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A NOTE ON REGULAR METHODS OF
SUMMABILITY AND THE BANACH-SAKS PROPERTY

P. ERDOS AND M. MAGIDOR

ABSTRACT. Using the Galvin-Prikry partition theorem from set theory it is
proved that every bounded sequence in a Banach space has a subsequence
such that either every subsequence of which is summable or no subsequence
of which is summable.

The infinite matrix {af,r'}EEw,j(—'w (w is the set of natural numbers) is called a
regular method of summability if given a sequence (¢, of elements of a
Banach space B, converging in norm to e, then the sequence ¢; = 2;:0 a;e;
converges also to e. The sequence {e, -, is called summable with respect to
(@jiewjenif € = E;lo a;e; converges in norm. (See [2, p. 75] for reference.)
It is well known [2] that <a:}'>r'Ew‘jEw is a regular method of summability if and
only if

(a) Lub. 74 la;| < M < oo,

(b) lim,_, agoc= 0 for every j,

(¢} lim_, X _ga; =1

In this note we prove:

THEOREM. Let {e;);c , be a bounded sequence of elements in a Banach space
B, and (a,-j ),-Ew_ jew @ regular method of summability; then there exists a
subsequence of {e; ;... (el-& Dke., Such that:

(a) every subsequence of (e!l>ke o 15 summable with respect to <"’g‘>¢'e g
each being summed to the same limit; or

(b} no subsequence of e, ke, is summable with respect to (@i w,jew

Proor. Let P{w) be the set of all infinite subsets of w. There exists a natural
topology on P(w) generated by the subbasis {4} U (B,},c, Where

HEwW nEw
A, ={plp € P(w),n € p}, B,={plp € Plw),n & p}.
Define a partition of P(w) into two Borel sets:

A = { pl{e;);ep is summable w.rt. {a; e, jeuh

B=Plw)—-A4
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(Ce; %;ep is the subsequence of {e;);c,, obtained by enumerating ¢, for i € pin
the natural order of the /’s).
We prove that A4 is a Borel subset of P(w). Let

Be,m,n = {Pl <ce

> —i

a.: e [ Y -

Jj=0 nf ki =0 my Tk
where "‘; is a monotone enumeration of p}.

B, . is Open in our topology on P(w), because if p € B, , ,, pick ¢’ such that

<& e

= o]
2 a6 J;Ea a,e
Let J be large enough such that
= = e— ¢
T(jg‘x | + jgj 2 l) =73
where T is a bound for |l ||. (/ exists because {ag—),-e‘_,_ja,
of summability.)
The set C = {qlg € P(w),g N {I|l < J} = p N {{|l < J}}is an open sub-
set of P(w).p € Cand C C B,,,,. This last inclusion is true since if g
€ C and {, is a monotone enumeration of g, then 1; = kf- for j < J. Hence,

is a regular method

o0 o0
d,.€ — d,. e
jgﬂ mi =l jgﬂ ni =l

J'il J}—:I 0 o0
& a,e — % ae |+l X a6, — 3 a e
j=0 mi=y j=0 L i=J mj = j=a ni L

3 gt 3 5 lagl+ 3
< a,.e, — a.e +T( a,.|+ a )
Jgﬂ il E‘o oy j=r " = ay]
o o0 00 o) g g
< J’§0 i €, _,-‘2:0 ey +”j§-’ A€y, —jg} aye |l + —5—

<o+ T layl+ 5 layl) + 5
E b : ; —a
e R e 2

<e+E—-€)2+(~-¢€)/2==¢

Thus every element of B,  has an open neighborhood included in B, .
Hence B_, , is open.

The set 4 is M Uy MypznBijkma- (4 is the set of those p such that
y a;e; is a Cauchy sequence if k; is 2 monotone enumeration of p.) By a
theorem of F. Galvin and K. Prikry [3] there is ¢ € P(w) such that either

(I)foreveryt C gt € Plw)=1t € 4, or

(II) for everyt C ¢, 1t € P(w) = ¢ € B.
For the sequence {¢; ;< g cither (b) holds (in case (II)) or in case (I) we shall
indicate how to pick a subsequence of it for which (a) holds. If we assume that
(I) holds, then every subsequence of (e, )¢, is summable to a limit which lies
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in the subspace spanned by (e, );c,. Call it B, which is of course separable.
For every n € w,n # 0, let {4” |m € v} be a family of open balls of radius
I/n covering B’. By induction we get a sequence --- C g3 C gy C g Cgq
such that either (A} every subsequence of {e;. eq) 'S summable to a limit in Al
or (B) every subsequence of {e;)ie ) is summable to a limit which is outside
Ak (We can get the q“l from g, by again using the Galvin-Prikry result,
noting as before that Ihe partition of P(g,) is Borel.) Clearly for some k, we
get (A) to hold. Let g} be elements of the dlagonal sequence of the natural
enumerations of q,l Now get --- C ‘i’z = q, = q such thal either (A):
every subsequence of (e >,qu is summable to a limit m Ak or (B): every
subsequence of (e, ),Eq}c is summab]e to a limit outside A2 %+~ Again we get k,
for which (A) holds. 2, g3, etc., and k;, k,, ks, ... are defined as before.
Let ¢ be the set of elements of the diagonal sequence of the sequence generated
by the q:, Every subsequence of (g, >ae; is summable to a limit which is in
AL, for every n hence to a limit in A} which contains at most one point.
Hence the sequence (¢, <, satisfies (a).

Remarks. (1) By using the theorem countably many times (using the fact
that finitely many changes in a sequence do not influence its summability), we
can get the conclusion to hold simultaneously for a countable sequence of
regular summability methods such that the limit for those of them for which
(I) holds is the same.

(2) A Banach space is said to have the Banach-Saks property with respect
to the regular method of summability (ay- Jie, If every bounded sequence has
a summable subsequence. (See [1]. The problem sclved by this note is due to
Louis Sucheston.) As a corollary to the theorem we get: If B has the Banach-
Saks property with respect to the regular method of summability {a; )¢, je e
then every bounded sequence has a subsequence such that each of its
subsequences is summable with respect to ¢ 4y Vicwjcw:
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