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1. I'ntroduction. For a given index set [, let us consider a family (4,: ve ) of subsets
of a set K, In this note we deal with some azpects of the following question: to what
extent is it possible to prescribe the cardinalities, or the order types in case K is
ordered, of the sets 4 and of their pairwise intersections! In (1) the anthors have
shown that, given any regular cardinal a, there iz a family of ¢+ sets of cardinal a whose
pairwise intersections are arhitrarily prescribed to be either less than or equal to a.
In Theorem 1 helow we prove a stronger result which states that if o is regular, say
a = ¥, and if F is well-ordered and of order type w?, then one can find a* subsets 4,
of B, each of type w?, whose pairwise intersections are arbitrarily prescribed to be
either of type w, or of a type less than e, . By way of contragt, Theorem 2 below implies—
this is ite special case m = ®,; n = ¥;; p = ¥, —that, assuming the Generalized
Continuum Hypothesis (GCH), there do not exist ¥, , sets 4, each of cardinal at most
¥, such that %, of them have pairwise finite intersections, whereas all other pairs of
sets A, have a dentmerable intersection, Theorem 3 gives another case in which some
type of prescription of the sizes of the intersections eannot be satisfied. Finally,
Theorem 4 asserts that in Theorem 3 the condition ¢fp + efie cannot be omitted. The
paper concludes with some remarks on open questions.

2. Notation. We use the obliferator ™, an operator which removes from a well-ordered
sequence the term above which it is placed. Roman capital letters denote sets. If 4 is
ordered then tp A denotes the order type of 4. If 4_ is a set, for ved, where I + &,
then we putt 4, = N(vel)A,. The relation 4 = B denotes inclusion in the wide sense,

»
and symbols such as {, v}, have their obvious meaning. For every cardinal a, we put
@ = {y:y = ordinal; |y| < a}, and if @ > 8, then ¢fa denotes the least cardinal b such
that there is a representation & = ¥ (veb)z,, where &, < a for vehb. Thus a is regular
if and only if ¢fa = a. "

3. Results. TiroruEm 1. Let a be a regular cordinal, a = R, and f{p, v)e{0, 1} for
<V <t Then there ave subscts A(0), A(1),.... d{w ) of (0, 1,..., &%} each of type
ol such that, for p < v < a4,

tp(d{u)nd(r)) < w, if _f{,u,fv}=ﬂ,]
—w, if fley)=1.

+ For typographical convenience we place the conditions relating to operations X, U, 1 next
to the operational symbol.

(1)
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TunoreM 2, Assume GCH. Let m,ntp = ¥o; m > 03 m > pt;
e £pt; |I|=mt; JeI; |J=n
Then. there ts no family (A,: veI) such that [4,| < m for vel;
|A,u n dp[ _=p :'f {F:V}q: = JI
=5 if pEy: pel-J: vel,
Tueoresm 3. dssume GOH. Let ¥, < p < m; efp & efm;
|I| =m*; |4]=|B|=m; |AnB|=p for vel
Then thers is M < I such that | M| = m* and [A n Byp| = p and kence [B,n B,| = p
Jor pove M.

Tunores 4. Assume GOH. Let %, < p < m; ¢fp = ofm; |I| =m*; |A| = m. Then
there s a fomily (B,:vel) such that |B,| = m and |AnB,| =p for vel, whereas
|B,0B,| < pfor e, v}y = 1.

4. Proof of Theorem 1, Put, for £, 9 < w,,

B(Em = {wﬁg-l-m,-r_f +0:8 < 'ma}'
We shall construet 4(v) inductively, Let 1, < @, ,;

A(0), ., Alvg) = {0, ..., 03,
tpA() =0 for v<uw,
lApInSE W =1 if r<y, and &9 <w,
Suppose that (1) holds for g < v < vy. We shall define 4 (1), and in such a way that (1)
holds for g < v = w,
In what follows dependence on v, will often not be shown in our notation. It is clearly
possible to choose sets B(0), ..., B(1) in such a way that
1€ oy (Blryr<h={A):v <)

and, for g < v,

|fr<t:B(r)=Ad(m}l =1 if flu,v)= ":"} )
=a, if fuv)=1. -

We shall define =(£, 7)€ 8(£, ) for £, < w,, and we shall put
AU’Q.:I = {xl[ﬁ, ‘?}:11 :E!'}.'I' = m':u}‘ {3}

Case 1, ¢ < w,. Then, by (2), f(p, »y) = 0 for g < vy, and we have ¥y < w,. Hence we
can choose, forall §,9 < w,, z(E,7)e8(E,9) — U (v < vy) A(r). Then, by (3), tpA(y,) = .

