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FROBLEMS AND RESULTS IN COMBINATORIAL NUMBER THEORY
by

Paul ERDOS

I discuss a few problems and results, mostly connected with van der
Waerden's theorem, which have occupied me and many of my co-woerkers a great
deal ever the last few years. I will try to give as complete references as poszsible,
but of course I do not claim completeness and [ apologise in advance for any omis-
sions. In general [ shall give references at the end of each chapter, but first |
would like to call the readers attention to the interesting paper of van der Waerden:
"Fow the proof of Baudet's conjecture was found'", Studies in pure mathematics,
papers in combinatorial theory, analysis. .. presented to Richard Rado, p. 251-2£0,
London and New-York. Academic Press, 1971. A Brauer, by the way, states that
the conjecture was really stated first by I. Schur. Recently a very short proof of
van der Waerder's theorem was published by R. L. Graham and Bruce Rothschild

[Proc. Amer Math. Soc. 42 (1974), 385-386].

I irtroduce the following notations : A sequence of integers is said to have

the property A(k) if it contains an arithmetic progression of k terms. It has the
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property A(=) if it has the property A(k) for every k. Van der Waerden's theo-
rem can thus be expressed a follows : if we split the integers into 4 classes, then
at least one class has the property A(=). A setof real numbers is said to have the

property A(X_) if it contains an infinite arithmetic progression.

I have published several papers in number theory, Here, I only quote two
recent ones, both of which contain many references - "Résultats et problemes en
théorie des nombres', Sém. Delange-Pisot-Poitou, 1972/73, n®24 and '"Problems
and results in combinatorial number theory', A survey of combinatorial theory,

1973, North Holland, p. 117-138.

I.- The finite form of van der Waerden's theorem states : to every k
and 4 there isan f(k,{) so that if we split the integers not exceeding f(k,14)

into 4 classes, then at least one class has the property A(k).

Van der Waerden's proof gives a very bad estimate for f(k,2), (even for
£ = 2) and this was one of the reasons which led Turan and myself to propose,
more than forty years ago, the following problem, the positive solution of which of

course implies van der Waerden's theorem

Is it true thatfor every £>0 and integer k there is an no = no{t k)

so that every sequence l<a <...<a %n, nZn

1 i , s8>¢€en has the property

A(k) ? More precisely, denote by rk(n) the smallest integer s for which every
sequence 1= A< Qasﬂ n ., 8= Tk(n] has the property A(k). We conjectured

that for every k

(n rk(n] = a(n)

It is almost immediate that rk(a~b)‘_~' rk{a) - rk(b] and this subadditiviry

implies that lim rk(n} fas € exists, but the proof of (1) seemed tc present
n+ @



great difficulties.
Originally we thought that in fact rs(n)ﬁ nl “© . but this was disproved by

Salem and Spencer who showed in 1942 that

l-c/1

ry(m)> n c/log log n

In 1946, F, Behrend showed :
(2) r3{n}> n exp(-c,,"gg_n}

and this is still the best known lower bound for ra(n} .
In 1951, K. F. Roth proved that rj(n] = o{n) . More precisely he showed
(3) rs(n)a{ cn / loglog n

and this upper bound has never been improved. The gap between (2) and (3) is

very large and it would be desirable to obtain better bounds for r3{n} i

In 1967, Szemerédi proved that r4(n} = o(n) , his proof, which is a mas-
terpiece of combinatorial reasoning, is completely elemnentary but very complica-
ted and utilises van der Waerden's theorem. K.F. Roth using his method succeeded

in eliminating the use of van der Waerden's theorem.

Very recently Szemerédi proved (1) in full generality. His proof, which
will appear very soon in Acta Arithmetica is, needless to say, again a masterpiece
of combinatorial ingenuity. Unfortunately he again used van der Waerden's theorem,
but he believes that by the method of Roth it will be posgsible to eliminate the use of
van der Waerden's theorem and thus perhaps obtain a weak, but not entirely ridi-

culous, upper bound for f(k,4).

