MÉTHODES PROBABILISTES ET COMBINATOIRES EN THÉORIE DES NOMBRES

par

PAUL ERDÖS et JEAN-LOUIS NICOLAS

[Budapest; Limoges]

RÉSUMÉ. — Soit $F(n) = \max_t (\Sigma_{d \mid n, t/2 \le d \le t} 1)$. Les grandes valeurs de la fonction F sont obtenues pour les nombres n F-hautement abondants (i. e. $m < n \Rightarrow F(m) < F(n)$). Soit $d(n) = \Sigma_{d \mid n} 1$. On démontre que, pour un nombre n F-hautement abondant, on a

$$c_1 \frac{d(n)}{\sqrt{\log n \log \log n}} \leqslant F(n) \leqslant c_2 \frac{d(n)}{\sqrt{\log n \log \log n}}.$$

La minoration est obtenue à l'aide du théorème central limite des probabilités, la majoration par des techniques combinatoires basées sur le théorème de Sperner. On utilise également la méthode des « bénéfices » précédemment introduite dans l'étude des nombres hautement composés de RAMANUJAN, et certains problèmes d'optimisation en nombres entiers.

Introduction

Soit *n* un entier positif. On désigne par d(n) le nombre de diviseurs de n, et par $\sigma(n)$ la somme des diviseurs de n. On a ainsi (cf. [11], chap. 16), pour $n = \prod_{i=1}^{k} p_i^{\alpha_i}$,

$$d(n) = \sum_{d \mid n} 1 = \prod_{i=1}^{k} (\alpha_i + 1)$$

et

$$\sigma(n) = \sum_{d \mid n} d = \prod_{i=1}^k \left(\frac{p_i^{\alpha_{i+1}} - 1}{p_i - 1} \right).$$

Nous allons étudier plus précisément les deux fonctions suivantes :

$$g(n) = \max_{1 \le m \le n} \frac{1}{m} \sum_{d \mid n, d \le m} d$$

et

$$F(n) = \max_{t} q_t(n)$$
 avec $q_t(n) = \sum_{d \mid n, 1/2 < d \le t} 1$.

Ces deux fonctions sont liées par les inégalités

(1)
$$\frac{1}{2}F(n) \leqslant g(n) \leqslant 2F(n).$$

On a en effet, pour tout m:

$$g(n) \geqslant \frac{1}{m} \sum_{d \mid n, m/2 < d \leqslant m} d \geqslant \frac{1}{m} \sum_{d \mid n, m/2 < d \leqslant m} \frac{m}{2} = \frac{1}{2} q_m(n),$$

ce qui entraı̂ne $g(n) \ge 1/2 F(n)$; et d'autre part, on a

$$g(n) \geqslant \frac{2}{m} \sum_{d \mid n, d \leqslant m/2} d.$$

Soit m_0 une valeur pour laquelle le maximum est atteint, on a

$$g(n) = \frac{1}{m_0} \sum_{d \mid n, d \leq m_0} d = \frac{1}{m_0} \sum_{d \mid n, d \leq m_0/2} d + \frac{1}{m_0} \sum_{d \mid n, m_0/2 < d \leq m_0} d$$

$$\leq \frac{g(n)}{2} + F(n),$$

d'où l'on tire $g(n) \leq 2 F(n)$.

Remarquons encore que l'on a, pour tout n, $g(n) \ge \sigma(n)/n$, avec égalité lorsque n est une puissance d'un nombre premier. La détermination des entiers n tels que $g(n) = \sigma(n)/n$ n'est pas facile.

Enfin g(n) est une fonction surmultiplicative : si n_1 et n_2 sont premiers entre eux, on a $g(n_1 n_2) \ge g(n_1) g(n_2)$.

En effet, soit

$$\begin{split} g\left(n_{1}\right) &= \frac{1}{m_{1}} \sum_{d \mid n_{1}, d \leqslant m_{1}} d_{1}, \\ g\left(n_{2}\right) &= \frac{1}{m_{2}} \sum_{d_{2} \mid n_{2}, d_{2} \leqslant m_{2}} d_{2}. \end{split}$$

Il vient $g(n_1)$ $g(n_2) = (1/m_1 m_2) \Sigma_{d \in D} d$

Les éléments $d \in D$, divisent $n_1 n_2$ et sont $\leq m_1 m_2$. On a donc

$$g(n_1)g(n_2) \leq \frac{1}{m_1 m_2} \sum_{d \mid n_1 n_2, d \leq m_1 m_2} d \leq g(n_1 n_2).$$

Pour la fonction F, nous avons la proposition suivante :

Proposition 1. — On a, pour tout n, $(\log 2/\log 2 n) d(n) \le F(n) \le d(n)$.

Démonstration. - Soit k l'entier tel que $2^{k-1} \le n < 2^k$. On a

$$k = \left[\frac{\log n}{\log 2}\right] + 1 \leqslant \frac{\log 2n}{\log 2}.$$

Si l'on répartit les d(n) diviseurs de n dans les intervalles $(2^{i-1}, 2_i)$ pour i = 1 à k, un des intervalles contiendra plus de d(n)/k diviseurs.

Nous allons étudier les grandes valeurs que peuvent atteindre les fonctions g et F.

Pour étudier les grandes valeurs que prend une fonction arithmétique f, on définit les nombres f-hautement abondants :

Définition. - Dire que n est f-hautement abondant équivaut à dire

$$m < n \implies f(m) < f(n)$$
.

Lorsque f = d, on trouve les nombres hautement composés de RAMANUJAN (cf. [12] et [16]). Les nombres σ -hautement abondants ont aussi été étudiés (cf. [1]), mais la plupart des techniques ne se généralisent pas aux fonctions non multiplicatives.

On obtient les résultats suivants :

Théorème 1. – On a $\lim_{x\to\infty} (1/x) \Sigma_{n\leq x} F(n) = +\infty$.

THÉORÈME 2. - Si n est un nombre F-hautement abondant, on a

$$c_1 \frac{d(n)}{\sqrt{\log n \log \log n}} \le F(n) \le c_2 \frac{d(n)}{\sqrt{\log n \log \log n}}.$$

THÉORÈME 3. — Soit q un nombre premier et a un entier; il existe n_0 tel que, si n est F-hautement abondant et $n \ge n_0$, alors q^a divise n.

Compte tenu de l'inéga'ité (1) ces résultats s'appliquent aussi à la fonction g. Sous cette forme, ils avaient été esquissés dans [5].

