DENOMINATORS OF EGYPTIAN FRACTIONS II

BY
MicHaAEL M. BrEicHER AND PauL Erpds

I, Introduction
A positive fraction a/N is said to be written in Egyptian form if we write
afN-=1fng + lfny +=+ Um, D<my <y <-:-<hy

where the n; are integers. Among the many expansions for each fraction a/N
there is some expansion for which m is minimal. Let D(a, &) denote the minimal
value of m,.

Define D{N) by D(N) = max {Dfa, N): 0 < a < N}. We are interested in
the behavior of D(N). In our paper [1] we showed that for N = P, a prime,
D(P) = Plog P and that for some constant K and any N = 1, D(N) =
KN (log N)*, It was surprising that such close upper and lower bounds could
be achieved by the simple technigques of [1]. In this paper we refine the tech-
niques of [ 1] and show that on the one hand for # large enough thatlogy, P = 1,

Plog P log, P
i

logiyy P [] log; P
=4

and on the other hand that for ¢ > 0and N sufficiently large (Theorem 1 and its
corollary yield more precise statements), D(N) < (1 + £)N (log N)*. We con-
jecture that the exponent 2 can be replaced by (1 + 8) for 8 > 0.

As part of the proof of the above results we need to analyze the number of
distinct subsums of the series 3, 1/i, say S(N). We show that whenever
logy, N = 1,

N log. N 1!

alN i fuid =il
log, N < log 8(N) < 2
IDgN;l:'[J g ESIN) < logN =3

og; N

for some o = 1/e,
Il. The upper bound for D(/V)
Let p, denote the kth prime, and let IT, = I'[f=, . We recall from [17:

Lemma L. If O < r < o(I1,) then there are divisors dp of 1, such that
F = E dl"
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Lemma 2. For N sufficiently large, i k is chosen so that y_, = N = T,

ithen
2
i — .
p.ﬁlngN( + H'JIN)
Proof. 11 8(x) = ¥, .. logp then logIl, = 8(p). We note that p,

is the least prime such that 5{p,) = log N. By [4, Theorem 4], 3(x) =
x(1 — (12 log x)) for large enough x. Thus if

1
= Jog N1 + ————
o & ( log log N)

then 8(x,) = log N. Let py be the least prime greater than x,. For x; suffi-
ciently large we have [3, p. 323] py = x, + xi'%. Since py, < p,,

p.slngH(l +—1—-)

log log N
for N sufficiently large.
LemMa 2*. N Z=2and -, < N < II; then p, = 2 log Njlog 2.

Proof. For N =2,p; = 2and the lemma holds. For3 s N < 6,p, = 3
and the lemma holds. For I1; < N < T, the theorem follows since for k <
16, computation shows that p, < 2log I1,_,/log 2. For N = I1;4 we have
log N = 41. By definition of §(x), log Ty = 3(p,) where p, is the least prime
such that 9(p,) = log N. Since for x = 41 we have [4, Theorem 4, Corollary]
Hxy = 21 — (1/log x)), we see that

3
Hxg) = log N fnranhgﬁ(l+m)z4
By Betrand’s postulate we see that py < 2x,. Since
3
2({1 + ———— ) = 2flog 2 whenlog N = 41,
( Iln-;lng."-') ¢
the lemma lollows.

Lemma 3. If N = 12, then in the closed interval [N, N + /N] there are
at least [N[2Z] + 1 square-free integers with all prime factors less than N,

Proof. Let I* = [L,cup. Let D= [m: N <m < N+ N, m|IT*},
Let @(x) be the number of square lree integers not exceeding x. Thus
1D} = QN + N) — Q(JN) - L

where L is the number of primes between N and N + /N inclusive. Suppose
N = 24°, so that /N = 24 In the interval [N, N + /N] only odd numbers
can be prime; there are at most 1 + 4 /N odd numbers, and at least four of
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them are divisible by 3. We deduce that L < (}/N) — 3. From the proof of
Theorem 333 in [2] we see that

O(x) = ¥ uld) [ﬂ

dizx

ON +YN) ~ YN = ¥ nm[J]
Y )