The best known lower bounds for f(2,¢) are due to Berlekamp who, im-
proving previous results of Rado and myself and Schmidt, proved that

(2. 1) > ¢ 2%
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if £ is a prime number. It would be interesting to decide if

(4) tim £#2,4) /% < =

{+=

is true. My guess would be that (4) is true.

In connection with (4) the following might be of use and interest. Denote
by f(e, 2, £) the smallest integer so that if one splits the integers not exceeding
fle, 2. 4) into two classes there is always an arithmetic progression of 4 terms
which contains at least %(He) terms of the same class. Clearly £(1,2,4)=1(2,4).

It is possible that
(5] fle,2,4) < .::’

holds for some £>0, butl never succeeded in making any progress with (5) . By
the probalistic method it is quite easv to show that f(e,2,4)> (“CQL , (P. Erdas,

Math. Lapok 14, 29-37, in Hungarian),

Szemerédis proof of (1} is very ingenious, but rather complicated. One
of its basic tools is a lemma on the structure of bipartite gra phs which I state here
without proof. First I need some notation. Let A and B be disjoint sets,
Al=m, |B| =m . Let G be a bipartite graph whose white vertices are A and
black vertices B, If XC A, YCB, then [X, Y] denotes the set of edges (x,y)
ot G with xeX , ye¥ . Pur 3(X,V)=!IX,Y]|. Exl”l_ iyg']' {i.e. 2(X,Y) is the

density of edges of our bipartite graph). Glu) denotes'the set of vertices joined

to the vertex u .,

Now we are ready to state the lemma of Szemerédito every

By, E &, 0,c thereare mo.n M and N so that for every G for which
¢ (<]

! 2t
Al=m>M , B|=n>N, there are disjoint sets CiCA , 1Ei€m_ and
- (53
C. .ZB , I=2ji= n_ which satisiv for every 1=i Emo
Bd G
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= mo Ng
(6) fA—_Ul Ci.l <p and |B-UJ C
=

2 <an
j=1 x.jl

Further we have for every 1SiSm_ , !X j=n and S<¢C, , T<C satisfying
o [ i i, j

Is C I C
] i > El E lJ ’ | r >I’.2 | LJ[
S(S.T'} = S{Ci' Ci.j.} -0

Finally for every 1= iEmD. ISano y R Ci

Gy ne, IS (8(C; . ¢ )+ 8)[c

Szemerédi helieves that the lemma is not best possible but can be shar-
pened in various ways. So far, however, there has been no success in this direc-

tion. The proof of the lemmma is not as complicated as one could have expected.

There is no doubt that this deep lemma will have many applications. Here
I only state a very recent theorem of Szemerédi. Denote by G{r}{n ; m) a hyper-
graph of n vertices and m eges (i.e. r-tuples). Let fr(n ; k, L) be the smal-
lest integer so that every

') (a ; £ (nik, 1))

(i. e. every hypergraph of n vertices and ET{n i k, £) r-tuples) contains a

G(r}(k i 4) as a subgraph. V.T. Sos, W. Brown and [ conjectured

(7 tyln 5 6,3)= o™i

Szemerédi recently proved (7) using his lemma. We in fact thought that

fa(n i 6,3) < nz = also holds, but Rugzsa disproved this by showing

f3(n T, 3) SiEn r3(n] .

More generally it is probable that

2
f.{n: k, k-3) = o{n")

5l
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holds for every k , but Szemerédi's method does not seem to work for k> 6 .

Perhaps

(8) ¢ n rk_3{n)<.f3(r| ik, k-31< ¢

n r

P R
holds for every k=6 . Ruzsa proved the lower bound in (8) for k= 6,7 and 8,

but the proof seems to run into difficulries for larger k. The work of Szemerédi

and Ruzsa is not yet published.