La démonstration du théorème 1 se trouve dans [7] et [13]. Elle utilise le résultat suivant (cf. [9], p. 256, th. 10);

Lemme 1. — Soit d_a la densité supérieure des entiers n ayant un diviseur d vérifiant $a < d \le 2$ a. On a $\lim_{a \to \infty} d_a = 0$.

A partir d'un résultat de P. Erdős [6], on peut montrer que, pour tout ε et a assez grand, on a

$$\frac{1}{(\log a)^{u+a}} \le d_a \le \frac{c}{(\log a)^u \sqrt{\log \log a}},$$

avec $\alpha = 1 - (\log (e \log 2)/\log 2) = 0.086$ (cf. G. Tenenbaum [18]).

Le problème d'une bonne estimation de $\sum_{n \leq x} F(n)$ ne semble pas facile.

L'intérêt du théorème 2 dépend surtout des méthodes utilisées : La minoration est obtenue à l'aide du théorème central limite des probabilités, et la majoration par des techniques combinatoires basées sur le théorème de Sperner.

Dans les théorèmes 2 et 3, on a pu utiliser, pour étudier les nombres F-hautement abondants, la méthode des nombres hautement composés supérieurs de RAMANUJAN et l'étude des « bénéfices » (cf. [16] et [12]) bien que la fonction F ne soit pas multiplicative. Cela a été possible à cause de la proposition 1: les fonctions F et d ne s'écartent pas trop l'une de l'autre.

Dans la démonstration du théorème 2, on considérera d'abord les nombres $n=2.3...p_k$ produits des k-premiers nombres premiers (prop. 3 et 5), puis à l'aide de la méthode des bénéfices (prop. 4), on verra que pour les nombres F-hautement abondants, tout se passe essentiellement de la même façon.

1. Théorème central limité des probabilités

Soit $n = p_1^{a_1} \dots p_k^{a_k}$ un entier et sa décomposition en facteurs premiers. Soit d un diviseur de n. On peut considérer $\log d$ comme une variable aléatoire somme des k variables aléatoires X_i prenant comme valeu ϵ : 0, $\log p_i$, $2 \log p_i$, ..., $\alpha_i \log p_i$ avec égale probabilité. On peut appliquer le théorème central limite des probabilités, pour montrer que, lorsque k tend vers l'infini, la distribution de $\log d$ tend vers la distribution de Gauss. Plus précisément, nous allons appliquer le théorème de Berry-Esseen ([8], t. 2, p. 544) qui donne une évaluation du reste.

Soit $P(\lambda)$ la probabilité qu'un diviseur d de n vérifie :

$$-\lambda \leqslant \frac{\log d - (1/2)\log n}{S(n)} \leqslant \lambda.$$

Soit

(2)
$$A(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\lambda}^{\lambda} \exp(-t^2/2) dt$$

On a

$$|P(\lambda) - A(\lambda)| \leq 12 \frac{\rho(n)}{S^3(n)}.$$

2° SÉRIE - TOME 100 - 1976 - Nº 4

Soit μ_i la moyenne de la variable X_i , S^2 (n) est la variance de la somme

(4)
$$S^{2}(n) = \sum_{i=1}^{k} E(X_{i} - \mu_{i})^{2} = \sum_{i=1}^{k} \frac{\alpha_{i}(\alpha_{i} + 2)}{12} \log^{2} p_{i}.$$

D'autre part, p (n) est le moment du trois'ème ordre

(5)
$$\rho(n) = \sum_{i=1}^{k} E(|X_i - \mu_i|^3) = \sum_{i=1}^{k} \frac{J(\alpha_i) \log^3 p_i}{8},$$

avec

$$J(\alpha) = \frac{\alpha^2 (\alpha + 2)^2}{4(\alpha + 1)}$$
 si α est pair,

$$J(\alpha) = \frac{(\alpha+1)((\alpha+1)^2-2)}{4}$$
 si α est impair.

On rappelle que, pour une variable aléatoire discrète X qui prend des valeurs $(x_t)_{1 \le t \le T}$ avec égale probabilité, l'espérance mathématique de la variable X^m est

$$E(X^m) = \frac{1}{T} \sum_{t=1}^{T} x_t^m.$$

Proposition 2. – Pour tout n entier, et λ réel > 0, on a

$$F(n) \ge \frac{d(n)\log 2}{2\lambda S(n) + \log 2} \left(A(\lambda) - 12 \frac{\rho(n)}{S^3(n)} \right),$$

 $\rho(n)$ et S(n) étant définis par (5) et (4), et $A(\lambda)$ par (2).

Démonstration. — La formule (3) nous dit que le nombre de diviseurs d vérifiant :

$$\frac{1}{2}\log n - \lambda S(n) \le \log d \le \frac{1}{2}\log n + \lambda S(n)$$

est égal à $P(\lambda)$ d(n), et vérifié :

(6)
$$P(\lambda) d(n) \ge d(n) \left(A(\lambda) - \frac{12 \rho(n)}{S^{3}(n)} \right).$$

Si l'on coupe l'intervalle $((1/2) \log n - \lambda S(n), (1/2) \log n + \lambda S(n))$ en sous-intervalles de longueur $\log 2$, il y aura au plus $((2 \lambda S(n)/\log 2) + 1)$ sous-intervalles, et l'un de ces sous-intervalles contiendra plus que $P(\lambda) d(n)/((2 \lambda S(n)/\log 2) + 1)$ valeurs de $\log d$, avec d divisant n.

La proposition résulte alors de l'inégalité (6).

Proposition 3. – Soit $n = 2.3...p_k$ le produit des k premiers nombres premiers. Soit $\eta > 0$ fixé, on α , pour k assez grand

$$F(n) \geqslant \frac{2\log 2}{\sqrt{2\pi}} (1 - \eta) \frac{d(n)}{\sqrt{\log n \log \log n}}.$$

Démonstration. — On applique la proposition précédente. Il faut calculer S(n) et $\rho(n)$.

Soit $\theta(x) = \sum_{p \le x} \log p$ la fonction de Chebichev [Čebyšev] (cf. [11], chap. 22). On a $n = \exp(\theta(p_k))$.

