Some Extremal Problems in Geometry III
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1. Introduction

Let Xl, Kz, SERIy Xn be distinct points in k-dimensional

Euclidean space E let d(Xi,Xgﬁ denote the distance hberween

-

k'
Xi and Kj, and let gk(n) denore the maximum number of solutions

of d{Ki.Xj) =a, 1<i1i<ji<n, wiere the maximun is talen

X . In

over all possible choices of a and distinct Xl, cees K

words, gk(n) is the maximum number of times that the szme distance

can occur among n points in Ek. One of the authors proved in

[1] that

I+c/loglogn
g,(a) > n [oglog

(Ioroughout this report ¢ and ¢, deasote positive constants

not pecessarily the same at every occurrence).

.
Szemeredi proved recently in [9] that gz(n) = o(n’fd} i

and one of the authors has shown in [2] that

clné{3 < 33(n) < c,n

5/3
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and

1
lim sk(n)fnz = (1/2) - 2[,5]

sl

for k > 4, where [x] denotes the integer part of x.

In other work [4], [7] the authors discuss the maximum

a
number of times fk(n) that the same non-zero area can occur

among the triangles axix X 1 <1< j<L<n, where the

7%

maximum 1s again taken over all choices for xl’ T xn in
In this report we discuss the maximum number Ei(n)

isosceles triangles that can occur (congruent or not), the

maximum number fi(n) of equilateral triangles that can occur,
the maximum number f;(n) of pairwise congruent triangles, and
the maximum number f;(n) of pairwise aimilar triangles that

can occur. All of these problems were posed at the end of our

paper [4].



2. Isosceles Triangles

In the plane we have
Theorem 1.

c nzlogn < f;(n) <e :15"?2

1 2

Proof 1. Let Xg» Xy» +o00 Xy be distinct points in E For

2

1 <1 <n, the points forming an isosceles triangle with KO and

Xi on the base lie on a line, and these lines are distinct. let vy

denote the number of points Xj on the ith line. The number of

n
isosceles triangles having KO as a base vertex is Z Vi and it will be
i=1

enough to show that this is less than cnyz. The lines containing

fewer than vn points clearly present no difficulty. Let k > 0 pe

fixed, and suppose that v aay W are the v satisfying

11' ’ iN i
k+1

2k/ng\ri<2 /o , where N =N

Since two lines have at most one point in common, we have

5e)<(z) -

Using the inequalities om vi 5
]



1.k, .k n
N3 25%R@ W0 - 1) < Q)

cn
uk < ‘k »

N
Ek . = Nk2k+lr'n < cn3!2f2k ,
=1 73

and summing over k gives the result.

7. Let m = [/n] and consider the points X, = (u )

Digt |
with integer coordinates satisfying |"'1i' |v1| <mf2. Let

u and v be fixed, |ul,|v|] < w/b4. If k< 0/16 , then the
circle with center (u,v) and radius vk will lie inside the

region
R={(x,y): [x{, |y| < w2},

and the number of points X, lying on the circle wili be r(k),

2

’ . 2
the aumber of representaiions of k in the form k=2 +m ,

where 2 and m are integers. The pairs of points on the circle

r (k)
give us ( 2 ) isosceles rriangles having (u,v) as a vertex.
N r(k)
Hence there are at least E 2 lsosceles triangles having
k=1
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(u,v) as a vertex, where N > [wlﬁ],z > cn. By formula 22 of

[8] and (18.7.1) of [5], we have

N r(k)) - . F
- = r (k) - = r(k)
F(70) - 31 cm-3]

k=1

= %(log N + B) + iZl(na"’5 + e)
- Lo+ oe’?

for every £ > 0, where B 1is a constant. Hence the number of

isosceles triangles containing (u,v) 18 at least cn logn. There

are cn choices for (u,v) and the result follows.

Theorem 2. f;(n) > 2n3f27 - cn2

Proof. Let n be given, and let Ri= (ui,vi,O) for

1 <1 < [2n/3], where are distinct solutions of

ui’\'i

ue +'Vz =1, and let

Y, = (0,0,4) for 1<1i<n- [20/3].

The triangles Axixjx’k for 1 <1i<j < [20/3] and 1 <k <n = [20/3]

are isosceles; hence
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£3@) 2 3((20/3) - 1)(20/3) - 2) @/3)

(2/21)0> - ca? .

Iv

3. Equilateral Triangles

In the plane we have

2 3/

Theorem 3. % n? - en'? j_f;(n) < 0’

/3

Proof 1. Let xl’ x?’ cnep xn be distinct points in E For

2°

fixed X, and X, there are at most two points X such that

i 3
Axixjx is equilateral., Hence fg(n) < %Lg) , and the result
follows.
2, Let A be the geometrical lattice known as the

triangular or 60° lattice. Let n be given, and let p be a
positive number chosen so that the unit disc centered on the

origin contains betweea n - clfh and n + cth points of  pA .
If X and Y are in pA, then both of the points Z forming

equilateral triangles with X and Y will lie in pA, but not

necessarily in the unit disc.



