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I . Introduction
A positive fraction a/N is said to be written in Egyptian form if we write

a/N = 1/n 1 + 1/n 2 + • • • + 1/n k , 0 < n 1 < n2 < . . . < nk ,

where the n i are integers. Among the many expansions for each fraction a/N
there is some expansion for which nk is minimal . Let D(a, N) denote the minimal
value of nk .

Define D(N) by D(N) = max {D(a, N) : 0 < a < N} . We are interested in
the behavior of D(N) . In our paper [1] we showed that for N = P, a prime,
D(P) >_ P log P and that for some constant K and any N > 1, D(N) <
KN (log N)4 . It was surprising that such close upper and lower bounds could
be achieved by the simple techniques of [1] . In this paper we refine the tech-
niques of [1] and show that on the one hand for P large enough that log 2r P >_ 1,

D(P) >
P log P loge P

r+1
log,+ 1 P fl log; P

i=4
and on the other hand that for c > 0 and N sufficiently large (Theorem 1 and its
corollary yield more precise statements), D(N) < (1 + s)N (log N)2 . We con-
jecture that the exponent 2 can be replaced by (1 + 8) for S > 0 .

As part of the proof of the above results we need to analyze the number of
distinct subsums of the series ~N 1 1/i, say S(N) . We show that whenever
loge, N >_ 1,

r

	

N log, N naN n log; N < log S(N) < log N j=3 log
; N

log N i=3

for some a >_ 1/e .

11 . The upper bound for D(N)

Let p, denote the kth prime, and let 11 k = nk=1 pi. We recall from [1] :

LEMMA 1 . If 0 < r < u(Ilk) then there are divisors d i of IIk such that
r=Edi .
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LEMMA 2 . For N sufficiently large, if k is chosen so that l1 k_, < N < 11k ,
then

2
log log N

Proof. If 9(x) _ Y_p,X log p then 109 l1 k = O(A) . We note that A
is the least prime such that 9(pk ) >- log N. By [4, Theorem 4], 9(x) >_
x(1 - (1/2 log x)) for large enough x . Thus if

log log N

then 9(x,) >- log N. Let po be the least prime greater than xo . For xo suffi-
ciently large we have [3, p. 323] p o < xo + x013. Since pk < po ,

< log N 1 +	2pk

	

g (

	

log log N
for N sufficiently large .

LEMMA 2* . If N > 2 and Ilk _ I < N < Il k then pk < 2 log N/log 2 .

Proof. For N = 2, A = 2 and the lemma holds. For 3 -< N < 6, A = 3
and the lemma holds. For n 2 < N < r116 the theorem follows since for k <
16, computation shows that pk < 2 log n k _ 1 /log 2. For N >- II 16 we have
log N >_ 41 . By definition of 9(x), log Il k = 9(pk) where A is the least prime
such that 9(pk ) >_ log N. Since for x >- 41 we have [4, Theorem 4, Corollary]
9(x) >_ x(1 - (1/log x)), we see that

9(xo ) >- log N for x o = log N 1 +	3	 >_ 41 .
2 log log N

By Betrand's postulate we see that pk < 2xo . Since

2(1 +	3	
)

< 2/log 2 when log N >- 41,
2 log log NJ -

the lemma follows .

LEMMA 3 . If N >_ 12, then in the closed interval [,IN, N + , N] there are
at least [Nl2] + 1 square free integers with all prime factors less than N.

Proof. Let II* = l ,< N p . Let D = {m : ,/N < m < N + ,/N, m I II*} .
Let Q(x) be the number of square free integers not exceeding x . Thus

I DI >- Q(N + ,/N) - Q(,/N) - L

where L is the number of primes between N and N + ,/N inclusive. Suppose
N >- 24 z , so that ~N >_ 24 . In the interval [N, N + ,IN] only odd numbers
can be prime ; there are at most 1 + ,/N odd numbers, and at least four of
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them are divisible by 3. We deduce that L < (z ,/N) - 3. From the proof of
Theorem 333 in [2] we see that

Thus

Q(x) Y=

	

x
u(d) r-

	

d d2~ .