On a d'autre part : $\theta(x) \sim x$ et $p_k \sim k \log k$ (cf. [11], chap. 22), d'où il vient

$$\log n = \theta(p_k) \sim p_k \sim k \log k$$

et

(7)
$$k \sim \frac{\log n}{\log \log n}.$$

On a, d'après (4):

$$S^{2}(n) = \frac{1}{4} \sum_{i=1}^{k} \log^{2} p_{i} = \frac{1}{4} \int_{1}^{p_{k}} \log t \, d\left[\theta(t)\right]$$

$$= \frac{1}{4} \theta(x) \log x \Big|_{1}^{p_{k}} - \int_{1}^{p_{k}} \frac{\theta(x)}{x} dx$$

$$= \frac{1}{4} \theta(p_{k}) \log p_{k} + O(p_{k}) \sim \frac{1}{4} k \log^{2} k,$$

d'où l'on tire

$$S(n) \sim \frac{1}{2} \sqrt{k} \log k \sim \frac{1}{2} \sqrt{\log n \log \log n}.$$

On calcule de même

$$p(n) = \frac{1}{8} \sum_{t=1}^{k} \log^{3} p_{t} \sim \frac{k}{8} \log^{3} k$$

et

$$\rho(n) \sim \frac{\log n}{8} (\log \log n)^2.$$

2º SÉRIE - TOME 100 - 1976 - Nº 4

La proposition 2 montre alors que, pour tout λ fixé, on a

$$F(n) \ge \frac{d(n)\log 2}{\sqrt{\log n \log \log n}} (1-\varepsilon)^{\frac{A(\lambda)}{\lambda}}.$$

Quand $\lambda \to 0$, $\Lambda(\lambda) \sim 2 \lambda / \sqrt{2 \pi}$, ce qui achève la démonstration.

2. Étude des nombres F-hautement abondants

Grâce à la proposition 1, un nombre F-hautement abondant a beaucoup de diviseurs. On va pouvoir utiliser, pour étudier ces nombres, les techniques utilisées pour étudier les nombres hautement composés de RAMANUJAN. Rappelons rapidement certains résultats (cf. [12] et [16]):

Soit $\varepsilon > 0$, la fonction $d(n)/n^{\varepsilon}$ a un maximum qu'elle atteint en $N_{\varepsilon} = \prod p^{\alpha_p}$ avec $\alpha_p = \lfloor 1/(p^{\varepsilon}-1) \rfloor$, où $\lfloor u \rfloor$ désigne la partie entière de u.

Un tel nombre N_{ε} est dit hautement composé supérieur. On pose $x = 2^{1/\varepsilon}$, soit $\varepsilon = (\log 2)/(\log x)$, et pour k entier ;

$$x_k = x^{\log(1 + (1/k))/\log 2}$$
.

L'exposant α_p de p dans la décomposition en facteurs premiers de N_{κ} se calcule alors :

$$(x_{k+1}$$

et si l'on pose $\theta(x) = \sum_{p \le x} \log p$ la fonction de Chebychev, on a

$$\log N_{\epsilon} = \theta(x) + \theta(x_2) + \ldots + \theta(x_k) + \ldots,$$

cette sommation étant finie puisque, pour $k > (\log x)/(\log 2)^2$, on a $x_k < 2$.

Pour un entier n quelconque, on appelle bénéfice de n par rapport à N_{ε} la quantité

$$b \not \in n = \log \frac{d\left(N_{\varepsilon}\right)}{N_{\varepsilon}^{\varepsilon}} - \log \frac{d\left(n\right)}{n^{\varepsilon}} = \varepsilon \log \frac{n}{N_{\varepsilon}} - \log \frac{d\left(n\right)}{d\left(N_{\varepsilon}\right)},$$

Le bénéfice est toujours positif ou nul. De plus, il est additif sur les nombres premiers p:

(8)
$$b\acute{e}n(\prod p^{\beta p}) = \sum_{p} \left(\epsilon \log(p^{\beta_{p}-\alpha_{p}}) - \log \frac{\beta_{p}+1}{\alpha_{p}+1} \right)$$

et, par le choix des α_p , chaque terme de la sommation est positif. Enfin le bénéfice de N_{ϵ} p^{θ} est croissant pour $\beta \geqslant 0$ et décroissant pour $\beta \leqslant 0$

Proposition 4. — Soit n un nombre F-hautement abondant et N_e le nombre hautement composé supérieur précédant n.

On pose $x=2^{1/\epsilon}$ et $x_2=x^{(\log 3/2)/(\log 2)}$. On sait que l'on a

$$x \sim \log N_e \sim \log n$$
 et $n < 2 \times N_e$.

Alors, si $n = \prod p^{\beta_p}$, on a les résultats suivants :

- (i) pour tout p, $p^{\beta P} = O(x^{2 \log x})$;
- (ii) pour $x_2 , on a <math>\beta_p = 1$ sauf pour $O(\sqrt{x \log x})$ nombres premiers;
 - (iii) pour p > x, on a $\beta_p = 0$ sauf pour $O(\sqrt{x \log x})$ nombres premiers;
- (iv) pour $p < x_2$, on a $\beta_p > 0$ sauf pour au plus $O(\log x)$ nombres premiers.

Démonstration. — Majorons d'abord le bénéfice. Comme n est F-hautement abondant, on a $F(N_s) < F(n)$, et, par la proposition 1:

$$\frac{d\left(N_{\varepsilon}\right)\log 2}{\log \left(2\,N_{\varepsilon}\right)} \leqslant F\left(N_{\varepsilon}\right) < F\left(n\right) < d\left(n\right),$$

d'où

$$\begin{split} \text{b\'en } n &= \epsilon \log \frac{n}{N_{\epsilon}} - \log \frac{d(n)}{d(N_{\epsilon})} \leqslant \log \frac{d(N_{\epsilon})}{d(n)} + \epsilon \log 2 \, x \\ &\leqslant \log \frac{\log (2 \, N_{\epsilon})}{\log 2} + O(1), \end{split}$$

(9)
$$b\acute{e}n = (1+\eta) \log x$$
.

Les points (ii) et (iii) se démontrent alors comme la proposition 4 de [12].

Démonstration de (i). — Supposons que l'on ait $p^{\beta} = c x^{2 \log x}$. On aurait alors en utilisant la formule (8) :

bén
$$n \ge \epsilon \log(p^{\beta-\alpha}) - \log \frac{\beta+1}{\alpha+1}$$
,

bén
$$n > 2 \varepsilon (\log x)^2 + \varepsilon \log c - \varepsilon \alpha \log p - \log \frac{\beta + 1}{\alpha + 1}$$
.

