
ON THE STRUCTURE OF EDGE GRAPHS II

B . BOLLOBAS, P. ERDŐS AND M. SIMONOVITS

This note is a sequel to [1] . First let us recall some of the notations . Denote by
G(n, in) a graph with n vertices and m edges. Let K d (r,, . . ., rd ) be the complete d-
partite graph with r ; vertices in its i-th class and put K,(t) = K d (t, . . ., t), K d = Kd (1) .

Given integers n > d(> 2), let in d(n) be the minimal integer with the property
that every G(n, in), where an > na d (n), contains a K d. The function m d(n) was deter-
mined by Turán [5] . It is easily seen that

d-2
ntd(n) =

	

aa2 +o(n) .
2(d-1)

In this note we are interested in the maximal value of t, depending on the integers
n, d (2 < d 5 n) and on a positive number c, such that every G(n, ni) contains a
Kd (t) provided

d-2
na >

	

+c n2 .
2(d-1)

We denote this maximal value by g(n, d, c) . Naturally, we may and will always
suppose that c < 1/(2(d-1)) . Erdős and Stone [3] proved the rather surprising fact
that if n is large enough then g(n, d, c) > (1d _ 1 (n))á, where 15 denotes the s times iterated
logarithm . However, this estimate turns out to be rather far from best possible . For
fixed d and c (c < ]/(2(d -1))) the correct order of g(n, d, c) was determined by
Bollobás and Erdős [1], who proved that there are constants c> > c 1 > 0 such that

c 1 log n 1< g(n, (1, c) < c2 log n .

More precisely, they showed that there are positive constants Yd, yd%, depending on
d, such that

)~d c log n < g(n, d, c) < Yd* -
log n

(1)
-jog c

The main aim of the paper is to show that, for a fixed value of d, the upper bound in
(1) gives the correct order of g(n, d, c) for all c < 1,!(2(d-1)) and sufficiently large
values of n.

Denote by [x] the integer part of x .

THEOREM . (a) There is an absolute constant a > 0 such that if 0 < c < 1,1d and

1

	

) n2
ni > (1- d +c) 2

,
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then every G(n, m) contains a K,,, 1 (t), where

a log n

	

(2)t - d log (12 Jc)

(b) Given an integer d > 1 there exists a constant E d > 0 such that if 0 < c < s d
and n > n(d, c) is an integer then there exists a graph G(n, m) satisfying (2) which does
not contain a Kd+ 1(t) with

log n
t - LS log 0/0 J

Remarks . 1 . The ratio of the upper and lower bounds of g(n, d+ 1, c) given by
the theorem does not depend on c . However, it does depend on d . We conjecture that
the upper bound gives the correct order, i .e. [-log n14d log c] can be replaced by
[y log nJlog c], where y (< 0) is an absolute constant .

2. The following result can be proved analogously to the theorem .
There exist constants S = S(d) > 0 and a = e(d) > 0 such that if (2) holds and

n > n(d, c) then every G(n, m) contains a Kd+1(a, . . ., a, b) for every a < a logn and
b 5 n 2 -8 a . This is sharp in the sense that it fails if S is sufficiently small .

3. Our final remark concerns r-graphs for r > 2 . Denote by G'(n, m) an r-graph
with n vertices and m r-tuples. Let Kp'( t) be the complete p-partite r-graph whose
classes consist of t vertices. (An r-tuple is in this graph if and only if its elements
belong to different classes .) Put KP' = Kp'(1) .

The following problem was posed by Turán about thirty years ago . Given an
integer p > r, determine the minimal positive number c,, P such that for every e > 0
and sufficiently large n every graph G'(n, m) contains a Kp' provided

if

m i (C, p + E)

M > (C,,,)+ e

1 ;)
None of these values c,, P is known and the problem seems to be very difficult . However,
it is possible that without actually determining c,, P one can prove a result analogous
to the theorem .

Conjecture . Let 2 < r < p and s > 0. Then there exists a constant y > 0 such that

\ j~)r

and n is sufficiently large then every G'(n, m) contains a Kp(t) where

t = [(y log n) 1 I(' -1) ]

It can be deduced from the results in [2] that this assertion holds with

t = [(y log n)'" -1) ]
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Proof of the Theorem . As (b) can be proved as Theorem 2 in [1], we prove only (a) .
The cardinality of a set X is denoted by IXI . In the proof we shall make use of the

following relations that follow from Stirling's formula :

(3)

To simplify the calculations we shall not choose a > 0 immediately but we shall
show that if a > 0 is a sufficiently small absolute constant then the result holds .

Let G = G(n, m) be a graph satisfying (2) . As in the proof of Theorem 1 of [1],
it is easily seen that G contains a subgraph H with n' > (dcl4)-l n vertices whose every
vertex has degree at least (1-1ld+c/2) n' in H . So with a slight change of notation
it suffices to prove the following proposition .

PROPOSITION . If 0 < # < 1 is a sufficiently small absolute constant and every
vertex of a graph G with n vertices has degree at least

(1 - 1/d + c)n

	

(0 < c < 1/d)

	

(4)

then G contains a K d+ I (M) where

log n

d log (1/c)

Proof of the proposition . The proposition is obvious if M < 1 ; so we can assume
without loss of generality that M > 1, i .e .

n > (l Jc)°lfi . (5)

To prove the result we use induction on d . For d = 1 a stronger result is proved in
[1] (and it also follows from [4]) . Suppose now that d > 2 and the proposition is
already proved for smaller values ofd .

