COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

DECOMPOSITION OF SPHERES IN HILBERT SPACES
P. ERDÖS, D. PREISS, Budapest - Praha

<u>Abstract</u>: A simple construction of a graph with \mathcal{S}_2 vertices and with the chromatic number \mathcal{S}_4 whose every subgraph spanned by \mathcal{S}_4 vertices has chromatic number $\neq \mathcal{S}_0$ is given.

Key word: Chromatic number of a graph.

AMS: 05C15 Ref. 2.: 8.83

Assume the generalized continuum hypothesis. Consider the unit sphere of the Hilbert space of $\kappa_{\text{cC+2}}$ dimensions. We join two of its points by an edge if their distance is greater than $\frac{3}{2}$. Since $\frac{3}{2} < \sqrt{3}$ the chromatic number of this graph is by the following theorem $\kappa_{\text{cC+1}}$ (a graph is called m-chromatic if one can color its vertices by m colors so that two vertices which get the same color are not joined, but one cannot do this with fewer than m colors). On the other hand every subgraph spanned by $\kappa_{\text{cC+1}}$ vertices has again by the following theorem chromatic number κ_{cC} . A different construction of such graphs is given in [1].

This note was written at the Durham symposium on the relations between infinite-dimensional and finite-dimensional convexity (1975).

Theorem. Let $\mathcal{H}_0 \neq n < m$ be cardinal numbers. Then (i) - (iii) are equivalent and imply (iv), moreover, under generalized continuum hypothesis they are equivalent to (iv).

- (i) For every $c > \sqrt{2}$ the unit sphere in a Hilbert space of m dimensions can be written as a union of n sets with diameter < c.
- (ii) There is a number $c \in (\sqrt{2}, \sqrt{3})$ such that the unit sphere in $\mathcal{L}_2(m)$ can be written as a union of n sets with diameter < c.
- (iii) There is a family $\mathcal C$ of subsets of m such that card $(\mathcal C) \leq n$ and $\mathcal C$ separates points of m (i.e. for ∞ , $\beta \in m$, $\infty \neq \beta$ there is a set $C \in \mathcal C$ with card $(C \cap \{\infty, \beta\}) = 1$).

(iv) m = 2"

Proof. The implications (i) \Longrightarrow (ii) and (iii) \Longrightarrow (iv) are obvious. (ii) \Longrightarrow (iii): Let $\{A_{\alpha'}; \ \sigma \in \ n\}$ be sets in $\ell_2(m)$ with diameter $<\sqrt{3}$ covering the unit sphere in $\ell_2(m)$. For α , $\beta \in m$, $\alpha \neq \beta$ put

$$x_{\infty,\beta}(\gamma) = \frac{1}{\sqrt{2}} \text{ for } \gamma = \infty$$

= $\frac{-1}{\sqrt{2}} \text{ for } \gamma = \beta$
0 otherwise.

Put $C_{\sigma} = 4 \infty c$ m; there exists $\beta \in m$, $\beta + \infty$ such that $x_{\infty,\beta} \in \mathbb{A}_{\sigma}$?.

If ∞ , $\beta \in m$, $\infty + \beta$ then there is a σ' such that $\mathbf{x}_{\alpha,\beta} \in \mathbb{A}_{\sigma'}$. Consequently, $\infty \in C_{\sigma'}$ and $\beta \notin C_{\sigma'}$ since $\|\mathbf{x}_{\alpha,\beta} - \mathbf{x}_{\beta,\gamma'}\| \ge \sqrt{3}$ for any γ' . Therefore the family $\{C_{\sigma'}; \sigma' \in n\}$ separates points in m.

(iii) \Longrightarrow (i): Let $0 < \varepsilon < \frac{1}{2}$. Let A be a family of subsets of m separating points of m. We may and will suppose that A is closed under complements and finite intersections. Let A be the system of all pairs of finite sequences $\{(A_1, \dots, A_p), (r_1, \dots, r_p)\}$ where $A_1, \dots, A_p \in \mathcal{A}$ are nonempty and disjoint and r1, ..., rp are rational numbers that $1 > \sum_{i=1}^{\infty} r_i^2 > (1 - \varepsilon)^2$. For $\sigma \in \mathcal{B}$, $\sigma = \{(A_1, \dots, A_n),$ $(r_1,...,r_n)$ } put $C_{\sigma} = \{x \in \ell_2(m); ||x|| = 1 \text{ and there are }$ $\alpha_i \in A_i$ such that $\sum_{i=1}^{n} (x(\alpha_i) - r_i)^2 < \epsilon^2$, First prowe that the family $\{C_{\sigma}; \sigma \in \mathcal{B}\}$ covers the unit sphere in $\ell_2(m)$. If $x \in \ell_2(m)$, $\|x\| = 1$ find $\alpha_1, \dots, \alpha_m$ that $\|y - x\| < \varepsilon$ where $y(\infty_i) = x(\infty_i)$ and $y(\infty) = 0$ for all other lpha . Since ${\mathcal A}$ is closed under complements and finite intersections, we can find disjoint sets $A_i \in \mathcal{A}$, i = = 1,...,p such that $\alpha_i \in A_i$. Choosing r_i sufficiently close to $x(\alpha_i)$, we obtain $x \in C_{\sigma}$, where $\sigma' = \{(A_1, \dots, A_n), \dots, (A_n, \dots, A_n), \dots, (A_n, \dots, A_n)\}$ (r1; ..., rp) } .

