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Is it true that g, =(1+o(1))nlogn?
The background of this problem is that, if p, denotes the nth prime, then the well-known sieve
method gives that the number of integers between a and b which are not divisible by any of
Pi oy Pas 18 approximately

(b~a)g(1—ﬁ:),

The interval (p,, p..,], contains exactly one prime, i.e., exactly one integer not divisible by any
p. (i = n). This suggests that

Pa-1 = Pa =‘_];["(l—%)_l,

We know in this special case by the prime number theorem that g, = (1 + o(1)) n log n. This
shows why we are interested in this particular sequence. (Of course, the argument is oniv a heuristic
one. the sieve method cannot be applied to short intervals and from our point of view (p,. p._.] is too



) (Ga-1— qn)logn — 1
and, consequently,
(3) gs =(1+o(1))nlogn,
so that the conjecture of Hirschhorn is proved.
Remark. We can prove (2) and (3) in two different ways, and the way we shall prove them is the

shorter, more formal one. But just because of this we first give a short heuristic argument why (1)
implies (2).
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Now, r, and g, form a “self-regulating” system in the following sense: if g, were essentially larger
than nlogn for n € (a, b) and the interval (a, b) were long enough, then, by (4) r, should become
much smaller than log n and, by (5), after a while g, would become smaller than n log n. Similarly, if
q. were essentially smaller than nlogn for a long period, then r, would become larger than log n
and, consequently, ¢. also would become larger than n log n. Of course, this argument does not
exclude the possibility that r, and g, are oscillating about logn and alogn respectively, but,
because of (6) the “inertia” of r, is too great, more exactly, r. changes only very slowly and does not
“feel” minor changes in g.. Thus the system {r.,g.} is unable to oscillate.

The exact proof. We introduce two new sequences: §, = nr, and d. = s, — .. Since
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and g, is monotone increasing, (6) can be replaced by the more convenient
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(A) First we need that ¢,/n tends to infinity. A trivial induction gives that g, > n and it is also trivial
that r, is monotone increasing. From the left side of (7) we get
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Further.

q,.=q.+2 n<gi+n—1Dr.<s5.+4qg..
Thus
Fei—ra = (14 0(1) 2
n

This implies that r, = logn — o(log n) and, consequently,
(10) g, =nlogn—o(nlogn).
(B) By (10) s5./g, <2s./nlogn =o(r.). ie., s./¢. = 0(g...— g.), and it follows from (8) that

(1) Sact = S =(1+0(1)(gn. 1= ga).

Since s, and g, tend to infinity, (11) yields

(12) Salgn — 1.

Now, applying (12) to (9) we obtain

(13) Tner = fn = (1+0(1)/n.

Thus

(14) r.=(1+o(1))logn and gq.,=(1+o())nlogn

which proves (2) and (3).
(C) (14) can be improved in the following way: By (12) and (8)

(15) dyoy—d, =1+o0(l),
and hence
(16) d, =n+o(n).
But (16) and (7) give
1 L)
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Thus
(17 r. =logn+(1+o(1)loglogn
and
(18) g, =nlogn+{1+o(1)nloglogn.
Here we used g, = Z{2/ r, +¢, and
(19) ﬁlogf=nlogn-n+0(logn),
20 3 Iog logi=nloglogn + O(nflogn).

(D) Iterating the method of (C) we can improve (17) and (18) in the following way: From (8)
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