Put

c' _
1

	

1

	

logn
- + c and po = f

d-1

	

d

	

L~ (c-1) log (,/c')

As the minimal degree in H is greater than (l-1J(d-1)+c')n, by the induction
hypothesis G contains a K,(p,) .

In the sequel we shall make use of the following simple lemma .

LEMMA. Let X be a set of vertices of G . Put x = I X I fd . Denote by Y the set of
those vertices of G-X that are joined to at least (-1/d+c/2) dx vertices of X . Then

d(cn-2x) < 21 YI .

	

(6)

Proof. Denote by S the number of edges connecting G-X to X. S clearly satisfies
the following inequalities :

dx{(1 - 1/d + c)n - dx} < 1SI < 1 YI dx + (n-dx - 1 Y1)(1 - 1 /d + c12)dx.
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Consequently

Zc dxn - dxz + led2 ,r z < I YI (1Íd - ic)dx,

so by the lemma we can suppose that if Z is the set of vertices of G-K that are joined
to at least p(d-1)+cpdÍ2 vertices of K, then JZ! > dcnf4 . A vertex of Z is joined to
at least

p(d-1)+(cpdÍ2)-(d-1) (p+M) > (cPdf2)-(d-1)M = M

vertices of each class of K, so it is joined to a subgraph K,(M) of K. By (3) the number
ofKd(M) subgraphs of K is at most

P+1+M )d

	

2P )d (4e)Md

M

	

< M < c

1 flOog nIlOgOIC))
_

	

(de)acIog nüogcl,rc)) < n0 n`P

	

n= 3p (10)
c

If fl is sufficiently small then

en

	

< cndz log (tie) _ den
n3 R <

P log n

	

4 f31og n

	

4M
IZI
M

Thus Z contains a set Z' of M vertices and K contains a Kd(M) subgraph K' such that
every vertex of Z' ís joined to every vertex of K' . Consequently G contains a Kd+ I (M) .

(b) By (a) we can assume without loss of generality that whenever a subgraph
d

K,(p,, . . .,p d)of G satisfies (7) then p = ( ljd)Yp i < P .

Let K = Kd(PI, • Pd) be a subgraph for which p attains its maximum under the
conditions (7) . As G contains a K,(po), M < po < p < P . Let U be the set of those
vertices that are joined to at least M vertices of each class of K. If U is large, say
I U1 > n'~, then G contains a Kd+I (M), just as in case (a) . For by (10) the number of
K,(M) subgraphs of K is at most

(per)d<(P+ M)d<n30< n1 < UI

provided fl is sufficiently small .

and this implies (6) .
Let us go on with the proof of the proposition . Put P = (2Íc) M.

(a) Let us assume that G contains a K = Kd(p,, . . ., pd) such that

where
pi <p+M, 1<i<d, (7)

and

1 d
P=

d
zPi,

If P is sufficiently small then
P<p<P+1 . (8)

en > 4(P+ 1), (9)
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Thus we can suppose that I U I < n'. Let W be the set of vertices of G-K that are
joined to at least (1-1/d+c/2)dp vertices of K . Put V = W-U. By the lemma,
(9) and (5), for sufficiently small # we have

IVI>1cnd-n >,1cnd .

Let us define an equivalence relation on V by putting x - y (x, y e V) if x and y are
joined to exactly the same vertices of K . Let C i denote the i-th class of K . If x c- V
there exists an io , 1 < i o < d, such that x is joined to less than M vertices of C,,, .
As x is joined to more than (d-1) p vertices of K, the number of vertices of U Cf

not joined to x is less than

	

' '°

(d-1) (p+m)-{(d-1) p-M} = dM.

Hence the number of equivalence classes in V is less than

p

. ~)

	

Pd p i

)~

2p

	

pd

	

2p Nr p )dm

d2
A12

M ) ~ p ) <
d- MZ

M )

	

M)
eM ~d+i~

<d2 M 2 (2e) (d+i )Nr (-)
dar
< /32 (logn)Z n4fil° e 1i 1 ` 1 nP .

c

Thus (5) implies that if
P

is sufficiently small, the number of equivalence classes is
less than endf(8p+8M), so there exists a set V, of [p+M] equivalent vertices .

We shall show that there is a K' = Kd(q,, . . .' qd) subgraph in G that contradicts
the maximality of K = K,(p,, . . ., pd) . Let x e V, and let C ; denote the set of those
vertices of C, which are joined to x . We may suppose without loss of generality that
x is joined to less than M vertices of C,, i .e . IC,I < M. Assume furthermore that
IC_ 2I < IC,I, j = 3, . . ., d . We shall give different constructions for K' according as
IC21 < P or IC21 > P*

If CZI < p let the classes C ;* of a K,(q,,

	

qd) be defined as follows :

Since
C, * =V,, C2 * =C,uC 2 and C, * =Cl, j=3, . . . . n .

d

U CI > (d-1)p,
d

U C t*
i

> d p .

Furthermore, IC,I < p+M. Thus this subgraph Kj(q„ . . .,q d ) satisfies (7) and
contradicts the maximality of K.

If IC2I > p, select q = [p+ 1] vertices from each C,, j = 2, . . ., d and from V, .
These vertices determine a Kd(q) in G, contradicting the maximality ofK.

This completes the proof of the proposition and so the proof of the theorem is also
complete .
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