Q(N + /N) - Q(VN) _ E u(d) CN	 + ,IN
~

d<_JN+ ,IN

	

d

p(d)
d<_N1 /^

	

[4d1

_> (N + /N)

	

µ(d)

d<JN+ ,/N d 2

d<_N114
µ(d)- ,IN

d

	

4 d2
- [N/N + ,/N] .

< N 1

Since Y_, L, µ(d)/d 2 = 1/C(2) = 6/7r 2 and lµ(d)j < 1 we get

Thus

Q(N + N/N) - Q(,/N) > 6N - [N/N + ,/N] - N

	

12

JN
N 1 1 4 <d<JN+ ,IN d

2

IDI > 6N -

	

2N

	

_ N/N - N/N + 3 .
712 N/N + IN

[N 114]

	

2

d>JN+,IN d

>N-M-M-
JN [N114]

M

where M = [N/N + ,/N] . Since N/N + N/N - N/N - /N >- 1, we see that
M >- N/N - /N and hence that the above expression is decreasing in M. Thus
we obtain

Q(N + N/N) - Q(,IN) > 6N
- N/N + , N -	N

N/N + N/N
1

	

_

	

1	
- ~N ([N 114]

N/N + ,/N)

- 6N -

	

2N

	

- ,/N

7r2

	

N/N + ,/N [N 11']
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To show that IDI >- N/2 it suffices to show that

0.1079 . . .

	

6 - 1 >

	

2

	

+ 1 +

	

1

	

- 3
72 2 JN + ,IN 2JN JN[N

'14] N

which is true for N = 24 2 , whence for N >- 24 2 . On the other hand one can
verify directly and/or by special arguments that the lemma is true for 576 >-

N >- 12 .

LEMMA 4. If 11 k (1 - (2/JPk)) < r < 2IIk then there are distinct d; such that

di I nk, di > Hk-1(Pk + JPk)- ' and r = E di .

Proof. We note, in order to begin a proof by induction, that the lemma is
true for k = 1, 2, 3, since for these cases IIk_ I(Pk + JPk) - ' < 1 . We suppose
k >- 4 and that the lemma is true for all k' < k . Consider the set

D = {d : JPk < d < Pk + \/Pk, d I nk-1} .

Case 1 . k >- 6, i .e ., Pk >- 13 . Let r be given in the desired range . According
to Lemma 3, IDI >- (P k + 1)/2. Also note that no two elements of D are con-
gruent mod Pk and that none is congruent to zero mod pk . Let

D* _ {0} u {II k_ 1 /d; d e D} .

If d E D*, d,54 0 then nk-1(JPk) - ' > d > nk_I(Pk + JPk)-1 . We note that
ID* I > (Pk + 3)/2 and no two elements of D* are congruent mod pk .' If r
2d mod pk for some d c D*, let D** = D*\{d}, otherwise let D** = D* .
Hence ID**I >- (Pk + 1)/2 and we may apply the Cauchy- Davenport Theorem
to find d' and d", distinct elements of D** such that r - d' - d" - 0 mod Pk .
Let r* = r - d' - d" . Then

r*>r- 2Hk-1 >11k 1

	

2 - 2CJ Pk

	

J Pk PkJ Pk

Since 1/JPk- 1 - 11JPk >- 1/PkJPk , as is seen by using the mean value theorem
on 1/Jx, we deduce that r* >- IIk(1 - (2/JPk-1)) • Let r' = r * /pk , an integer .
Then

	 2 	< r' < 211k - 1 ,
JPk-1

so by induction r' _ Y_ d, where di I TI, _ 1 , di >- (pk_I + JPk - 1 ) 1 1I k _ 2 . It
follows that r = Y pkdi + d' + d", and since the di were distinct by induction,
so are the Pkdi ; also, unless either d' or d" is zero, in which case we discard it
from the sum, d', d" # 0 mod Pk so that all the terms in the sum are distinct .
Clearly