Moreover, if st < », then f{u, v,) = 0 and, as required,
tp (A (p) n Alv)) = 0 < w,.
Clage 2, 1 = w,. We ghall define £(@), 9(0) for # < w_ in such a way that, forall @ < w,
E(0) < n(f) < a,, (4)
iy < E() for & <@ (5)
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Let #, < w,, and assume that £(¢) and »(f) have been defined for § < #,in such a way
that (4) and (5) hold for # < #,. We shall define £(£,) and 5(0;). Put

W) =supinle): g < O} if 6, =0,

=0 it 8,=0.
Sinee %, is regular, we have §{60,) < w,. Thereis u(f,) < vy such that B(0,) = A(u(0,)).
L C(n) = B(0) = (§ < Ou; B) + BO) B@).
If ¢ < 0, and B(g) + B(6,), then tp (B(p) 1 B(6y)) < o, Hence tpC(6,) = tp B(f,) = 62,
It now follows that there are numbers £(#,), 5(0,) such that

(8) < Elby) < () < wy,

Cly) 0 SEWGs), (o)) *+ 2. (6)

This completes the definition of £(#) and #(#) for @ < w, so that {4), (5), (6) hold for
0,8, < w,. We now define ¢{f, ) for £, 7 < w,. Let £, 9, < ©,. By (4) and (5) there is
Bul&, 1) < o, snch that

M) < max{&, 7} < 9(0olEnm)) (7)

for ¢ < 04(E;, 7,). For, this only means that &,(5,. ) is the least ordinal A < w,
satisfying 9(A) = max [£;, 4}, and such an ordinal A exists by (4) and (5).
Case 2a. Either (i)
(810 7) £ (E(Ga(Ers a) ) POYEL 1)),
or (ii) (E1s W) = (El0(Ex, 90)), D(OolEr )

and Tl (Ere )i vg) = 0.
In this case we can choose

(&L ) eSS m)— ';J{‘a{‘ < Bg(Eqs 1)) Blg).

Case 20, (1o ) = (E(FQ(Ers o))y MGplExs 1))

and Sl Bo(Erm))e vp) = 1.
Then, by (6), we can choose

£y, 1) € CB(Ey 72)) NS (Ey )

This completes the definition of (£, 7) for £,9 < w,, and we can define A(f,) by (3).
Since x(E, 7)€ SE, 77), we have tp A(vy) = wi. Let gy < vy. We now show that (1) holds
for (g0, ) = (feg, vg). There is a least number ¢y < w, such that Bigy) = A ().

Case A. f (g, vy) = 0. We shall show that

Al n Al = Li (1 < 9(gh)) S(E, 1), (8)

which would imply tp {4 (g,) 0 A0)) < (5ldg) +1)® < .. Assume that £,, 4, are such
that 5(d,) < max {£;, 7.} < w,. Then, by (7),

Mo} < max {£q, s} < 9(Eo(Es, 72))

F Ses footnote in section 2.
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and henee, by (4)and (), ¢, < G4(E,, 1), If, in the definition of x(£,, 9,), Case 2a applies,

then we conclude that
#(Ey, Wa) & Blghy) = A(po). (%)
If, on the other hand, Case 25 applies in the definition of &£, ¥,), then
Bgy) = A(pe) + BB (Es. m)),

in view of f{g, ve) = 0 and f(u(8y(£,s, 15)), ve) = 1. By the definition of C(6,(£,, 1,)), we.
again deduce that (9) holds. This proves (8).
Case B. fipty, vy) = 1. Then we can write

{§ < 0,2 Blg) = AQuy)} = {9(0), ..., Plw,)} -
We shall show that

Apg) 0 A{vﬂcgﬁfﬁ,ﬂ < p(p(0))) S(E ) } r.
3 -
U f(E(@()), mb(F))): 0 < B < w,}

Let 9(g(0)) < max{&,. 7.} < w,. Then, by (4}, (5) and (7), $(0) < Oy(E,. 7).