Mais

(10)
$$\alpha = \left\lceil \frac{1}{p^{\epsilon}-1} \right\rceil < \frac{1}{\varepsilon \log p_{-1}} \le \frac{1}{\varepsilon \log p}$$

entraîne $\varepsilon \propto \log p \leqslant 1$.

2° série — томе 100 — 1976 — № 4

D'autre part

$$\beta = \frac{2\log^2 x + \log c}{\log p} \leqslant \frac{2\log^2 x + \log c}{\log 2} \quad \text{et} \quad \epsilon = \frac{\log 2}{\log x},$$

on aurait alors

bén
$$n \ge (2 \log 2) \log x - 2 \log \log x + O(1)$$
.

Pour $p^{\beta} > c x^{2 \log x}$, comme le bénéfice croît avec β , on aurait *a fortiori* la relation précédente, qui est en contradiction avec (9).

Démonstration de (iv). — Si $p < x_2$ ne divise pas n, cela entraîne, par la formule (8):

bén
$$n \ge \varepsilon \log \frac{1}{p^{\alpha}} - \log \frac{1}{\alpha + 1} = \log (\alpha + 1) - \alpha \varepsilon \log p$$
,

avec $\alpha = \alpha_p = [1/(p^e - 1)]$. Comme $p < x_2$, on a $\alpha \ge 2$, et la formule (10) donne $\alpha \in \log p \le 1$. On a done

bén
$$n \ge \log 3 - 1 > 0$$
.

Si une famille de nombres premiers $p_1, ..., p_h$ ne divisait pas n, cela donnerait, par la formule (8):

bén
$$n \ge h(\log 3 - 1)$$
.

Mais, par (9), on a bén $n = O(\log x)$, on en déduit que l'on doit avoir $h = O(\log x)$.

Minoration dans le théorème 2. – La minoration, dans le théorème 2, se démontre comme la proposition 3, en utilisant les propriétés énoncées dans la proposition 4 : Si n est F-hautement abondant, on a

$$\begin{split} S^{2}(n) &= \sum_{p^{\infty} \mid \mid n} \frac{\alpha(\alpha + 2)}{12} \log^{2} p \\ &= \sum_{p < x_{2} \text{ ou } p > x, \ p^{\infty} \mid \mid n} \frac{\alpha(\alpha + 2)}{12} \log^{2} p + \frac{1}{4} \sum_{x_{2}$$

Par un calcul déjà vu, on a

$$\mathcal{S}_2 \sim \frac{1}{4} x \log x \sim \frac{1}{4} \log n \log \log n$$
.

Dans les sommes \mathscr{G}_1 et \mathscr{G}_3 , le nombre de termes est

$$O(x_2) = O(x^{(\log 3/2)/(\log 2)})$$

et chaque terme est inférieur ou égal à

$$\frac{\alpha(\alpha+2)}{12}\log^2 p \leqslant \frac{1}{4}(\log p^a)^2 = O(\log^4 x),$$

d'où

$$S(n) \sim \sqrt{\mathscr{S}_2} \sim \frac{1}{2} \sqrt{\log n \log \log n}$$
.

On évalue de même p $(n) \sim ((\log n)/8) ((\log \log n)^2)$, et la proposition 2 donne pour toute constante $c_1 < (2 \log 2)/\sqrt{2 \pi}$ et n F-hautement abondant assez grand

$$F(n) \ge c_1 \frac{d(n)}{\sqrt{\log n \log \log n}}$$

3. Le théorème de Sperner

LEMME 3 (Théorème de Sperner) (cf. [3], t. 2, p. 114 et [9] p. 248). — Dans un ensemble à k éléments, si des parties $A_1, A_2, \ldots A_k$ sont telles qu'aucune d'entre elles n'en contient une autre, leur nombre h vérifie :

$$h \leqslant \binom{k}{\lfloor k/2 \rfloor}$$
, ou $\binom{k}{j} = \frac{k!}{j!(k-j)!}$ est le coefficient du binôme.

Soit $n = 2, 3, ..., p_k$ le produit des k premiers nombres premiers. Il y a une bijection simple entre les parties de l'ensemble $\{1, 2, ..., k\}$ et les diviseurs d de n:

A A \subset { 1, 2, ... k }, on fait correspondre $d_A = \prod_{i \in A} p_i$, et la relation $A \subset B$ se traduit par $d_A \mid d_B$.

A l'ensemble des diviseurs d de n vérifiant $t < d \le 2t$, correspond une famille de Sperner :

$$A \subset B$$
 et $A \neq B \Rightarrow d_A \mid d_B$ et $d_A \neq d_B \rightarrow d_A \leqslant 2 d_B$,

et d'après le lemme précédent, on a donc

$$F_n \leq \binom{k}{\lfloor k/2 \rfloor}$$
.

2° série — Tome 100 — 1976 — N° 4

Lorsque $k \to \infty$, la formule de Stirling $(n! \sim n^n e^{-n} \sqrt{2 \pi n})$ donne

$$\binom{k}{\lfloor k/2 \rfloor} \sim \sqrt{\frac{2}{\pi}} \, \frac{2^k}{\sqrt{k}}$$

et d'après la formule (7), on a $k \sim (\log n)/(\log \log n)$, ce qui donne pour $n = 2.3 \dots p_k$ assez grand

$$F(n) \leq (1+\varepsilon)\sqrt{\frac{2}{\pi}}d(n)\sqrt{\frac{\log \log n}{\log n}}$$
.

On peut même démontrer, en utilisant le développement d'Euler-Mac-Laurin (cf. [15], p. 27) :

$$n! = n^n e^{-n} \sqrt{2\pi n} \exp\left(\frac{1}{12n} - \frac{\theta}{360n^3}\right)$$
 avec $0 < \theta < 1$,

que l'on a pour tout k;

$$\binom{k}{\lfloor k/2 \rfloor} \leqslant \sqrt{\frac{2}{\pi}} \, \frac{2^k}{\sqrt{k}}.$$

Le théorème de Sperner se généralise de la façon suivante :

Lemme 4 (cf. [4]). — Soit $n = p_1^{a_1} \dots p_k^{a_k}$. La plus grande famille de diviseurs de n, tels qu'aucun d'entre eux n'en divise un autre, est obtenue en considérant la famille —

$$\prod_{i=1}^k p_i^{\emptyset_i}, \quad 0 \leqslant \beta_i \leqslant \alpha_i \qquad \text{et} \qquad \sum_{i=1}^k \beta_i = \left[\frac{1}{2} \sum_{i=1}^k \alpha_i\right].$$