1-lk-1
(1

-

d , d „>nk-1

Pk + ~/ Pk
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On the other hand, by induction
Ilk-2di

thus
Pk-1 + N/Pk-1 '

diPk >
Ilk -2Pk	Ilk-,

Pk-1 + ~Pk-1 Pk + N/Pk

Case 2. k = 4, 5. Pk = 7, 11 . An easy computation shows that for Pk = 7,
D* _ {0, 5, 6, 10}. Every nonzero congruence class mod 7 can be obtained as
a sum of two or fewer elements of D* as follows : 1 - 5 + 10, 2 6 + 10,
3 - 10 + 0, 4 - 5 + 6, 5 - 5 + 0, and 6 - 6 mod 7 . Thus for r 0 mod 7
we may proceed to define r' as in Case 1 . If r =- 0 mod 7, let r* = r and pro-
ceed as in Case 1 .

For Pk = 11, D* _ {0, 2 . 3 7, 5 • 7, 2 • 3 • 5, 3 • 7, 3 • 5} - {0, 9, 2, 8, 10, 4}
mod 11 . Every congruence class mod 11 can be obtained as a sum of at most
three distinct elements of D* as follows : 0 - 0, 1 - 10 + 2, 2 - 2, 3 - 10 +
4, 4-4, 5-10+4+2, 6-4+2, 7-10+8, 8- 10+9, 9-9,
10 - 10. Thus we may define r' and proceed as in Case 1 . The proof is com-
pleted .

We are now ready to prove

THEOREM 1 . For every N, D(N) < ~ 3(N)N(InN) 2 where 2/log 2 >_ ~(N) >_ 1
and liMNy oo )L(N) = 1 .

Proof. Given a/N choose Il k such that IIk - 1 < N < Ilk . If N I IIk, then
a/N = b/Ilk . By Lemma 1, b = E di, d i I Il k . By reducing the fractions in
Y_ di/Il k we obtain a representation of a/N in which no denominator exceeds
Il k < 2N log N/log 2 .

If N X IIk write a/N = (qN + r)INIlk where r is chosen so that

IlkC1-
2 . <_r<2Il k .
V Pk

This can be done since we may assume a >_ 2 and since N < IIk . The fraction
q/II k can be handled by Lemma i, as in the paragraph above . We now use
Lemma 4 to write r/II k in Egyptian form using very small denominators . By
Lemma 4, r = Y_ di where di I IIk , the di are distinct and di ? IIk - ,(Pk + N/Pk) -1
Thus r/II k = (Y_ di)/ Il k = Y_ 1/n i where n i = II k/di. Thus the n, are distinct and
ni < P k(Pk + \IlPk) . It follows that r/NIl k = Y, 1/n i where n i = nW and the
n i are distinct from each other as well as from the denominators in the expan-
sion of q/II k since these denominators all divide II k while N I n i and N X IIk .
Furthermore

ni < NPk(Pk + ~Pk) < ~3 (N)N(InN) 2

where 7(N) can be chosen to satisfy 2/log 2 >_ ~(N) by Lemma 2*, lim,-,,
~(N) = 1 by Lemma 2, and ~(N) >_ (I + (1//log N)) .
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N
111 . The number of distinct subsums of y 1 /i.

DEFINITION . Let S(N) denote the number of distinct values of F-k= i s,/k

where the ek's take on all possible combinations of values with ek = 0 or 1 .

To obtain a lower bound for S(N) we begin with the following lemma .

LEMMA 5 . For all N >- 3, S(N) > 2N/IogN

Proof : It is clear that each distinct choice of the E p ' s for p prime yields a
different value of Y-P s N EP/p . Thus S(N) >- 2' (N) . Since for N >_ 17, 7r(N) >_
N/log N by Corollary 1. of Theorem 2 of [4], the lemma is true for N >_ 17. To
verify that the result holds for 3 < N < 16, note that both S(N) and 2N/tog N

are monotone and 2 4 / log 4 < 8 < S(3), 212/'og 12 < 25 < S(5) and 216/iog 16 <

2 6 = 2'(13) < S(13), where S(3) = 8 and S(5) = 25 are a result of direct
verification . Thus the lemma is proved .