Case B1. 0,(5. v,) + &(ff) for # < w,. Then it follows from the procedure in the
Cases 2a and 25 that (9) holds.

Case B2, 04(E;, n4) = d(fy) for some F; < w,. Then #, > 0. Let

. (Esima) + (E(D(B)): pld(Ba)))-

Then, again, (9) follows. This completes the proof of (10). The relations (4) and (5)
imply that

tp (A () 0 A1) £ w,. (11)
On the other hand, we shall now show that
#(E(S(A)) nblAM edlp)n Alpy) for f < w,. (12)°

Let f < o, and (&, y,) = (E(@(F)), 7(¢(5))). Then
Big(p)) = dlpe)s flogvo) = 13 & <1y < 0y,

We first show that #,(£;, 7,) = (). This means that g(d{f)) = n; and g(eh) < 9, for
¢ < ¢(fF). But these two statements are true because of the equation y, = 3(4(#)) and
the fact that, by (4) and (5), y(¢) increases with ¢, This proves that 8,(5;, ;) = &(F)..
We conclude that

E(Op(Es 7s)) = £{95L3}} =&,
WLz a0} = 9(S(H)) = v

and that p(f4(Es, 75)) = pld(F)) = g, by the definitions of u(0) and ¢(#). Finally, we

ke FOAO0Ens 1)), Vo) = Ftor vg) = 1.
Henee, by Case 25,

£y, a) € CLOES, 7)) = Cd(8)) = Blh(8)) = Alpe),

and this implies (12), However, (12) vields tp (4(p,) 0 4(v,)) = w, which, together
with (11), gives tp (4 () N A(ry)) = w,. This completes the proof of Theorem 1.
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5. Proof of Theorem 2. Let the family (A4,: vel) satisfy the hypothesis of the
theorem. Put M= m=N; p=i; ofm=Hp

Then & = f;a = ¥+ 1; § & v+ 1. By enlarging the sets A, suitably, we can achieve
that, in addition, |4,| = m for veI. Also, without loss of generality, we assume that
I =mtand J = n. Let g, v, p, o always denote ordinals such that

fla 1< g L PT < gy,
Put & = U{;s«::v}fi N4, Then |8] <np <m. Put 4% =4 —§ for all g. Then
|A*|—mm1dﬁ*nﬁ*- g for g < v. Put

Npy={m:Aind, + e} W={p:[N(p)| <p}.
Case 1. |W| = m*. Since |{4,n 8: pe W}| < 29 < m, there are sets W’ and 8, such
that W= W; |W'| = |W|and 4, n8 = 8§ forpes W'
Let {p,o}.< W'. Then
|8l = (4, n8)n(d,n8)| < |4,n4,|=p
Sinee |{N(p): pe W'}| < 2" < m, there are sets W™, N, such that
Wre W W' =|W|; |Nl<p Np)=N, for peW".
Let p,e W and g ¢ N,. Then
pEN, = Nipy): Afnd,=g: 4,nd,<8 A,nd, =4, n8=35,
Bince |[{d,nd,:p¢N}| < 2'3-' < m, there are numbers g, g, & N, such that g, + pu,;
A, nd, =4, nd,. Then
W l‘éﬁh n 'AP\'] . l{AFq f Aﬂn} M {A.ﬂ. n A.ﬂa}l = I*'iﬁ M Aml <
which ig the required contradiction,
Case 2. |[W| < m. Put W* = {p:w,; € p < o, }— W. Then |W*| =m*; N(p)>np
for pe W#, Bince
{Vlp):pe WG < UM =un; || = g7){N(o): pe W*; Nip) >H)
and |{{M = n: |M|=p')| =nr" < 22" < m,

there are sets W**, N, such that W**< W=*; |W**| = |W*|; |N| = p+; N(p) = N, for
pe W** If pe W** and ucN,, then 4, n A% + @, and we can GhDD:EB xu €A, N A%,
Put X, ={z,: pelN,} for pe W Thﬁn T F 0y, if pe W and {g, v}, = N If
{p, o} = W**, then

|X.nX,| <|4,nd,]=p < |N]| =X,

Henee (X : pe W**) is a family of m* almost disjoint transversals of the family
(4%: peNy) of p* disjoint sets of cardinal m.