Désignons par D(n) le cardinal de cette famille. L. Anderson [2] a démontré que

(11)
$$D(n) \leq \frac{d(n)}{2^{\Omega(n)}} \left(\frac{\Omega(n)}{[\Omega(n)/2]} \right) \leq \sqrt{\frac{2}{\pi}} \frac{d(n)}{\sqrt{\Omega(n)}}$$

où
$$\Omega(n) = \alpha_1 + \alpha_2 + \dots + \alpha_k$$

Appliquons cela à un nombre n F-hautement abondant. Il résulte de la proposition 4 que

(12)
$$\Omega(n) = \sum_{p \leq x} 1 + O(\sqrt{x}) \log x \sim \frac{\log n}{\log \log n}.$$

On obtient ainsi la majoration

$$F(n) \le D(n) \le c_2 \frac{d(n) \sqrt{\log \log n}}{\sqrt{\log n}}$$

Pour faire passer $\sqrt{\log \log n}$ du numérateur au dénominateur nous aurons besoin d'améliorer le théorème de Sperner, en suivant pour cela SARKÖZY et SZEMEREDI (cf. [17] et [14]).

Majoration de F(n). Cas des nombres sans facteurs carrés

Lemme 5. – Soit λ réel, $0 < \lambda < 1/2$. On a

$$1 + \binom{n}{1} + \ldots + \binom{n}{\lfloor \lambda n \rfloor} = O\left(\frac{1}{\lambda^{\lambda} (1 - \lambda)^{1 - \lambda}}\right)^{n}.$$

Démonstration. — On majore la somme de gauche par une progression géométrique de premier terme $\binom{n}{\lfloor \lambda n \rfloor}$ puis on applique la formule de Stirling.

LEMME 6 (de Sperner amélioré). — Soit un nombre sans facteur carré, $n = p_1 p_2 \dots p_k$. Soit $1 \le b \le k$. Soit d_1, \dots, d_s une famille de s diviseurs de n vérifiant

$$s > 2^b \binom{k-b}{\lfloor (k-b/2 \rfloor}$$
.

Alors il existe i et j tels que $d_j/d_i \ge p_{h+1}$.

Démonstration. — Tout diviseur d de n s'écrit d = d' d'', où la première composante d' divise p_1 p_2 ... p_b , et la deuxième d'' divise p_{b+1} ... p_k . Le nombre de valeurs possibles de d' est 2^b . Par le principe des tiroirs, pour une certaine valeur d', il y a plus de $s/2^b$ éléments de $\{d_1, \ldots, d_s\}$ dont la première composante soit d'. Quitte à réindexer, on peut supposer que ce sont d_1, \ldots, d_m avec

$$m \geqslant s/2^b > \binom{k-b}{\lceil (k-b)/2 \rceil}.$$

On applique le lemme 3 (théorème de Sperner) à d_1'' , ..., d_m'' . Il existe alors i et j tels que d_i'' divise d_j'' , ce qui entraı̂ne $d_j/d_i = d_j''/d_i'' \ge p_{b+1}$.

PROPOSITION 5. — Soit $n = p_1 p_2 \dots p_k$, avec $p_1 < p_2 < \dots < p_k$, un entier sans facteur carré. Soit $1 \le b \le k$. Soit \mathcal{H} un ensemble de h diviseurs premiers de n pris parmi p_1, \dots, p_b et ayant la propriété que $p_i \in \mathcal{H}$ et $p_j \in \mathcal{H}$ et $p_i > p_j \Rightarrow p_i | p_j > 2$. Soit $\lambda \in \mathbf{R}$, $0 < \lambda < 1/2$. Alors on a

$$\left[\lambda h\right]\left[F(n)-2^{k-b}\left(1+\binom{h}{1}+\ldots+\binom{h}{\left[\lambda h\right]}\right)\right]\leqslant 2^{b}\binom{k-b}{\left[(k-b/2\right]}.$$

2° SÉRIE - TOME 100 - 1976 - Nº 4

Démonstration. — Soit $d_1 < d_2 < \ldots < d_{F(n)}$ une famille de diviseurs de n, concrétisant la définition de F(n). On a donc $d_{F(n)} < 2 d_1$.

Pour chaque valeur de i, $1 \le i \le F(n)$, soit r(i) le nombre de diviseurs premiers de d_i appartenant à \mathscr{H} . On construit alors la famille $\delta_{i,j} = d_i/p_{m_j}$ pour $1 \le j \le r(i)$ et $p_{m_i} \in \mathscr{H}$.

Ces nombres $\delta_{i,j}$ ont les trois propriétés suivantes :

- ils sont distincts : Si l'on avait $d_l/p = d_{l'}/p'$ avec p > p', cela entrainerait $d_l/d_{l'} > p/p' > 2$, ce qui n'est pas possible;
 - le quotient $\delta_{i,j}/\delta_{i',j'}$ est majoré par p_b . On a

$$\frac{\delta_{i,j}}{\delta_{i',j'}} \leqslant \frac{d_i}{p} \frac{p'}{d_{i'}} \leqslant \frac{d_i}{d_{i'}} \frac{p'}{p} \leqslant 2 \frac{p_b}{2} = p_b;$$

combien y a-t-il de δ_{i,j}? Parmi les diviseurs de n, il y en a 2^{k-h} (^h_s) qui sont divisibles par exactement s éléments de ℋ. Le nombre de δ_{i,j} est donc supérieur à

$$[\lambda h] \left[F(n) - 2^{k-h} \sum_{1 \le i \le \lambda h} \binom{n}{i} \right]$$

pour n'importe quelle valeur de λ.

Il ne reste plus qu'à appliquer le lemme 6 à la famille $\delta_{i,j}$ pour achever la démonstration.

Choix des paramètres. — Appliquons la proposition 5 au nombre $n = p_1, \ldots, p_k$. Soit $\eta > 0$ donné. On choisit $b = [\eta k]$. Par le théorème des nombres premiers, pour $t > t_0$ (η) , il existe un nombre premier entre t et $t(1+\eta)$. On peut donc choisir

$$h > \frac{\log b}{\log 2} (1 - \eta) > \frac{\log k}{\log 2} (1 - 2 \eta).$$

La proposition 5 donne alors :

$$F(n) \leq \frac{1}{(\lambda h)} \sqrt{\frac{2}{\pi}} \frac{2^k}{\sqrt{k-b}} + 2^{k-h} o\left(\frac{1}{\lambda^{\lambda} (1-\lambda)^{1-\lambda}}\right)^h.$$

Pour que le reste soit négligeable devant le premier terme, il faut choisir λ pour que $1/(\lambda^{\lambda} (1-\lambda)^{1-\lambda}) < \sqrt{2}$; ce qui donne $\lambda = 0,11$. On obtient

alors, pour n assez grand

(13)
$$F(n) \le \sqrt{\frac{2}{\pi}} \frac{\log 2}{0.11} \frac{2^k}{\sqrt{k \log k}}.$$

Ce qui, compte tenu de $k \sim (\log n)/(\log \log n)$, donne une majoration du même ordre que la minoration avec un coefficient 1/0,11 fois plus grand.