It seems certain that Szemerédi's lemma will lead to further suprising

insights.
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II. - A well known conjecture states that the primes have the property
A(=) . If I remember correctly it is known that they have the property A(16) and
nc doubt one could improve this, but as far as I can see the only way of proving
the general conjecture would be to show that for n> n rk(n') <7{n) In fact, per-

haps for every k and t itis true that

(1) lim r, (n) (——“t—}‘l =0,

The following conjecture seems attractive to me : every sequence
IEal < ... satisfying
1

for the proof or disproof of this conjecture, At the moment I see no hope for a

M8

-1
A Ee has the property A(=) . I offer 2500 dollars

proof but perhaps a counterexample can be constructed and this might be a relati-
vely easy way of earning 2500 dollars, but I hope that the conjecture and (1) are

both true,

In some cases in the past I proved theorems on primes where [ used rela-
tively few special properties of the primes and the fact that T(x) is large. In fact
I proved more than 35 years ago that for every r there are integers

r a8 2 2
“Er}' “EJ. ngr) so that the equations n{]r} =p +q . nér]=p -q

ngr]= {p-1Xg-11

have at least r solutions in primes p and q. There seems little doubt though

that the problem of k-tuples of primes in an arithmetic progression is much deeper.
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Is it true that for every k there are k consecutive primes in an arith-
metic progression ? This problem seems completely unattackable to me, even for

k = 3 , though Renyi and I have some preliminary results for this case.

Before ending this chapter 1 state a few related problems and results.
L.et a_< ... be an infinite sequence of integers and assume that no a is the dis~
tinct sum of other a's, I proved that ;"'.. ai'l{ 103 (math. Lapok 13 (1962), 28-38,
in Hungarian. An English version will appear in our joint paper with Benkoski in
Math. of Computation). I heard at the last meeting of the Amer, Soc. (april 1974)
that 103 can in fact be replaced by 5, but that the result does not hold with 2 .
Unfortunately I do not remember who proved these results. It was also suggested

-1
that the maximum of I a, is probably not much greater than 2 . In February
i

1973, I conjectured that if al < az< [EE - an is such that all the sums
L e.a , £, =0 or 1 are all distinct, then :
{=f i i i

n

- 1-
max L a.i =22 "
izl #
i 3 = 5 i i-1 2

and the maximum is attained if and only if a, = R Ryavec found a simple analy-

tic proof and recently E, and G . Szekeres found an elementary proof. Here I may

mention one of my oldest conjectures : Let a,<... < anﬁ X be such that all the
n
sums _El €a, are distinct ; is it true that
i=
dog X s
log 2 =
s
Moser and I proved that n < pop X - _ogl m% 2 G.
log 2 2 log 2
Let a; <a,<.. bean infinite sequence of integers | assume that for
i<j<k aJ_*-ak #0 (mod a;a . Put AfX) = 2\{1 , Sarkdzi and I proved A(X])=o0(X).
asnl;

1
. . -1 N ) l-e P
we conjecture that I A < = and that A{X) <X for infinitely many X . There

is an interesting finite problem here which causes unexpected difficulties



Let 2 <. <an< X and assume that for i< j<r at+a_ pg0 (mod al'] . then
] r

ns [—)3{']4-1 . The n+l integers 2n, 2n+l , ..., 3n show that our conjecture, if
true, is best possible. The proof presents difficulites which we have not been able
to overcome, If we assume a + ag # 0 (mod ak) (i.e. without k<r< s), then

n = a(X) follows from rjix} = o(X), since the a's cannot contain a three term
arithmetic progression. Szemerédi proved that n= [l;—] +1 if (ar+ as}/ak can

never be an integer different from 2 .
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III. - Some infinite problems. It is clear that one can give a sequence of
integers which tends to infinity as fast as one likes and whose complement does

not have the property Af xo] . This follows from the fact that the number of arith-



metic progressions is denumerable. I then asked : '"Can one decompose the reals

into two sets 5, and S, so that Sl does not have the property A(3) and §

1 2 2

does not have the property A( X ) ?" Davies proved the existence of such a de-
2 o
o
composition using 2 = Nl , but recently Baumgartner gave an example of such

a decomposition without using any hypothesis., Baumgartner's paper on the subject

will be published soon.

The following more general question can now be asked. Let k be a given
integer. Can one decompose the set of real numbers into countably many sets
St . t=1,2,..., such that every St intersects every k - term arithmetic pro-

gression in at most two terms but the complement Et of St never has the pro-
perty A(No] ?

It seems that Baumgartner's method will give the existence of these sets.

(Added in proof : Baumgartner has shown the existence of these sets).