THEOREM 2 . If r >_ 1 and N is large enough that Iog2r N >_ 1, then
r

S(N) >- exp a •N
. fj logj N

log N ;=3

where a = 1/e is a permissible value for a and log, x = log x, logj x =
log (logi -, x) •

Proof. The proof is by induction on r .
In order to prove the theorem with the proper constant we make the slightly

stronger (as will be shown at the end of the proof) inductive hypothesis

(*)

	

S(N) > exp

	

(1
-	3	

N
fj log; N)

,=3

	

log2j _2 N log N 3

for Iog2k N >_ 1 . The hypothesis (*) is clearly true for k = 1, 2 by Lemma 5 .
We assume the induction hypothesis holds for k = 1, 2, . . . , r - 1 and show
that it also holds for k = r > 3 .

Let Q = 2N/log N and Q' = N/1og2 N. Note that Q' > Q . We define 9 by

Y _ {N >- p >_ Q : p a prime} .

Let T = {k < N: there exists p c Y, p I k} .

S(N) is greater than the number of distinct values of the sume Y_k E r e,/k,
which we denote by T (N) . We rewrite the sum as

~ Lk _

	

1 N~/p ek

kET k

	

pEY p (k=1 k)

Set Y,k= Ek/k = ap/bp where log by = O(N/p), O(x) _ Y_ P, log p. Also

ap < 2bp log Nip for p < N/3 .
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Thus, if
1 ap - ap = c (c, d) = 1,
p by

	

by

	

d'

then p I d if p X (ap - ap) . But forp< N/3,

ap - ap < 2b p log NÍp < 2 log (NÍp)eO(N p) .

Since O(x) < ( 1.04)x [4, Theorem 12] we see that

ap - ap < 2 log (NÍQ)e(1
.o4)NIQ < Q < p,

since N >- ee . For p > N/3 it is clear that p X (ap - a') .
Thus p X (a p - a') and p I d. It follows that distinct choices of ap/bp yield

distinct sums . Thus T (N) >- H p E,, S(N/p), so that S(N) >- H p F y S(N/p) .
We will now evaluate the above product using our inductive hypothesis . First

note that

log S(N) >_

	

log S

CNJ
.

PE .

	

p

For simplicity let S*(x) = log S(x) .
We recall the well-known method using Stieltjes integration with respect to

9(x) and integration by parts by which one evaluates sums where the variable
runs over primes [4, p . 74] .

LEMMA 6 . Iff'(p) exists and is continuous then

f(p)
= J Q

f(x) dx +
C

9(x)
-x f(x)~ Q

Q<p<_Q

	

Q log x

	

log x

	

Q

-

J Q

	

d C	~(9(x) - x)

	

f(x)-	 dx.
Q

	

dx log x

Let L*(x) = x/log x fl3 1 logi x, and note that for Q < p < Q', N/p >_

1092 N ; hence 1092(r- 1) NÍp >_ logs N >_ 1, and the induction assumption tells
us that

We thus obtain

S*(NÍp) >

	

C1-	3	 L*(NÍp) .
4

	

1092i-2 N

11
C1

	 3	
/I

1 S*(N) >-
i=4

	

10g2j_2 N
L*(N/p)Q< p-<Q ,

Q e(NÍx) dx + a(x) - x L*(NÍx)fQ log x

	

log x

-
J

O(x) x) d
(e(Nlx)) dx

Q

	

dx log x

S1 + S2 + S3, say .