Eiin

d=v N+ N d*
N
dl

N
Fo 4]

>N+ JN) § H9)

Z
d<¥ N+ N d

L

SV - gy

d= w1 a2
Since T 5%, pld)/d® = 1]{(2) = 6/n* and |u(d)] < 1 we get

O(N + /N) — Q(/N) a = -WN+JN]-N =
4= NN

|
SN P ob
NS g N+ N di

&N’

where M = [\/N + /N]. Since VN + /N — VN — JN = 1, we see that

M = NN — /N and hence that the above expression is decreasing in M. Thus
we obtain

N

QIN+JN1—Q{JN13——J~+¢N__
NN+ N

=4 ([N”“] JN Jlr JN)

_ E_P«_{ o 2N ». AN
% IN+yN [N
Thus
D] = Bl 2N "'IIN N + 3.

® IN+gN NP2
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To show that |[D] = N/2 it suffices to show that

6 | 2 1 1 3
QI =m == 2 + s -=
22N IN N NNV N

which is true for N = 24°, whence for N > 24*, On the other hand one can
verify directly and/or by special arguments that the lemma is true for 576 =
N =12

Lemma 4. If (0 = (2//p)) < r < 200, then there are distinet d; such that
di| My dy > Dy y(py + )™ and r=Yd,

Proaf. We note, in order to begin a proof by induction, that the lemma is
true for k = 1, 2, 3, since for these cases M,_,(p, + /)™ ' < 1. We suppose
k = 4 and that the lemma is true for all k" < k. Consider the set

D=(d:Jp<d<p+ Jp,d|N.,}

Casel. k =6,ic,p, =13, Letrbe given in the desired range. According
to Lemma 3, |D] = (p, + 1)/2. Also noie that no two elements of ) are con-
grueni mod p, and that none is congruent 1o zero mod p,. Let

D* = [0} w {1, _,/d; de D).

Ifde D*, d # Othen I, ((Jp) ' 2 d = M_y(py, + ¢y )~ ' Wenote that
|D¥ = (py + 3)/2 and no two elements of D* are congruent mod p. If r =
2d mod p, for some de D* let D** = D*\[d}, otherwise let D** = D"
Hence |[D**| = (p, + 1)/2 and we may apply the Cauchy-Davenport Theorem
to find 4" and 4", distinct elements of D** such that r — d' — d" = O mod py.
Letr* =r — d' — d", Then

- znla-; ( 2 1 )
1P S e it s AT — S8 =S
va - U Ja a/m
Since 1/y/pe—y = 1y P = 1P/ Py, 25s seen by using the mean value theorem
on 1/\/x, we deduce that r* = TI(1 — (2/y/py-4)). Letr’ = r*{p,, an integer.
Then
2
n"'(l ) an) )

5o by induction r' = ¥ d, where d; | Iy, d; = (pyy + JPu-y) 'Ti-z- It
followsthatr = ¥ pd, + d’ + d*, and since the d, were distinct by imiuc!iﬂqi
so are the p,d,: also, unless either &' or d” is zero, in which case we discard it
from the sum, d’, d* # 0 mod p, so that all the terms in the sum are distinct.
Clearly

nt—l

did =
a+Jn
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On the other hand, by induction

d; = B L S :
Pt + v P
thus
iz = I,
: i
Pt + A Pe-t Bt B

Case2. k =4, 5 p, =7, 11. Aneasycomputation shows that for p, = 7,
D¥ = {0, 5, 6, 10}, Every nonzero congruence class mod 7 can be obtained as
a sum of two or fewer elements of D* as follows: 1 = 5+ 10,2 =6 + 10,
I=10404=5+65=5+0,andb=6mod 7. Thusforr £ Omod7
we may proceed to define r' as in Case 1. If r = O mod 7, let r* = r and pro-
ceed as in Case 1.

Forp, =11, D*=1{0,2-3-7,5-7,2-3-5,3-7,53"5] = {0,9, 2, 8,10, 4}
mod 11, Every congruence class mod 11 can be obtained as a sum of at most
three distinct elements of D* asfollows: 0= 0,1 = 10 4+ 2,2 =2, 3 = 10 +
4 4=4 5S=10+4+2 6=442 T=10+8 8=10+9, 9=9,
10 = 10, Thus we may define r' and proceed as in Case 1. The proof is com-
pleted.

