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ON A PROBLEM OF HIRSCHHORN

PAUL. ERDCS AND MIKLOS SIMONOVITS

Introduction . Hirschhorn gave the following problem [I] : Let q, > I be given and
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is it true that q„ = (I + 0(1)) n log n?
The background of this problem is that, if pn denotes the nth prime, then the well-known sieve

method gives that the number of integers between a and b which are not divisible by any of
p,, • • p,,, is approximately

(b-a) n(1-I) .

The interval (p,,, p,, .,), contains exactly one prime, i .e ., exactly one integer not divisible by any
p ; (i - n ) . This suggests that

We know in this special case by the prime number theorem that q„ _ (I + o(I )) n log n . This
shows why we are interested in this particular sequence . (Of course, the argument is only a heuristic
one. the sieve method cannot be applied to short intervals and from our point of view (p,, p,-,] is too



so that the conjecture of Hirschhorn is proved .

REMARK . We can prove (2) and (3) in two different ways, and the way we shall prove them is the
shorter, more formal one . But just because of this we first give a
implies (2) .

Let
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Now, . and q" form a "self-regulating" system in the following sense : if q" were essentially larger
than n log n for n E (a, b) and the interval (a, b) were long enough, then, by (4) r" should become
much smaller than log n and, by (5), after a while q" would become smaller than n log n. Similarly, if
q" were essentially smaller than n log n for a long period, then r" would become larger than log n
and, consequently, q" also would become larger than n log n . Of course, this argument does not
exclude the possibility that r" and q" are oscillating about log n and n log n respectively, but,
becaus� of (6) the "inertia" of r" is too great, more exactly, r" changes only very slowly and does not
"feel" minor changes in q Thus the system {r", q"} is unable to oscillate .

The exact proof. We introduce two new sequences : s" = nr„ and d" = s" - q" . Since
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short heuristic argument why (1)

and q" is monotone increasing, (6) can be replaced by the more convenient
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Further by (7)

d" .,-d"=(s"-,-s")-(q" .,-q")=n (r" .,-r")+ „., - r"
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(A) First we need that q, in tends to infinity . A trivial induction gives that q" > n and it is also trivial
that r" is monotone increasing . From the left side of (7) we get

r_,-r" =(1 +o(1))r, =( 1 +0(1))
s"

.
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( 2) (q_ - q-)/tog n -. 1

and, consequently,
(3) q" _ (1 + o(1))n log n,



Further

Thus

n

This implies that r„ = log n - o(log n) and, consequently,
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q„ ? n log n - o(n log n) .

(B) By (10) s„íq„ <2s„ln log n =Mr.), i .e ., s,lq, =o(q-,-q„), and it follows from (8) that

(11)

	

s„.,-s. =(1+o(1))(q„„-q~) .

Since s. and q n tend to infinity, (11) yields

(12)

	

snlq~ > l .

Now, applying (12) to (9) we obtain
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r,,.,-r„ =(1 +0(1))ín .

Thus
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r„=(1+o(1))logn and q.=(1+o(1))nlogn

which proves (2) and (3) .
(C) (14) can be improved in
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But (16) and (7) give

Thus
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Here we used q„

(D) Iterating the

the following way : By (12) and (8)

d. ,-d„=l +0(1),

4 = n ±o(n)+

r„ .,-r„=n+(I+o(1))nlogn+O(1) .

log i = n log n - n + O(log n) .

`_ log log i = n log log n + O(n /log n) .

method of (C) we can improve (17) and (18) in the following
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rn = log it + (1 + 0(1)) log log n

q, = n log n + (I + o (I ))n log log n.

+ q, and

way: From (8)
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