It is convenient to think of the points as complex numbers.
Let z be a fixed point in the unit disc. If W 1is also in the

unit disc , the point

%

E-%(z+u)+i%(z-—w)

forms an equilateral triangle with 2z and w. The requirement

that ]{] < 1 restricts

w =

_(1+1v’3)t;__(1+1«’3)z
2 2

to lie in a disc of radius one and center Ll~§—££il z .

The area in which this disc intersects the disc |w| <1

is the area of overlap of two unit discs whose centers are

distance |(l—133!§) z| = |z| apart. If z = x + iy, this

area 1s easily seen to be

AP
o T
A(x,y) = 2]0 {2ii~zz - Ji +y°} dz .

If 2z 1is a point of pA having modulus less than one, then the
number of equilateral triangles having 2z = x + iy as a vertex

is at least A xﬂ B o/



By integrating this function over the unit disc, and bearing in
mind that every triangle is obtained three times in this way, we

2
get f;(n} > %ﬁz I- cﬂ:”2 , where

I= sz+y?51 A(x,y)dxdy.

Hence

A2

- dxd I 22
1 szwzg o PA-5° = A7) s

1 A
- 4“10 rero {Zli-z - r} dz

1
— S
= "‘"Jo T Sin ‘(A-r") dr

r 1

- hrJo t Sinhlt dt

1
(2ne? Sin_lt]é - Z“JO t2ae/ /i

ﬂz - n2!2 = wzfz 4

Hence



£5() > (a2/37) (7%/2) - ca®/?

= (l'lzfﬁ) - cn3l“2

as claimed.

In space, wa have

f;(n) < f;(n) < s’:.u]rf3 .

The second inequality will be proved in Sectiom 4.

In Ea. we have
Theorem 4. f:(n) < r:nw3 ;
Proof. ler Xu. Xi, ity xn be distinct points in Eg' and let

G be the graph whose vertices are xl. ey Xn and whose edges

are those Xixj for which Axoxixj is an equilateral triangle.

We shall show that G cannot contain a Kuratowski subgraph K3 3

Suppose that G contains a K Then there are points

3,3

Y z
Yl' 2 Y3, it 22, and 23 such that the nine triangles

QXOYiZj are equilateral. They clearly must be congruent; let a



denote their common side length. Let 1 < 1 < 3 be fixed. The

points 2 and Y,, lie on a

being equidistant from Xy i

j.
hyperplane My which is the perpendicular bisector of the line

segment xovi. If we let xo be the origin of coordinates

and let L4 be the position vector of the point Yi’ then the

points 2 contained in w,, with

lie on an ordinary sphere 8» i

3

center (1!2)11 and radius (/3/2)a. For distinct 1 and j, the
spheres Sy» having different centers and equal radii, will intersect

in a circle iy with center (1!2)(21 + zj). The two circles

'

€y and 3 have different centers, and yet they have three points
Zj in common, This is clearly impossible; hence G does not

contain a K3,3.

By a theorem of Turdn, 508, and Kovdri [6] the graph

G has fewer than i::n.s’(3 edges; hence any vertex belongs to at

most cn5!3 equllateral triangles, and tne result follows.

Remark By slightly elaborating the above argument, the following

can be proved: If Xl, ey xn are distinct points in E& and

AXYZ 1is an acute or obtuse triangle, then no vertex can belong

5/3

to more than cn triangles similar to AXYZ, The following
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example shows that the assertion is not true if AXYZ 1is a right

triangle:
Let P: (0, 0, 0, 0)
xi : {ti,yi,0.0) 1<i<n
Y, : (0,0,x,, 1<
j ( X yj) e
2 2 2
where x, + yj = 1. Then the n~ criangles anin are

all isosceles right triangles (and in fact, congruent).

26/9

In E_. we have only f:(n) 5_f§(n) < cn , and the second

5

inequality will be proved in Section 4.

In 56' the following construction, which also appeared in
[2) and [4], gives n3 congruent equilateral triangles from

only 3m points: For 1< i<m

xi : (uil Uir O,U,0.0)
Y, ¢ (0.0,u1.vi.0,0)

Z, ¢ (O'O'D'O'ui'"i) 5
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2 2
where uy + vy 1. The triangles axivjzk are equilateral
triangles with side one, and consequently fz(n), f;(n) and

f:(n) are all greater than {n3/2?) - cnz.

4. Similar Triangles

In the plane, we have

Theorem 5. f;(n) & cnz i

Proof. Similar to the proof of Theorem 3, part one.