We are now ready to prove:

dip, =

Tueores 1. Forevery N, DIN) = JA(NIN(InNY where2/log 2 = AN) = 1
and hmy_ ., A(N) = L

Proof. Given a/N choose [T, such that IT,_, < ¥ =< I1,. If & |II,, then
alN = b/Tl,, By Lemma 1, b = ¥ d,, d,| I1,. By reducing the fractions in
¥ d,/T1, we obtain a representation of a/N in which no denominator exceeds
M, < 2N log Nflog 2.

If N ¥ IO, write a/N = {gN + r)/NTI; where # is chosen so that

2
ni(r - —) < r<2m,
P

This can be done since we may assume ¢ = 2 and since N < T1,. The fraction
¢/T1, can be handled by Lemma I, as in the paragraph above. We now use
Lemma 4 to write r/[1, in Egyptian form using very small denominators. By
Lemmad, r = ¥ d, where d, | T1,, the d, are distinctand o, = M, {pe + /P "
Thus ¢TI, = ( &)/, = X 1/n;where n; = [,/d;, Thus the n;are distinct and
ni < pdpe + o). 1t follows that r/NTI, = ¥ 1/n; where n, = n{N and the
n, are distinct from each other as well as from the denominators in the expan-
sion of g/I1; since these denominators all divide T, while N | n, and N 4 I,.
Furthermore
n; < Npps + /py) < B(N)N(InN)*

where A(N) can be chosen to satisfy 2/log 2 = AN) by Lemma 2%, limy_

AN} = | by Lemma 2, and A(N) = (1 + (1//log N)).
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a4
lil. The number of distinct subsums of ¥ 1//.

=1

Dervimion,  Let S(N) denote the number of distinet values of 3., g/k
where the &'s take on all possible combinations of values with g, = Oor 1.

To obtain a lower bound for S(V) we begin with the following lemma.
LeMMmA 5. For all N = 3, S(N) = 2N1oxN,

Proof. It is clear that each distinct choice of the &,'s for p prime yields a
different value of ¥, . v &,/p. Thus S(N) = 2™, Since for N = 17, =(N) =
Nflog N by Corollary 1 of Theorem 2 of [4], the lemma is true for ¥ = 17. To
verify that the result holds for 3 < N < 16, note that both S(N) and 2V/'s¥
are monotone and 2*"4 < § < §(3), 212012 2 2% = §(5)and 2!4/1ee 1t
2% = ™13 < 5(13), where S(3) = 8 and S(5) = 2° are a result of direct
verification. Thus the lemma is proved.

Tueowrem 2. Ifr = | and N is large enough that log,, N = 1, then
N r
S(N) = Hp(a og N }llug‘, H)

where o = lje is a permissible value for « and log, x = log x, log; x =
log (log;—; x).

Progf. The proof is by induction on r.
In order to prove the theorem with the proper constant we make the slightly
stronger (as will be shown at the end of the proof) inductive hypothesis

i 3 N L3
| — . log: N
) A = £ (1[1( ]ﬂﬂzj_z N) Il:ls. N [l] %% )

for logs, N = 1. The hypothesis (+) is clearly true for & = 1, 2 by Lemma 5.
We assume the induction hypothesis holds for k = 1,2,...,r — 1 and show
that it also holds for & = r = 3.

Let @ = 2Njlog Nand Q' = Nflogy N. Note that Q' > Q. We define # by

P =[Nzp=z=0:paprime}

Let T = [k < N: there exists p € 2, p | k).
S(N) is greater than the number of distinct values of the sume ¥, 5 /K,
which we denote by T(N). We rewrite the sum as

ooy l(Ye
ugr k p?ﬂ‘ P (ug-:: k)i

Set MM gfk = aylh, where log &, = Y(N[p), ¥(x) = ¥ =2, log p. Also
a, < 2b,log Njp forp < Nf3.
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(e _ 4 =% (e.d)=1,
p\by b d

thenp | dif p ¥ (g, — a,). Butforp < NJ3,
a, — a, < 2b, log N/p < 2 log (N/p)e*'™'®.
Since f(x) < (1.04)x [4, Theorem 12] we see that
a, — a < 2 log (N/Q)e!" "¢ < 9 < p,

since N = ¢. Forp > N/} it is clear that p J (4, — @,).
Thus p ¥ (a, — a)) and p | d. 1t follows that distinct choices of a,/b, yield
distinct sums, Thus T(N) 2 [1,.» S(N/p), so that S(N) = [1,.» S(N/p).
We will now evaluate the above product using our inductive hypothesis. First
note that