Q ,

Q



We shall estimate the absolute values of S2 and S3 and then the value of S,,
the main term . We use the estimate [4, p . 70] 19(x) - xj < x/(2 log x) to obtain

as follows

I S21 <
2 loQ' Q' L*(N~Q )+ 2 1 g 2 Q L*(N/Q)

NL	
* log N

NL* (1og2 N)

	

+

	

2

21092 N (log N - log, N) 2 log N (log N + log 2 - loge N) 2

N

	

1092 N
r+1

<

	

2

	

1093 N 2 log3 N fj
logj N

2 log 2 • 1092 N (1 -	
log N

N

	

log N

	

r+		n log; N

log3 N l+
log 2- loge N 2 2 (loge N- log 2) a

(

	

log N

	

)

N

	

r
< 2 log e N n log; N

logy+ , N

	

1

log, N logo N C1 - log
log

	 ,
N J

	 N)2
C1 - 1092

N J
e
N12

(Iog2 N - log 2)

<
log
N
N fj log j N .

r

A straightforward calculation yields

d e(N/x)
dx log x

for x in the prescribed range . Thus

IS31 <
f

g	 N	 n log; NIX dx .
Q 2x log 2 x log NIX 3
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N
IS21 <

l0g 2 N

	

log' N

r-1
_<	

N

	

log; NIX
x2

	

f]log x log NIX 3
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Using the facts that NIX < log N and 2 loge x >_ (3/2) log e N for all x in the
range of integration, we see that

r
2N fj log_ ; N Q'

	

dx
IS3l

	

3 log e N fQ x log NIX
r

2N 11 log ; N
	 4	

3 log e N
(-log z N/xlQ')

r
2N n log ; N

3 4

	

N ( - loge N/xlQQ'IugN)
log 2

r
N fl logj N

G	3	

logz N
We next obtain a lower bound for S 1 :

S 1

	

Q	
N

	

fj log; NIX dx
- fQ x log x log NIX 3

r-1
N Q • fl log ; NIX

>_	3	 dx .log N fQ x log NIX

With u = rj3 1 logy NIX and v = -loge NIX we integrate by parts to obtain

Q'

	

1

	

r-1

f fj log ; NIX dx
Q x log NIX 3

r
logj

1

	

Q'

	

1

	

r 1 r 1
N/xIQ

	

n log; N/x dx2

	

fQ x log N/x (i=3 j=i+1

	

)

r-1

	

r+1

	

r

	

Q'

	

dx>_ F1 log; N/Q - rl log; N- 2 rl log ; N/Qs

	

4

	

s

	

fQ x log NIX

>_ fl log; N

where we have used that

5

2 logo N '

r-1

	

x

	

2

	

r-1

fl logi
2

>_
Cl -

	

fjto

	

logj x for log e N < x < log N.
g x

Substituting this in the lower bound for S 1 we obtain
r

S 1 >
N • fl log; N 1-	

5

log N 3

	

2 1094 N



Thus we may write N
Ek = Y Ek +

	

Ekk

k=1 k

	

kezi k

	

k .z,, k

Let S i(N) denote the number of distinct values of the sum with k E Zi as the
Ek's take on all possible values with Ek = 0 or 1 . As before S*(N) = log S(N)
and S*(N) = log S i (N), i = 1, 2 .
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Combining the estimates for S i , I52j and I53j we obtain
r

	

3

	

1n 1 -	~~ S*(N)
i

	

1092j-2 N

>_
N r

~ log; N 1-	5

	

-

	

2

	

- 1
log N s

	

2 1094 N log N 1093 N log N
r3

	

N
fj log; N

logo N log N s

which satisfies (*) . Thus (*) holds for all r >- 1 .
Since we know log2r N >- 1 we deduce that 1og 2 ; 2 N >- e2r-2i+2 . Thus

1	 3	 >_

	

1	 3 1
lo

	

N)

	

(

	

e2r-2i+2
Ji=

	

92i-2

	

i-
r-2

	

3;n
C1

	

e 2i)

°°

	

1

	

3>_ ~ -
1

	

e 2i

> 1/e,

where the last inequality follows from the facts that for 0 < x < 3/e 2 =
0.406 . . . , log (1 - x) >- -3x/2 and -(3/2) Y 1 3/e2j = -0.526 "' > -1 .
The theorem is proved .

LEMMA 7 . For N >_ 1, S(N) < 2' .