5. Un peu d'analyse combinatoire

Il nous reste à généraliser la proposition 5 à des entiers avec des facteurs carrés. Une des difficultés sera de minorer le nombre des diviseurs $\delta_{i,j}$. Pour cela nous aurons besoin de la proposition 8.

PROPOSITION 6. — Soit E un ensemble fini à n éléments. Soit k et l deux entiers tels que $\binom{n}{k} \leqslant \binom{n}{l}$ et $k \leqslant l$. Soit $\mathscr{P}_k(E)$ l'ensemble des parties de E à k éléments. Il existe une injection ψ de $\mathscr{P}_k(E)$ dans $\mathscr{P}_1(E)$ telle que, pour tout $A \in \mathscr{P}_k(E)$, on ait $\psi(A) \supset A$.

Démonstration. — Pour simplifier un peu, on suppose k < n/2 et l = k + 1. On va utiliser les résultats de P. Hall ([10], et aussi [3], t. 2, p. 149) qui résolvent le « problème des mariages » : m messieurs connaissent un certain nombre de dames; sous quelle condition chacun peut-il épouser l'une de ses connaissances ? (Une dame peut être connue de plusieurs messieurs !). La condition suivante, qui est évidemment nécessaire, est aussi suffisante :

Pour toute sélection de j messieurs, $j \le m$, la réunion de leurs connaissances doit avoir un cardinal $\ge j$.

Appliquons ce résultat à notre problème :

Les messieurs sont les $\binom{n}{k}$ éléments de $\mathscr{P}_k(E)$. Les dames que connaît un monsieur sont les (n-k) éléments de $\mathscr{P}_{k+1}(E)$ qui le contiennent. Soit une sélection de j messieurs : M_1, \ldots, M_j . Chaque dame connaît exactement (k+1) messieurs, donc au plus (k+1) messieurs de la sélection. Dans le tableau des connaissances

2° SÉRIE - TOME 100 - 1976 - N° 4

tableau qui a j(n-k) éléments, chaque dame apparaît au plus (k+1) fois. Le nombre de dames distinctes du tableau est donc $\ge j(n-k)/(k+1)$ et donc $\ge j$ (puisque k < n/2), ce qui vérifie la condition de Hall.

On peut alors marier un monsieur à une dame de sa connaissance, ce qui assure l'injection affirmée dans l'énoncé.

PROPOSITION 7. – Soit $\alpha_1, \alpha_2, \ldots, \alpha_h$ des nombres réels ≥ 1 . On définit

$$\lambda_r = \lambda_r(\alpha_1, \ \dots, \ \alpha_h) = \sum_{1 \, \leqslant i_1 \, < \, i_2 \, < \, \dots, \ < i_r \, \leqslant \, h} \alpha_{i_1} \, \alpha_{i_2} \, \dots \, \alpha_{i_{r^r}}$$

Les coefficients \u03b1, apparaissent dans le développement du produit

$$\prod_{i=1}^{h} (x + \alpha_i) = x^h + \lambda_1 x^{h-1} + \ldots + \lambda_r x^{h-r} + \ldots + \lambda_h.$$

Alors on a, pour $r \leq h/2$, $\lambda_r \leq 1/2^h \binom{h}{r} \prod_{i=1}^h (1+\alpha_i)$.

Démonstration. — Le coefficient λ_r est une somme de $\binom{h}{r}$ termes indexés par les éléments $\{i_1, i_2, \ldots, i_r\}$ de $\mathscr{P}_r(\{1, 2, \ldots, h\})$. La proposition précédente montre, comme on a $\alpha_l \ge 1$, que $\lambda_r \le \lambda_{r+1}$ pour r < h/2. On a ensuite

$$\frac{\lambda_r(\alpha_1, \alpha_2, \ldots, \alpha_h)}{\prod_{1 \leq i \leq h} (\alpha_i + 1)} = \frac{\alpha_h \lambda_{r-1}(\alpha_1, \ldots, \alpha_{h-1}) + \lambda_r(\alpha_1, \ldots, \alpha_{h-1})}{(\prod_{i \leq h-1} (\alpha_i + 1))(\alpha_h + 1)}.$$

Le membre de droite est une fonction homographique de α_h dont le déterminant est du signe de

$$\lambda_{r-1}(\alpha_1, \ldots, \alpha_{h-1}) - \lambda_r(\alpha_1, \ldots, \alpha_{h-1}).$$

Pour $r \le h/2$, on a r-1 < (h-1)/2, et cette quantité est négative ou nulle. La fonction homographique de α_h est décroissante (ou constante) et donc maximale pour $\alpha_h = 1$. On peut faire le même raisonnement par rapport à $\alpha_1, \alpha_2, \ldots, \alpha_{h-1}$, et on conclut que

$$\frac{\lambda_r(\alpha_1, \alpha_2, \ldots, \alpha_h)}{\prod_{1 \leq i \leq h}(\alpha_i + 1)} \leq \frac{\lambda_r(1, 1, \ldots, 1)}{\prod_{1 \leq i \leq h}(1 + 1)} = \frac{1}{2^h} \binom{h}{r}.$$

PROPOSITION 8. — Soit $n = p_1^{\alpha_1} \dots p_b^{\alpha_b}$. Soit \mathcal{H} un ensemble de h nombres premiers pris parmi p_1, p_2, \dots, p_b . Soit $r \leq h/2$. Le nombre de diviseurs de n ayant au plus r diviseurs premiers dans \mathcal{P} est inférieur ou égal à $(d(n)/2)\sum_{1\leq r} \binom{h}{i}$.

Démonstration. — L'ordre naturel des nombres n'intervenant pas, on peut réindexer les p_i de façon que $p_1, p_2, ..., p_h \in \mathcal{H}$. Lorsque r = 0 il y a

$$A_0 = \prod_{h+1 \leqslant i \leqslant b} (\alpha_i + 1) = \frac{d(n)}{\prod_{1 \leqslant i \leqslant b} (\alpha_i + 1)}$$

diviseurs de n ayant r nombres premiers dans \mathcal{H} .