Thus, i

N
log S(N log S{=1.
°‘”2n¥;°! (P)

For simplicity let $*(x) = log 5(x).

We recall the well-known method using Stieltjes integration with respect to
#(x) and integration by parts by which one evaluates sums where the variable
runs over primes [4, p. 74].

Lemma 6. I p) exists and iv continuous then

)
Y fp) = j Jx) L +(9"" : f(x})

Qep=g’ i)
Jix)
J 0= J.t (lng x)

Let L*(x) = x/log x [15"" log; x, and note that for @ < p < @', Nip =
log; N; hence log,,—,, Njp = log;, N = |, and the induction assumption tells
us that

¥ 3 i
e AN N
S“{N.n'p'.'&];[(l —— N) (N/p)
We thus obtain

(ﬁ feae 2= W oy L*(N/p)
."'4( :U'gzj_l N)) [ } = G*;:ﬁﬂ' p

i @ LNIX) dx + Wx) — IMNI%) .
g logx log x @

E*(N/x)
I o ( log x )

— 5'] 4 S; -+ -S],. say.
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We shall estimate the absolute values of S, and 8§, and then the value of §,,
the main term. We use the estimate [4, p. 70] |3(x) - x| < x/(2 log x) 1o obtain

N r
$i0 = =2 _TTiog, N
1531 1ngle4_.[ =

as Tollows:
o . 0 ..
Sal S =g LN —=— I}N
lﬂslh}g’@" 3 "Q}.i-:togzﬂ (N/Q)
NL-(M)
= NL' (log; N) % 2
2 log; N (log N — logy N)*  log N (log N + log 2 — log; N)*
N luﬂ-a el
= I1 log, N
Zloglﬁ-[ngjﬁo _ log, N) logs N g]
log N
N log N ,
® . log; N
log® N(I + M)z 2 (logy N — log Z}IJ .
log N

N F
— '] log, N
=3 log? Nl;[ i

. log.sy N + Jl
2
|°B:Nlug..H(I - %'EJ—:) (: - ﬁ:) (logs N — log 2)

r

N
log; N.
log* N l:l &

=

A straightforward calculation yields

N
x* log x log Njx

d *(N/x)
dx log x

=1
[] tog, Nix
L]

for x in the preéscribed range, Thus

¢ N r=1i
5 Nx dx.
15:] = .L 2 1o x o NIk l;[ log, N/x dx



606 MICHAEL N. BLEICHER AND PAUL ERDOS

Using the facts that N/x < log N and 2 log? x = (3/2) log* ¥ for all x in the
range of integration, we see that

2N [] log, N
4

i
IS,] < : dx
3log N g xlog Njx

2N [T log, N |
= m (—=log, NJ'-"-'|3J
2N [ log; N
- (—log, :'“i’."xlﬁ}h. )

T 3legt N
F
N log; N
T R TR
log? N
We next obtain a lower bound for §, ;
$ o [ N Tl tog, Nix d
== - _ 0, X X
; _L. x log x log N/x I;I B
r=1
N e ];[ log; N|x
= dx
log N L x log Njx
Withu = [157" log; N/xand v = —log, N/x we integrate by parts to obtain
1 T tog Njx d
_ o x dx
.I-ﬂ x log Nfx l_:.l 8 N/

=1 =1

r=1 ) @ 1
= — Moo il = | e 7
l;[ o Ni¥lg '.‘a x log Nix (::Zs j=1:_[f| i’ N'lllx) e

r+l F

r—1 e dx
= log; N/Q — log; N — 2 1] log, N/ —_—
l_al g NIQ U & 1;] g NiQ _I.Q x log Nix

L 5
=|llog, N[1 — ——— 1,
l;[ it ( 2 log, N)

where we have used that
r=1 1 x 1
og; = =(1—
1] 1og; 5 (
Substituting this in the lower bound for §, we obtain

R 'Hinng(i— 2 )
3

r—1
15; x) E[ log; x forlog, N < x < log N.