Proof. The result follows immediately since there are 2' distinct choices for
E i,l <i<-N,r i =0or1.

LEMMA 8 . For 1092 N >- 1, S(N) < exp (N/1og 2 N) .
For logo N >- 1, S(N) < exp (N 1092 N/log N) .

Proof of Lemma 8 . Let Q = N/log N. Let

9={p:Q<p<N},

Z1 = {k < N: there exists p c ~, p I k}
and

Z2 = {k < N: k ~ Z1 } .
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The case log e N >- 1 .

Subcase A . N >_ 10 8 . We estimate Si(N) first. From the definition of Z,
we see that

IZ11 _ y N < N Y 1 .
pE, p

	

pE~ P

Using the estimates of [4, Theorem 5 and corollary], we obtain

jZ <_ N 109 2 N - 109 2 Q
+ l0 1 N + 2 to

	 I	) .
g 2

	

g2 Q

Since S,(N) <_ 2 1 ' 11 , it follows that

(1)

	

S*(N) < N (log 2) 01092 N - loge Q + loge
N + 2 to g 2 Q)

We now estimate SAN) . Suppose Y-k E ZZ rjk = alb, then independent of the
choice of the Sk's we may choose b = l.c.m . Z2 . From the definitions of ~(x)
and 9(x) [2, pp. 340-341] we deduce that log b = ~ (N) - (9(N) - 9(Q)) .
Since O(x) _ Ek r 9(x i1k) one can show O(x) - 9(x) < 1 .Sx i / 2 (see [4,
Theorem 13]) . Hence we see that log b < 9(Q) + 1 .5,,/N . On the other hand

N

a < 1 <IogN+y+ 1
N

where y = 0.57 . . . is Eider's constant . Thus we see that the number of distinct
possibilities for a is at most b(log N + y + 1/N) . It follows that

Since S*(N) < S*(N) + S*(N) we can now estimate S*(N) .
By the above estimates (1) and (2) for S,(N) and S *2 (N) we get

S* (N) < N

	

log 2 (log e N) 2 - 1092 Q 109 2 N +	 1092 N +
1092

N )log e N

	

(log N)2

	

2 (log Q)2

+ log (log N + y + 11N)'1092N
N

+ 1 .02 109 2 N + 1 .5 loge Nl
log N

	

,~/N

where we have used [4, Theorem 9] for the penultimate term . A straight-
forward calculation shows that for log e N >_ 1 the term in the braces is de-
creasing when N >_ 108 , and is less than 1 .

Whence

(2)

S2 (N) < (log N + y + 1/N) exp (9(Q) + 1 .5JN) .

S ** (N) < log (log N + y + 1/N) + 9(Q) + 1 .5, N.
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Subcase B . 10 8 >_ N >_ ee . If log, N < 1/log 2 = 1 .4 • • • , i .e ., N <
68.8 • • • , then 2' < exp (N/log, N) and the desired inequality holds .

For N = 69, 70, 71, 72, or 73 we note by direct calculation from the definition
that JZ i 1 < 23 < N • (23/69) = N/3 . Thus

S*(N) <
N log 2 < N log 2 1

S*, (N)

	

l09, N (),2

S*(N) < log (log (N + y + 1/N) + 9(Q) + 1 .5,,/N)

< N

	

log (log (N + y +1/N)) log, N log, N 1 .5 log, N
log, N

tlog	
+ log N

	

IN

Since S*(N) < S*(N) + S*(N) we obtain

S*(N) < N

	

log 2 + log (log (N+ 1)) log, N + log, N + 1 .5 log, N
log, N 2

	

N

	

log N

	

,,IN

Since the term in braces is less than 1 for 69 < N < 74, the inequality hold
for N < 74 .
For 74 < N < 10 8 we use the estimates of [4, Theorems 18, 20, and 13] to

obtain the desired result in a manner analogous to the case when N >_ 10 8 .
The difference in the cases 74 < N < 10 8 and N >_ 10 8 are all consequences
of the different estimates for E l/p and 9(x) . The calculations are left to the
reader .