1 hope that one can ask more general and non-trivial questions of the fol-
lowing type. Consider a family F of denumerable sets an} = aia] < ... of real

numbers. We say that F has the property P3 if there is a set which intersects
each AU_E F but never contains three consecutive elements [a(?), a?ﬂ : aga; }

i+ 1+
of any Aa. Baumgartner's theorem states that the family of all infinite arithmetic

progressions has the property F
@) (@) (@) (s
a, a, . =a,
i j i+l j*+1

Assumre that the family F is such that if

()  (a)
a, =a, _ , (the infinite
1+t N

3

, then for every t>0,
arithmetical progressions certainly have this property). Is it true that F has the
property P3 ? Assume now that every countable sub-farmily of F has the proper-

ty P Does it follow that F has the property F_ ? [ would guess that the ans-

L 3

wer is no. I apologise if one {or both) of these questions has a trivial negative ans-

wer, they were only formulated recently.
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Hindman recently proved the following conjecture of Graharm and
Rothschild : Split the integers into two classes in an arbitrary way, Then there is

always an infinite subsequence al<a3< ... sothatallthesums L e a. , =0
3 i
1

or 1 are in the same class. Recently Baumgartner found a simple proof of

Hindman's theorem. The results stated in this chapter are not yet published.

I have tried to formulate a conjecture which would be in the same relation
to Hindman's theorem as Szemerédi's theorem is to van der Waerdens. I have not
been very successful so far. FPerhaps the following result holds, Let a <a,< ...
be a sequence of integers with positive upper density. Then there is an integer t

and an infinite subsequence a. < a, < .. so that all the sums a, +a, +t are
1 1 1 Koor
1 2 r E

again a's .

In a previous paper I stated the following problem : Split the real num-
bers into two classes. Does there exist a set {aa} I=q < w, of power :':l

so that all the sums

+ , 1= < <
aa aﬂ‘. 0.1 CI.Z \!JI

belong to the same class ? [ stated that I cannot settle this question even if the
continuum hypothesis is assumed. Some time ago [ noticed that using the methods
of our paper with Hajnal and Rado I can prove -assuming the continuum hypothesis-

that the set of reals can be split into two disjoint classes 5, and S, so that if

1 F
A,B with Al = R] . IBl = KO are any two sets of reals there always are
real numbers X €5 . YI'YZESZ ) XZE SZ so X, - YIESI ' }{2* YZE S2
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IV. - In the last chapter we discuss riscellaneous problems on arithme-

tic progressions and related topics.

(i) Is it true that for every k and r there is a sequence without the
property A{k+1), but is such that if we split it into r subsequences at least one
of them has the property A(k) ? (added in proof : Spencer has recently shown that

such a sequence exists).

The conjecture was motivated by the following older conjecture ol Iajnal
and myself : Is it true that for every 4 and r there is a graph not containing a
K(£+1) (i e. a complete graph of L +1 wvertices) but if one colours its \'erlices.by
r ¢oloure, then at least one colour contains a K({) ? J. Folkman proved the exis-
tence of such a2 graph for r =2 and every 4 (he probably had a proof for r=.i}.
Recently the problemn was settled in fuli generality bv Nesetril an Radl (their paper

is not yet published).

(i1) Riddell defines gk(n] as the largest integer so that every sequence

a<...<a, contains a subsequence of gk(n} termis not having the property A(k) .

One woulds guess at first that gk{n] = r,In) -1 , butRiddell shows that this is not
: ¢ in} . i

always true, He also obtained some lower bounds for 8y which Riddell and I



slightly improved. This was supeceeded by a general result of Komlos , Subjolk and

Szemerédi (their paper will be published soon). They obtain gi“):v c rk{n) as a

special case of their theorem. It is unknown if gk(n'} < rk(n} -1 holds for infini-
tely many values of n, or if for every k
g, (n)

lim 5 1
ne = £ (0)

J. Riddel, on sets of numbers containing no 4 terms in arithmetic pro-

gressioun, Nieuw Archiefl voor Wiskunde 17, 204-209,

. (),
{iii} Let r ]l,n] (kS ¢) be the smallest integer so that every sequence
; Y] E . :
13.’1’ L aSS n , §= Ty (n) contains at least k terms of an arithmetic pro-