In space, we have

Theorem 6. Eg(n) 5_cn?!3 §

Proof. Let X Xn be distinct points in E and

P WU, "

let AABC be a triangle (non-degenerate, of course).

If 1 and j are fixed, 1 <1 < j <n, then the locus

T Xj and 2, taken in

points Z such that the vertices X
order, form a triangle similar to AABC consists of al most a
constant number ¢ circles. Let N be the number of these ¢

over all 1 and j, and let v, be the number of points X

i i

the ith circle. We have

N < cn 5

of

s0me

ircles

on



and since a triple of points can only occur on one circle, we have
N v
i n
! (3 ) 2
i=1 :

The number of triangles similar to AABC 1is 3 isl i, and

the maximum of this function, even allowing positive real vi s

subject to the constraint

N
n
Lol -y -0 6B

occurs when the v, are all equal, because the function on the

i

left-hand side is convex. Consequently,

N 1/3
y §‘{2 & {n(n-;!§n~2!} }

=

=3

- -i« + % {(n(n-1) (u-2) 1273 §*/3

< cn7{3 , by the upper bound omn N.
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Theorem 7. fz(n) £ cn17f6

Proof. Let AABC be a non-degenerate triangle, and let X xz. di xn

1.

be in Eh and distinct. We form the J3-graph G whose vertices are

the xi. and whose edges are the unordered triples {xi, xj, xk} such

that axlxjxk is similar to AABC. We claim there cannot be a
K3(2.3,3} subgraph of G. That is, there cannot be vertices

Yl’ Yz. Zl, 22. 23, Hl’ "2' and H3 such that the 18 triples

{vi,_z Zk} for 1<41<2, 1<3j, k<3 areall in G. Suppose

jl

Hk do exist. Then the triangles AYiZjH

k are

that such Yi' Zj,

similar to AABC and all congruent to each other. The three points

zj lie on a hypersphere, they are not cellinear, and they determine

a two-dimensional plane M, The three points Hk determine,

similarly, a two~dimensional plane Ty and the two points xi

determine a line L. Since the 7, are equidistant from the

]

Y T, must be orthogonal to (.

i:

Similarly, ., is orthogonal to @ and m, This is only

pozgsible in five oar more dimensions; hence the K3(2.3,3} does not

occur, as claimed. Tt follows from the methods of ([6] and [3]



1
)
n

that G has fewer than ¢ edges 1if G contains no

Ka(k,z,m}, where ¢ depends only on k, £ and m. Consequently,

there are fewer than s':nl”6 triangles similar to AABC,
Theorem 8. f; (n) < cn26f9 .

Proof. Similar to the proof of theorem 7.
The 3-graph G does not contain a K3(3,3,3) , and therefore G

has fewer than Cn26/9 edges.

5. Congruent Triangles

In the plane, we have

3/2

Theorem 9. f;(n) =o(mn 7).
Proof. Let AABC be an arbitrary non-degenerate triangle, and
let X,, ..., X be distinct points in the plane. The result

1 o

gz(n) = o(naiz) , due to Szemerédi, which was mentioned in

/

Section 1, implies that no more than 0(n3 2) pairs {xi,xj}

can be at distance AB. Each pair can occur in at most ¢ triangles

congruent to AABC , and the result follows,



In space, we have

Theorem 10. f;(n) < cnlglg .
Proof. Let AABC be an arbitrary non-degenerate triangle, and
let X., ..., X be distinct points in space. The result
5 1] n
5/3 . .
gj(n) < e,n mentioned in Section 1 implies that no more
5/3 —
than ecn pairs {xi,xj} can be at distance AB. For each

such pair, the locus of points X such that the vertices xi,xj
and X taken in some order form a triangle congruent to AABC

consists of at most a constant number of circles. Let N be the

nunber of all of these circles as {x;,xj} ranges over all the

pairs at distance 4B, Then we have

N < Cn5!3
N ' Vi
As in the proof of Theorem 6, we have | k ) < (2 ¥ 5
i=1 i

where is the number of X. on the 1th ecircle, and the number

-

vy

of triangles congruent to AABC is at most

< 2N + {:::(:r-l)(n--Z)}“3 N2f3

[}
<
-
A}

cn19)'9

A



6. Conclusion

In conclusion we would like to mention a few related problems.
Throughout this section € will denote a positive number, not
necessarily the same at every occurrence.

3

Is the inequality f:(n) > 27 - cnz best possible? It would

be interesting even to show fg(n)‘§ C%~ - e)n3 p

What is the value of limn*m f;(n)fnz ? Does the limit cven

exist? Can you prove f;(n) 5_(% - E)n2 7 Finally, we mentiou an
entirely different problem: Given n points in the plane, how

many triangles fz{n) can approximate congruent equilateral triangles?

By dividing the points into three small clusters we can get

3
fz(n) > (n3f2?). It would be of interest to show fzin) £ {% - EXn" .
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