Lorsque r=1, il y en a $A_1=(\alpha_1+\alpha_2+\ldots+\alpha_h)\,A_0$. De même

$$A_r = A_0 \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq h} (\alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_h}) = \lambda_r(\alpha_1, \ldots, \alpha_h) A_0.$$

La proposition 7 précédente permet de conclure.

Majoration de F (n). Cas général

LEMME 7. — Soit $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Soit $1 \le b \le k$. Soit $n' = p_1^{\alpha_1} \dots p_b^{\alpha_k}$ et $n'' = p_{b+1}^{\alpha_{b+1}} \dots p_k^{\alpha_k}$. Soit d_1, \dots, d_s une famille de s diviseurs de n vérifiant s > d(n') D(n''), où D(n'') a été défini au lemme 4. Alors il existe i et j tels que $d_j/d_i \ge p_{b+1}$.

La démonstration est semblable à celle du lemme 6. On écrit un diviseur d de n sous la forme d = d' d'' avec d' | n'' et d'' | n''. On applique le principe des tiroirs à la famille d_1, \ldots, d_s pour la composante d', puis le lemme 4 à la composante d''.

PROPOSITION 9. — Soit $n = p_1^{a_1} \dots p_k^{a_k}$ et $1 \le b \le k$. Soit \mathcal{H} un ensemble de h diviseurs premiers de n pris parmi p_1, p_2, \dots, p_b et ayant la propriété que $p_i \in \mathcal{H}$, $p_j \in \mathcal{H}$ et $p_i > p_j \Rightarrow p_i > 2 p_j$. Soit λ réel, $0 < \lambda < 1/2$. On pose $\Omega = \sum_{b < i \le k} \alpha_i$. On a alors:

$$[\lambda h] \left[F(n) - \frac{d(n)}{2^h} \sum_{i \leq \lambda h} \binom{h}{i} \right] \leq \frac{d(n)}{2^{\Omega}} \binom{\Omega}{[\Omega/2)} \leq \sqrt{\frac{2}{\pi}} \frac{d(n)}{\sqrt{\Omega}}$$

La démonstration suit la démonstration de la proposition 5. On construit une famille $\delta_{i,j}$ de diviseurs distincts de n dont le quotient est majoré par p_b . On minore le cardinal de la famille $\delta_{i,j}$ par le nombre de gauche de l'inégalité (14) à l'aide de la proposition 8, puis on applique le lemme 7 et l'inégalité (11).

Majoration du théorème 2. — On va appliquer la proposition 9 en choisissant au mieux les paramètres : Montrons que l'on peut choisir $h/((\log k)/(\log 2))$ aussi voisin de 1 que l'on veut.

Soit η fixé; soit n un nombre F-hautement abondant assez grand, N_e le nombre hautement composé supérieur qui le précède et $x = 2^{1/e}$ comme dans la proposition 4. Le théorème des nombres premiers dit que, pour δ fixé > 0 et $u \ge u_0$ (δ), il existe au moins ($\delta/2$) ($u/\log u$) nombres premiers entre u ($1-\delta$) et u.

On choisit $y = \eta x$. Les nombres premiers p_1, \ldots, p_b seront les diviseurs de n inférieurs à y. On distingue dans l'intervalle (y^{η}, y) les sous-intervalles

$$\left[\frac{(1-\delta)^j}{2^j}y,\frac{(1-\delta)^{j-1}}{2^j}y\right]; \ldots; \left[\frac{(1-\delta)^2}{2}y,\frac{(1-\delta)}{2}y\right]; ((1-\delta)y,y)$$

dans chaque intervalle $(u(1-\delta), u_1)$ il y a au moins $(\delta/2)$ $(u/\log u)$ nombres premiers : Si $u > x_2$, d'après la proposition 4 (ii), si $u < x_2$ d'après la proposition 4 (iv), on peut en choisir un qui divise n, et cela assure que $h \ge ((1-\eta)\log y)/(\log (2/(1-\delta)))$.

On choisit les autres paramètres comme dans le paragraphe 4 et, compte tenu de (12), on obtient pour n assez grand et F-hautement abondant

$$F(n) \leqslant \sqrt{\frac{2}{\pi}} \frac{\log 2}{0.11} \frac{d(n)}{\sqrt{\log n \log \log n}}.$$

7. Démonstration du théorème 3

Le théorème 2 va nous permettre d'obtenir une meilleure majoration du bénéfice que la formule (9). Soit n un nombre F-hautement abondant et N_x le nombre hautement composé supérieur précédant n. On a

$$c_1 \frac{d(N_{\epsilon})}{\sqrt{\log N_{\epsilon} \log \log N_{\epsilon}}} \leqslant F(N_{\epsilon}) < F(n) < c_2 \frac{d(n)}{\sqrt{\log n \log \log n}},$$

l'inégalité de gauche se démontrant comme la proposition 3. On en déduit

$$\begin{split} \text{b\'en } n &= \epsilon \log \frac{n}{N_{\epsilon}} - \log \frac{d\left(n\right)}{d\left(N_{\epsilon}\right)} \leqslant \log \frac{d\left(N_{\epsilon}\right)}{d\left(n\right)} + O\left(1\right) \\ &\leqslant \log \frac{c_2}{c_1} \sqrt{\frac{\log N_{\epsilon} \log \log N_{\epsilon}}{\log n \log \log n}} + O\left(1\right) \end{split}$$

et comme $\log n \sim \log N_e$, il vient

(15) bén
$$n = O(1)$$
.

Supposons maintenant que q^{β} , avec $\beta < a$ divise exactement n, cela entraînerait, d'après la formule (8) :

bén
$$n \ge \epsilon \log q^{\beta - a_q} - \log \frac{\beta + 1}{\alpha_q + 1}$$

$$\ge \log(\alpha_q + 1) - \log(\beta + 1) - 1$$

$$\ge \log(\alpha_q + 1) - \log(\beta + 1) - 1$$

en utilisant (10).

Quand n tend vers l'infini, q étant fixé, $\varepsilon \rightarrow 0$ et

$$\alpha = \left[\frac{1}{q^{\varepsilon} - 1}\right] = \frac{1}{e^{\operatorname{clog} q} - 1} + O\left(1\right) \sim \frac{1}{\varepsilon \log q} \sim \frac{\log x}{\log 2 \log q},$$

d'où

bén
$$n \ge \log \log x + O(1)$$
.