Thus the first half of Lemma 8 is established .

The case log o N >_ 1 . In this case N >_ 108 . From (1) and (2) we get

S* N < Nloge 	log 2 log N - log, Q log N
( )

	

log N

	

g

	

g

	

log, N

+

	

1

	

+

	

log N
log N l09, N 2 l09, N loge Q

log (log N + 1) log N

	

1 .02

	

1 .5 log N
+ (

	

N l09, N

	

+ l09, N + ,,/N l09 , N
Using the estimates

tog N _ log, Q log N < 1 + log, N
log, N

	

log N

in the above inequality yields

S* N < N log, N
~l0 2

C1

+
log, N +

	

1

	

+

	

log N
()

	

log N

	

g

	

log N

	

log N loge N 2 log, N logz Q

log (log N + 1) loge N 1 .02 1 .5 log N
+

(log
N loge N

	

N + log, N + ~/N log, N)}



610

	

MICHAEL N. BLEICHER AND PAUL ERDŐS

An easy calculation shows that in the range under consideration, 109 4 N >- 1,
each term in the parentheses is decreasing. Trivial numerical estimates show
that for logo N = 1 the quantity in braces is less than l .

Lemma 8 is proved .

LEMMA 9 . Let Q = N/log N and Q' = N/loge N. Suppose that 109 6 N >_ 1 .
Then

1

	

< log, N

	

1094 N_	 1 -	
Q< Q • p log (N/p)

	

log N

	

2 log, N

Proof. This is proved by using Lemma 6 almost exactly the same way it was
used in the paragraphs following its proof, except that in this case f (x) is simpler
and slight adjustments must be made since we are deriving an upper bound .

The details are left to the reader .

THEOREM 3 . For r >_ 1 and log,, N >- 1,
N log, N

	

rS(N) < exp	 H logy N
(log' N 1092 N ;=i

Proof. The values r = 1, 2 yield the statements of Lemma 8 . We suppose
the result is true for r - 1 >- 2 and show that it holds for r .

We divide the integers less than N in a way similar to that in the proof of
Theorem 2 . Let Q = N/log N and Q' = N/log e N. We define Z 1 and Zz by

Z1 = {k < N : there exists p, Q < p < N, p I k}
and

ZZ = {k < N : k Z1} .
Thus

Ek

-

	

Ek +

	

Ek

k=1 k

	

keli k

	

kelz k
If S,(N) denotes the number of distinct values of the sums over Z ; as the Ek's

take on all possible values with E k = 0 or 1, then S(N) < S1(N)S2(N) . We
estimate each of S1(N) and SAN) separately . Let S*(N) = log S i(N) ; then
S*(N) <_ S*(N) + S*(N) .

We estimate S ** (N) first. For any choice of Ek's we may write
N

Y
ak = a where a< Y 1 b and b= l.c.m. (Z2)*

kCZ Z k

	

b

	

t=1 i

As in the proofs of Lemma 8, we obtain from (2),
S*(N) < log (log N + 1) + 9(Q) + L5,IN

(4)

	

< 1092 N+ 1/log N+ N/log N+ N/log e N+ 1 .5, N

< 2N/log N

where we have used [4, Theorem 4] and 1/(2 log Q) < 1/log N for the values
of N under consideration .



We now turn to an estimation of S,(N) . We rewrite the sum as follows
£k

	

1 yNlp Ek

keli k

	

Q<p<N P (k=1 k)

where the "k's on the internal sums (which properly should be s p , k) are inde-
pendently taking on all possible combinations of values of 0 or 1 . We see from
this representation that

S*(N) < E S*(Nlp) .
Q<p<N

We break the sum in two parts as follows :

(5)

	

E, _

	

S*(NIP),

	

E 2 = I s * (N/P) .

Notice that for Q < p < Q' we have Nip >_ 1092 N and thus

(7)
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6 1 1

Q<p<Q'

	

Q'<p<N

1092(r-1) N/p > 1092r N > 1

so that the induction hypothesis for r - t is satisfied for NIP in the first sum .
For the second sum we will use the estimates of Lemmas 7 and 8 which yield
S*(x) < x log 2 and S*(x) < (x log, x)/log x . We estimate E 2 first .