On the other hand, by (2), for r, s = %, no family of r disjoint sets of cardinal & has s+
almost disjoint transversals, provided ¢fr # cfs and cfr 4 s*. When applying this result
with + = p* and & = m we obtain a contradiction, and this establishes Theorem 2,
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6. Proof of Tlheorem 3. Case 1. p < ¢fm. Then, by GCH, m® < m", and there are seis
X, Msuchthat |X| =p; M<I;|M| =m*, An B, =X for ve M, Then An By = X.
Cnse 2: ofm < ofp. Then we can write 4 = E}J{ﬁeg&ﬂA;, where |4,| <m for

fecfm. Let acl. Then 4 n B, = U (fecfm)A;n B,. Beeause of ¢fm < ofp, there is
r

Pla)egfm such that |A 4, n B,| = p for e, Then there is a number #'e¢fm and a
set M’ < I with | M'| = m*, such that gla) = 8’ for ac M’. Then |4, n B,| = p for
ae M. Since |Az|? < 2419 < mt, there are sets X, M satisfying | X| = p; M< M,
| M| = m*; Ay n B, = X for e M. But now we have

Aﬁﬂmjﬂrﬁﬁmﬂx.

Case 3. ¢fp < efm < p. If ¢fm = p, then ¢fp = p = ¢fm which iz false. Hence
efp < ¢fm < p. We can write 4 = U (Seefm) A, where |4, < mfor fecfm. Thereisa
r gt i L

representation p = § (decfp) py, where p, < p for §ecfp. Then sup{p,: decfip} = p.
Let «e I and d ecfp. Then there is a number y,(d) € ¢/m such that
|%‘J (B < v.(8)) Ay 0 B,| > py. : (13)
For otherwise we would have
[40B,| = Y regfm Y (8 < 94,03,

< ?(TE@} IJlEJ (8 < 7) 4,0 B,| < (¢fm)p; < p,
which is a contradiction. Since ¢fp < ¢fim = cfefm, we have sup {y,(0): de ¢fp} = ¥,, say,
where ¥, € ¢fm. Then, by (13), Ilj'l (# < F,) 4,0 B,| > p; for §ecfp, and hence

U8 <7240 Bo| > p= AN B[ 2 |V <70 4,0 By,

so that ll:il (B <¥,)A;nB,| = p for ael. Now there is an ordinal ' e¢fm and a set
M'< I with |M'| = m*, such that ¥, = o' for ae M'. Then |%| (B<y)Agn B, =p
for ce M'. We have 1!51 (f < y') A, <m and hence |lj'| (8 < ¥') AP < m*. Therefore
we can find sets X, M such that |X| = p; M< M'; | M| = m*;

{LE}{,E <y14)nB, =X for aclM.

Then A4 n By = U (F < ') 440 By = X, and the theorem follows.
7

7. Proof of Theorem 4. By a theorem of Tarski(3), there are almost disjoint sota
B!« A for vel such that |B)| = p for vel. Put, for vel, B, = B] uD,, where the D,
are any sets satisfying |D,| = m for vel and AnD, = B,nD, = @ for g,vel, and
D,nD,= @ for u % v. Then |[B,| = mand |[4n B,| = [4nB}| = pforvel, and

|B,nB,|=|B,nB|<p for psw
This completes the proof.
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8, Open questions. Let A be a set, well-ordered and of order type w4. One can ask
this question: how far is it possible to choose subsets A? of A such that, for all , 4, the
sets A, 1 A, are prescribed to have either an order type less than w, or a type w}™",
where g(y, §) iz a given ordinal less than #? In Theorem 1 we only deal with a relatively

gimple special case, We have some further results but do not state them as they have
not yet reached a satisfactory state.
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