2logy NJ
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Combining the estimates for §,, |5;| and |8, we obtain

r 3 =1
fetbieaeul ST aeakey
(:’U‘ ( logs;—» N))
N 5 2 1
s N i = < =
og I L1 1o { 2loes N IogNlogs N log N

&
=|1-=
( fogy N )logNH B

which satisfies (#). Thus (=) holds forall r = 1.
Since we know log,, N = 1 we deduce that log,;_, N = ¢*~#/"2. Thus

! 3 a 3
L=l Jo
1133 ( loga;_» N) _fl;lﬂ- ( i

where the last inequality follows from the facts that for 0 = x = 3/e” =
0406...,log(1 — x) = —3x2and —(3/2) T2, 3fe? = —0.526- > —L

The theorem is proved.
Lemma 7. For N = 1, S{N) < 2%,
Proof. The result follows immediately since there are 2¥ distinct choices for

el <7< Ngy=0orl.
Lesma 8. For loga N = |, S(N) < exp (Nflog; ).
For log, N = 1, S(N) = exp (N log; Nlog N).
Pranf of Lemma 8. Let @ = Nflog N. Let
P={pQ=p=~N)}
= {k =< N:there exists pe P, p | k}

and
Zy={ksN:k¢Z}).

Thus we may write
o B £y &
=X g -
; k l:FEzi k. xsrak
Let S{N) denote the number of distinct values of the sum ‘_with ke Z as the
= log S{N)

g,'s take on all possible values with g, = 0'or 1. As before S*(N)
and SHN) = log S(N), i = 1, 2.
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The case log; N = 1.
Subcase A. N = 10°. We estimate ST(N) first. From the definition of Z,

we see that
N 1
Z.| = = N -.
1Z,| E,[P]s b

PE re@ p

Using the estimates of [4, Theorem 5 and corollary], we obtain

1 1
=il + '
|Z,] = N(lug, N — log; Q fog® N + TR Q)

Since §,(N) = 2% it follows that

- 1 1
(1)  SYN) < N(log2) (lug, N —logs @ + 1o + 5o q)'

We now estimate S5(N). Suppose 3, _z, 6u/k = a/b, then independent of the
choice of the &'s we may choose b = Le.m. Z,. From the definitions of y(x)
and 8(x) [2, pp. 340-341] we deduce that log b = y(N) — (B(N) — HQ)).
Since W(x) = ¥=, 8(x'™), one can show W(x) — 9(x) < L5x"? (see [4,
Theorem 13]). Hence we see that log b < &(()) + 1.5/ N. On the other hand

av.. 21 lor N |
oL - = lo 2 e
b Igli 8 y N

where ¢y = 0,57 - - - is Euler's constant. Thus we see that the number of distinet
possibilities for @ is at most b(log N + 3 + 1/N). It follows that

S:N) < (log N + 7+ 1I/N) exp (NQ) + L5/ N).
Whence

(2) S%N) < log(log N + 3 + 1/N)} + H(Q) + L5/N.

Since S*(N) < ST(N) + S3(N) we can now estimate S*(N),
By the above estimates (1) and (2) for SY(N) and S3(N) we get

N log; N log: N
5*N) < {l 2( (logy N)* =} logy N + —— + 2 )
logs N og (ﬂ‘!: )" — log, Q log, {log N)* © 2 (log O)F
log (log N + 3 + 1/N)-loga N
+
N
1.02logs N L.5logy N
Z log N 2 JN }

where we have used [4, Theorem 9] for the penultimate term. A straight-
forward caleulation shows that for logy N = | the term in the braces is de-
creasing when N = 10%, and is less than 1,
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Subcase B. 108 = N = ¢, WWlog; N < 1flog 2 = 14:--,ie, N =