12 <
L `, N log e NIP

+ Y, N log 2
Q'<p<-NIE p log NIP

	

NIE<p<N p

where E is chosen so that log, E = 1 . The first sum can be estimated by the
use of Lemma 6 with

f (P) =
log,(NIP)
p log (NIP)

After some calculation one gets

f(P) <
N logo N .

Q'<p<NIE

	

log N

Using the standard estimates [4, Theorem 5] for Y Ilp one obtains

y N log2 < N log E
NIE<p<N P

	

log N
We thus obtain

(6)

	

E, <
log

	 N
N

(loge N + log E) .

We now estimate E 1 from (5), where we substitute for S*(N/p) the bound
given by the induction hypothesis to obtain

~ 1 < E

	

N logy-1(NIP)

	

fj log; (NIP)
Q<p<_Q' P log (NIP) 1092 (NIP) j=1

N log,-,NIQ r-1	 I	
< log NIQ 1 092 NIQ i=

11 log, (N/Q)
Q<]P~Q, p log NIP'
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where we have used the fact that

log,_, N/x

	

log (N/x)
log N/x loge N/x j I

is decreasing in the interval Q < x < Q' since the two terms in the denominator
cancel into the numerator and the rest of the numerator is clearly decreasing
in x. But N/Q = log N and Y_ 1/(p log N/p) can be estimated by Lemma 9 ;
thus

N log, N

	

to N log,N 1	 log, N<
1 1092 N log, N (02 g' ) log N

	

2 log, N

The above can be rewritten as

( 8)

	

Y- < N log, N

	

l log, N
X
1	 log,N

1

	

log e N log e N j=1

	

2log, N

We combine (4), (6), and (8) to obtain

S
*
(N) <

Nlog,N

C

r

	

)

log N
~ logj N

(9)

	

x 1 --	 log, N + logo N + log E +

	

2
2 1093 N logy N fl log j N log, N fj logj N

j=3

	

j=3 1
It is not difficult to verify that the quantity in braces in (9) is less than 1 ;

hence,

(10)

	

S*(N) <
N log, N

fj logj N .
log N j=3

But (10) is clearly equivalent to the inequality of Theorem 3, which is thus
proven .

IV. A lower bound for D(P)

The proof is virtually the same as that for Theorem 2 of [1] except that we
have a better bound for S(N) .

THEOREM 4 . If P is a prime then for P large enough that 1og 2r P

D(P) > P • log P •loge P
r+1

logy+ 1 P fj logj P
j=4

Proof. For each a/P, 1 < a < P, write

a _ 1

	

1

	

1

	

1

	

1

	

1

	

1

P

	

P x1

	

x 2

	

Xt.)Y1

	

Y2

	

Y, a

>_ 1



DENOMINATORS OF EGYPTIAN FRACTIONS 11

	

6 1 3

where x, < xI+I, (x i , P) _ (y i , P) = 1, and x, a is minimal for all expansions
of a/P . Let N = max {x, , : 1 < a < P} . Each value of a requires a different
value of

1

	

1

	

1 _ N ak
x l

	

x 2

	

xru

	

k=1 k

for some choice of s k 's. Thus N must be such that S(N) >_ P, the value a = 0
corresponding to the choice of all a k = 0. From Theorem 3 we see that for P
large enough that 1og2r P >_ 1, N must be bigger than

log P • 1092 P

UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN

r~+1
logr +, P 11 logj P

j=4

since for that value S*(N) < log P . The desired inequality follows .
There are both heuristic and experimental reasons to suppose that the order

of D(N)IN is largest for N = P, a prime . This could be established if one could
prove that for (M, N) = 1, D(MN) < D(M) • D(N), since we already know
[1, Theorem 5] that D(Pk) < 2D(P)P k-1 . Exact estimates for D(P) seem diffi-
cult since D(P)IP is not monotone .
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