Let us estimate the diameter of $C_{o^{r}}$. If $x,y \in C_{o^{r}}$, choose $\infty_{i} \in A_{i}$, $\beta_{i} \in A_{i}$, (i = 1,...,p) such that

$$\sum_{i=1}^{n} (x(\infty_{i}) - r_{i})^{2} < \epsilon^{2} \text{ and } \sum_{i=1}^{n} (y(\beta_{i}) - r_{i})^{2} < \epsilon^{2}.$$
Put $x_{1}(\infty_{i}) = x(\infty_{i}), x_{2}(\infty_{i}) = r_{i} \text{ for } i = 1, \dots, p,$

$$x_{1}(\infty) = x_{2}(\infty) = 0 \text{ for all other } \infty,$$

$$y_{1}(\beta_{i}) = y(\beta_{i}), y_{2}(\beta_{i}) = r_{i} \text{ for } i \neq 1, \dots, p,$$

$$y_{1}(\beta) = y_{2}(\beta) = 0 \text{ for all other } \beta.$$
Then $1 = \|x - x_{1}\|^{2} + \|x_{1}\|^{2} \ge \|x - x_{1}\|^{2} + (\|x_{2}\| - \|x_{1} - x_{2}\|)^{2} \ge \|x - x_{1}\|^{2} + (1 - 2\epsilon)^{2}$
thus $\|x - x_{1}\|^{2} \le 4\epsilon - 4\epsilon^{2} \le 4\epsilon;$

similarly we prove that $\|\mathbf{y} - \mathbf{y}_1\| \neq 2 \sqrt{\epsilon}$, therefore $\|\mathbf{x} - \mathbf{y}\| \neq \|\mathbf{x} - \mathbf{x}_1\| + \|\mathbf{x}_1 - \mathbf{x}_2\| + \|\mathbf{x}_2 - \mathbf{y}_2\| + \|\mathbf{y}_2 - \mathbf{y}_1\| + \|\mathbf{y}_1 - \mathbf{y}\| \neq \sqrt{2} + 4\sqrt{\epsilon} + 2\epsilon$.

(iv) \Longrightarrow (iii): We can suppose that $m=2^n$ and n is a set of ordinals such that card $T_{\infty} < n$ for any $\infty \in n$. For $\infty \in n$ and $B \subset T_{\infty}$ put $A_{\infty, B} = \{C \subset n; C \cap T_{\infty} = B\}$.

The family $\{A_{\infty, B}; \infty \in n, B \subset T_{\infty}\}$ separates points in 2^n and, sime $2^{\operatorname{card}} T_{\infty} \neq n$, its cardinality is $\neq n$.

Remark 1: Not using the continuum hypothesis we can prove (in the same way as in (iv) => (iii)) that (iii) holds for such cardinals n, m that

- (a) m ≤ 2ⁿ
- (b) If n'< n then 2n' n.

Remark 2: If $\#_0 \leq n < m$ are cardinal numbers satisfying the condition (iii) of the theorem and if $n^{\ell_0} = n$ then the unit sphere in $\mathcal{L}_2(m)$ can be written as a union of n sets with diameter $\leq \sqrt{2}$. (One can take the covers \mathcal{L}_p with diameter $< \sqrt{2} + \frac{4}{n}$ and put $\mathcal{L} = \{\bigcap_{p=1}^{\infty} \mathbb{A}_{m_p}; \mathbb{A}_{m_p} \in \mathcal{L}_p\}$.) Therefore the graphs obtained by joining two points of the $\#_{\alpha+2}$ -dimensional Hilbert space if their distance is

 $> \sqrt{2}$ has the chromatic number $\#_{\infty+1}$.

Reference

[11 P. ERDÖS and A. HAJNAL: On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hung.17 (1966), 61-99.

1124 Budapest Hungary

Németvölgvi ut 72/c Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 9.9. 1976)