(k)

gression of length 4 . Clearly rkk (n} = rk(n'] . Using Behrend's idea one easily

obtains for every k>1

y k,
r]iu(n] < cnexp{-{log n']g'( L)'_l
Zdi ~on} < = 1/ /
Szemerédi and [ conjectured that for 3= k\ = kZ v Ly kzz {.1_. kl
@,
rk“"‘.’_n}
(1) lim = = =
iy (f.l]
o

1

unless kl-— kK, and ('I: {a . Even if (1) is proved open problems remain, e. g

what is the value of
L
im
EENE

(iv) Penote by f(n ik, Lt} k<=4 the smallest integer with the property
that if the sequence ERRERERE contains f(n ; k, £) k term arithmetic progres-

sions then it contains an {-term arithmetic progression. [ conjecture that



2
finsk; &) = o{os) and perhaps Hi ik dbans T v noveven Besn able

to prove that f(n; 3,4) = D(na] .

More generally let f(n; k., {,l. k {.2) be the smallest integer with the

1 2"

following property : Let An be any sequence of n distinct real numbers. As-

sume that there are f(n; k , 4 .,k

1r b ke LZ] arithmetic progressions of Ll terms

which intersect A in at least kl terms, then there is an arithmetic progression
n

of 4, terms which interesects An in at least k, terms. I hope that some inter-

2

esting results can be found about f(n ; ki 7 {,1 . kz L

Z] .

Perhaps if An containg «::11'1Z arithmetic progressions of three terms,
then it must contain an arithmetic progression of l::2 log n terms (CZ = ci(r_‘l]l
By probabilistic methods it is easy to see that, if true, this is best possible, apart
from the value of 5 -

Denote by g(n, k, ¢) the largest integer so that every sequence
lSal <., % as_“- n , s=2cn , contains at least g(n,k, c) arithmetic progressions
of k terms. Varnavides proved g(n,k,c)> nk{c] nz for k=3 and this was ex-
tented to all k by Szemerédi. A good estimation of [}.k(c) as ¢ + = does not

seem easy and | cannot prove that

gln, kl' c)
lim lim R =
c+® oo g{n,

1] for kl>k

, €} 2

2

F. Varnavides. - On a theorem of Roth. J London Math, Soc 30 (1955},
325-326.

(v) Is :t true that if f(n} = = 1 is any function defined on the integers,
then to every c there isa d and an m so that
m
z

{n flkd)[> c 2

c=1
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This is one of my oldest conjectures (about 40 years old) and I oifer
300 deollars for a proof or disproof. Perhaps (1) remains true if f(n) is complex

valued and |f(n)| = 1, or perhaps it could be true in more general vector spaces.

If f{n) =1 and f(n) is assumed to be multiplicative we obtain the con-
n
jecture that | I (k)| cannot be bounded. For a more general conjecture see
N. G. Tchudakoff, Theory of the characters of number semigroups, International

Coll., Zeta function, Bombay 1956, 11-16.

The sharpest quantitative form of (1) which could be true states as fol-
lows. There is an absolute constant r:l sothatif f(n) =1 , n=1, 2, ... there

always are integers d and m so that md <x and
m

| £ f(kd)| > S log x .
k=1

vl) Several years ago | asked the following question. Let a <...<a =X
y g g %

1
be a sequence of integers. Assume that no a divides the sum of the other a's .

Put max n = F(X). I thought that F(X) was less than a power of log X , but

E. Straus proved that

) F(X)> exp (1 + o(1)) Jz—i?;?x

What is more interesting, Straus observed that the problem is essentially equi-
valent to the following much more interesting one. Let 1= a, <..< am‘—; X bea
sequence of integers such that no a is the arithmetic mean of any other a's . Fur
max m = f(X) . Determine or estimate f(X). Straus, in fact, proved that (1) holcs
. 3/4 G ; y

for {(X) and Straus and I proved {(X)<c¢ ' . Szemerédi recently somewhat im-

i 2 E
proved the exponent 3/4 , but it seems probable that f{{X) = o({X ) and we are

very far from being able to prove this,
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