62.8- -+, then 2% < exp (V/log; ¥) and the desired inequality holds.
For N = 69, 70, 71, 72, or 73 we note by direct caleulation from the definition
that |Z;| = 23 = M- (23/69) = N/3. Thus

SHN) < Nh:ngZZ5 Nlog2 (1 .
3 log, N \2

SHN) < log (log (N + 3 + 1/N) 4+ Q) + L5/N)

N log (log (N + 3 + |/N)) logs N 4 log. N 1.5 logs ¥
log; N N log N JN

Since S*N) = ST(N) + SET(N) we obtain

N (log2 . fog (log (N + 1)) leg, N 5 log, N ¥ 1.5 logy N
loga N| 2 N log N JN

SYN) <

Since the term in braces is less than 1 for 69 < N < 74, the inequality hold
for N < 74.

For 74 <= N < 10* we use the estimates of [4, Theorems 18, 20, and 13] to
obtain the desired result in 4 manner analogous to the case when N = 10,
The difference in the cases 74 < N < 10* and N = 10® are all consequences
of the different estimates for ¥ 1/p and 3{x). The calculations are left to the
reader,

Thus the first half of Lemma 8 is established.

The case log, N = 1. Inthiscase N = 10° From (1) and (2) we get

SHN) = M log 2 log N — IEE;M
log N log, N

4 1 log N
log Nlog, N 2log, Nlog’ Q

log (log N + 1) log N 1.02 1L.5log N
+ + + :
Nlogy N logg N /Nlogs N

Using the estimates

lugN—]DgzglugN:; 14 log. N

log; N log N
in the above inequality yields
N logs N [ log, N 1 log N
S*N) = ——=—llog 2{1 + o +
&) log N { 5 ( loge N logNlogs N 2log; Nlog* @

log (log N + 1) log* N 1.02 L 1.5log N 1
log N log; N N loga N /Nlog, N j :
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An easy calculation shows that in the range under consideration, log, & = 1,
each term in the parentheses is decreasing. Trivial numerical estimates show
that for log, N = 1 the guantity in braces is less than 1.

Lemma 8 is proved.

Lemma 9. Let O = Nilog N and ' = Njlog, N. Suppose that logg N = 1.
Then

¥ I logs N logg N J
e<pse plog (N/p)  log N 2logs N
Proaf. This is proved by using Lemma 6 almost exactly the same way it was
used in the paragraphs lollowing its proof, except that in this case f{x) is simpler

and slight adjustments must be made since we are deriving an upper bound.
The details are left to the reader.

Toeorem 3. Forv = Landlog,, N = 1,

Nlog N
SNy =exp| ———— log, N).
) 1jl(h:]ng" N log, N ;l:l: & )
Proof. The values ¢ = 1, 2 yield the statements of Lemma 8. We suppose
the result is true for r — | = 2 and show that it holds for r.

We divide the integers less than N in a way similar to that in the proof of
Theorem 2. Let @ = N/log N and @' = N/log, N. We define Z, and Z, by
Z;y={k < Ni:thereexidts p, O < p =< N, p| k}

and

Z,=lk < N:k¢Z,)

Thus
H ul
53 2, L 3 = )3 B

=k kz# & ks K

If §,(N) denotes the number of distinet values of the sums over Z, as the g,'s
take on all possible values with g, = 0 or 1, then S(N) = §,(N)S:(N). We
estimate each of S,(N) and S,(N) separately. Let SHAN) = log 5{(N): then
S*H(N) < SHN) + SHN).

We estimate S3(N) first. For any choice of ¢,'s we may write

» B _ 9 wherea < (i E) band b = Lem. {Z,).
ke#s K b =37
As in the proofs of Lemma 8, we obtain from (2),
S3HN) < log (log N + 1) + (@) + L5 /N
(4) < log; N + ljlog N + Nlleg N + Nflog® N + L5/N
= 2N/log N

where we have used [4, Theorem 4] and 1/(2 log @) < l/log N for the values
of N under consideration,
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We now turn to an estimation of §,(A). We rewrite the sum as follows

f& % l Nip ﬁ_ﬁ_
1:‘52. k -E-C'Ep:'tﬂ' p(ﬁgl k

where the &’s on the internal sums (which properly should be s, .} are inde-
pendently taking on all possible combinations of values of 0 or 1. We see from
this representation that

% #
SUN) = g X : S¥(N/p).