C'est en contradiction avec (15) et cela démontre le théorème 3. On peut préciser d'ailleurs le résultat suivant :

PROPOSITION 10. — Soit n un nombre F-hautement abondant assez grand; tout nombre premier $p < (\log n)^{10^{-5}}$ divise n.

Démonstration. — Il suffit d'expliciter la démonstration précédente, en utilisant les valeurs des constantes dans le théorème 2, $(c_2/c_1) \le (1/0,11)$.

Remarque. — Bien que tous ces résultats soient effectifs, la proposition 10 ne permet pas de démontrer que tous les nombres F-hautement abondants sont pairs, ce que laisse supposer les tables. Pour la fonction g, on peut remarquer (cf. [13]) que si n est un nombre impair g-hautement abondant, n n'est divisible par aucun nombre premier $p \equiv 1 \mod 4$, ce qui permet de montrer que tous les nombres g-hautement abondants sont pairs.

Il est probable qu'il existe une astuce semblable pour la fonction F. En calculant les nombres F-hautement abondants jusqu'à n=370 millions, on a pu constater qu'ils sont tous « sans trous » (Si p divise n, tout nombre premier inférieur à p divise n). En fait, tous ces nombres sont hautement composés sauf trois :

$$138\,600\,(F=18);$$
 $360\,360\,(F=22);$ $232\,792\,560\,(F=82).$

Il semble difficile de dire s'il y a une infinité de telles exceptions, ou même s'il existe une infinité de nombres simultanément F-hautement abondants et hautement composés.

8. Algorithmes de calcul de F(n)

On pose $q_t(n) = \sum_{d \mid n, t/2 < d \le t} 1$. On a donc $F(n) = \max_t q_t(n)$. Il est clair que, pour n fixé, $q_t(n)$ est constant lorsque t varie entre deux entiers consécutifs. D'autre part, en raison de la correspondance entre diviseurs $d \mapsto n/d$, on a, pour t non entier

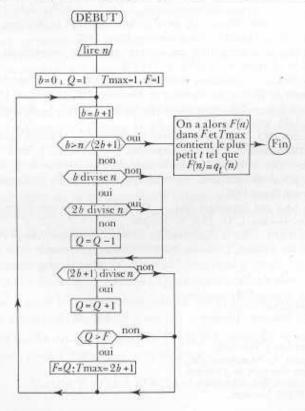
$$q_t(n) = q_{2n/t}(n)$$
.

On a done

$$F(n) = \max_{t \le \sqrt{2n}} q_t(n).$$

Le principe de l'algorithme est de calculer $q_t(n)$ de proche en proche en partant de $q_t(n) = 1$. En fait, on doit distinguer t pair et t impair; d'où on pose t = 2b et t = 2b+1, en faisant varier b. On peut ainsi construire l'organigramme de calcul de F.

Si l'on veut calculer F(n) pour des entiers consécutifs, l'algorithme ci-dessus peut aisément s'appliquer par une méthode de crible.



BULLETIN DES SCIENCES MATHÉMATIQUES

BIBLIOGRAPHIE

- Alaoglu (L.) and Erdős (P.). On highly composite and similar numbers, Trans. Amer. math. Soc., t. 56, 1944, p. 448-469.
- [2] Anderson (I.). On primitive sequences, J. London math. Soc., t. 42, 1967, p. 137-148.
- [3] COMTET (L.). Analyse combinatoire. Paris, Presses Universitaires de France, 1970 (Collection « Sup », Le Mathématicien, 4 et 5).
- [4] de Bruin (N. G.), Van E. Tenbergen (C.) and Kruyswijk (D.). On the set of divisors of a number, Nieuw Arch., Série 2, t. 23, 1949-1952, p. 191-193.
- [5] ERDÖS (P.) et NICOLAS (J.-L.). Répartition des nombres superabondants, Bull. Soc. math. France, 1975, t. 103, p. 65-90.
- [6] Erdős (P.). Sur une inégalité asymptotique en théorie des nombres [en russe], Vestnik Leningrads. Univ., t. 13, 1960, p. 41-49.
- [7] Erdős (P.). Problème 218 and solution, Can. math. Bull., t. 17, 1974, p. 621-622.
- [8] FELLER (W.). An introduction to probability theory and its applications, vol. 2. Second edition. — New York, Wiley, 1971.
- [9] HALBERSTAM (H.) and ROTH (K. F.). Sequences. Oxford, at the Clarendon Press, 1966.
- [10] HALL (P.). On representatives of subsets, J. London math. Soc., t. 10, 1935, p. 26-30.
- [11] HARDY (G. H.) and WRIGHT (E. M.). An introduction to the theory of numbers, 4th edition. — Oxford, at the Clarendon Press, 1960.
- [12] NICOLAS (J.-L.). Répartition des nombres hautement composés de Ramanujan, Canad. J. of Math., t. 23, 1971, p. 116-130.
- [13] NICOLAS (J.-L.). Quelques méthodes élémentaires en théorie des nombres, Séminaire de Théorie des Nombres de Bordeaux, 1975, exposé n° 13.
- [14] NICOLAS (J.-L.). Sur un problème de Erdős et Moser, C. R. Acad. Sc. Paris, t. 282, 1976, série A, p. 9-12.
- [15] RADEMACHER (H.). Topics in analytic number theory. Berlin, Springer-Verlag, 1973 (Die Grundlehren der mathematischen Wissenschaften, p. 169).
- [16] RAMANUJAN (S.). Highly composite numbers, Proc. London math. Soc., Series 2, t. 14, 1915, p. 347-409; and "Collected papers", p. 78-128. — Cambridge, at the University Press, 1927.
- [17] SARKÖZY (A.) und SZEMEREDI (E.). Über ein Problem von Erdös und Moser, Acta Arithmetica, t. 11, 1965, p. 205-208.
- [18] TENENBAUM (G.). Sur la répartition des diviseurs, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 17° année, 1975/1976, Groupe d'étude n° G 14.

(Texte recu le 31 mai 1976.)

Paul Endös,

Akademia Matematikai Intezete, Realtanoda u. 13-15, H-1053 Budapest, Hongrie

et

Jean-Louis NICOLAS,

Département de Mathématiques, U.E.R. des Sciences de Limoges, 123, rue Albert-Thomas, 87100 Limoges.