=pE
We break the sum in two parts as follows:

(s) I, = Y S*Nip, Z,= Y SN

R Q< paN
Notice that for @ < p < @' we have N/p = log; N and thus
logye—1y Nip = logy: N = 1

so that the induction hypothesis for # — 1 is satisfied for N/p in the first sum.
For the second sum we will use the estimates of Lemmas 7 and 8 which vield
S¥(x) = xlog2 and S%(x) < (x log, x)/log x. We estimate I, first.

o N log; N/p N 1og 2
g<p=ve plog Nfp NE<pzN P

where E is chosen so that log, £ = 1. The first sum can be estimated by the
use of Lemma 6 with

! L. log, (N/p)
fe) plog (Nip)

After some calculation one gets

N logi N
-,
Q'-:pzcnmﬂp} log N

Using the standard estimates [4, Theorem 5] for 2 1/p one obtains
L) log 2 5—“ log E.

NiE<p=N P log N
We thus obtain

6) £, < (lopd'N 4 log E).
log N

We now estimate £, from (5), where we substitute for S*(N/p) the bound
given by the induction hypothesis to obtain

Niog._ (Nlp) 1o
L = _ [T tog; (Nip)
' o<kt plog’ (Nip) log, (Nfp) j=1

Nlog i NIQ T\ |
log N/O log, N/O ,—ll og; (N/E) u-:glsu- plog Nip’

(7
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where we have used the fact that
log—: Nix 5
ey SR log, (N
iog, N logz NJx jon 1 (N1%)

is decreasing in the interval § < x < @' since the two terms in the denominator
cancel into the numerator and the rest of the numerator is clearly decreasing
in x. But N/Q = log N and ¥ 1/(p log Njp) can be estimated by Lemma 9;

thus
g, < Iom A fry o log; Ny~ BN Y
logy N logy N\ -2 log N 2logy N

The above can be rewritien as

N log, N ".I _ log, N ;
(8) L < I tog, M) 1 2log, N

"7 log? N log; N\ =
We combine (4), (6), and (8) to obtain

SN = N ':&NN (Jrl log; N)

lo
9
&2 ofp s Pl gt el . - 2|,
= log, N TJ tog; N log, N I log N

It is not difficult to verify that the guantity in braces in (9) is less than 1
hence,

Nlog, N £
N log; N.
(10) S%N) < e JU, og,

But (10) is clearly equivalent to the inequality of Theorem 3, which is thus
proven.
IV. A lower bound for D(P)

The proof is virtually the same as that for Theorem 2 of [1] except that we
have a better bound for S(N).

THeoREM 4. If P ix a prime then for P large enough that log,, P = 1
P:log P-log; P
D(P) = B
I P log, P
Oy ﬂ Ly
Proof. Foreach a/P, 1 < a < P, write

A ST P
P P\ x, X3 Xiy M Y Yaa
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where %, < x4, (x4 £P) = (¥, P) = 1, and x, is minimal for all expansions
of afP. Let N = max {x,:1 < a < P}. Each value of @ requires a different
value of

| I I Lo

— = e L = E_‘

Xy Xy X, k=1 k
for some choice of g's. Thus N must be such that S{N) = P, the value a = 0
corresponding to the choice of all &, = 0. From Theorem 3 we see that for £
large enough that log,, P = 1, N must be bigger than

log Prlog, P

rtl

log,,, P [] log; P
J=4

-

gince for that value S*(N) < log P. The desired inequality follows,

There are both heuristic and experimental reasons to suppose that the order
of D{N)/N is largest for N = P, a prime. This could be established if one could
prove: that for (M, N} = 1, D{MN) <= D{M) - D(N), since we already know
[1, Theorem 5] that D(PY) < 2D(P)P*~'. Exact estimates for D(P) seem diffi-
cult sinee D{P)/P is not monotone,
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