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§0. INTRODUCTION

In this paper we are going to present several new results concerning
chromatic numbers of set-systems. As a starting point for our investigation
we can take the paper [5] where the chromatic number of a set-system is
defined and the following theorem is proved (see [5] p. 72, Theorem 5.5).

Theorem A (Erdés — Hajnal). Let k= w be an infinite car-
dinal. Suppose % is a graph of chromatic number > k. Then ¥ con-
tains a complete bipartite graph K(t, kt) for every t< w.

In [5] a false generalization of this theorem was claimed for n-tuple
systems with 3 < n < w. The simplest special instance of the false theo-
rem said that if a triple system has chromatic number > X, then it con-
tains two triples with a common edge (see [5] p. 92, Theorem 12.1).

It was discovered in [12] that this holds only if the set of vertices has
cardinality < R, and otherwise there are triple systems of arbitrarily large
chromatic number consisting of edge disjoint triples.

This led us to the following problem in [12]. To have a short notation
let us say that & is an (n,i, \)-system if & consists of n-tuples such
that every i+ 1 set is contained in at most A members of <. (n,i, 1)-
systems will be briefly called (#, i)-systems.

It was proved in [12] that for | <i<n < w <k there are (n,i)-
systems & with chromatic number > k and that the cardinality of such
an % must be large (depending on n,i and k) but in [12] we could
not tell how large it must be.
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One of the main aims of this paper is to settle this problem assuming
G.C.H. We are going to prove

Theorem B.

a) Assume mi+ 2<n< No. Then every (n,i, R )-systems & of

cardinality X _. =~ has chromatic number at most R,

b) Assume 2<n<mi+2< RO and that G.C.H. holds. Then there
isan (n, iysystem & of cardinality 8, and chromatic number > 8 _
(see Corollaries 2.1 and 12.4).

m

As to b) we prove a theorem in ZFC which yields it if G.C.H. is as-
sumed. In fact we will show that b) is not a Theorem of ZFC. See Theo-
rem 5.6 and 5.7. E.g. we will prove that MA = Every (3, I)-system of
cardinality k has chromatic number < No. On the other hand in § §12-
15 we will prove in ZFC a number of (incomparable) results working in
the direction of Theorem B b) and we will summarize the situation in § 16.

Theorem B answers the question if there is an n-tuple system of size
A and of chromatic number > k not containing the special n-tuple sys-
tems which consist of two n-tuples having > i+ | elements in common.
The general problem now arises

(I) Given k,A and »n = 2, characterize those finite n-tuple sys-
tems which are contained in all n-tuple systems of chromatic number > k
and cardinality A.

Of course we could omit “finite” from (I) but we are not prepared
to do so. In fact we will not in general discuss (I) but we will focus our
attention on the following problems (II), (III), (IV), where (III) is an in-
stance of (I), (II) and (IV) are suggested by (I).

(II) Characterize those finite n-tuple systems % for which k-
= (k, ¥)* holds.

(III) Characterize those finite n-tuples systems which are contained
in all n-tuple systems of cardinality and chromatic number k.

(IV) Characterize those finite n-tuple systems which are contained
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in all n-tuple systems of chromatic number > k.

The reason that one dares to ask such general questions at all is that
in case n = 2 all of them can be answered.

Theorem C (Erdés — Hajnal). For every k= w and for every
0< i< w there exists a graph % of k vertices and of chromatic num-
ber k which does not contain CZJ,.Jrl for 0<j<i (see[5] p.76. The-
orem 7.4).

Theorem A and C together give that in case n = 2 the answer for
both (III) and (IV) is the class of finite bipartite graphs. On the other hand
the well-known Erdés — Dushnik — Miller theorem - (K, Nﬂ)z
for k> HO gives that in case n= 2 (II) is the class of all finite graphs.

Of course this does not exhaust all problems which can be asked in
case n = 2. One of the most interesting questions which remains open is
due to W. Taylor and really calls for the characterization of those
classes of finite subgraphs which are the finite subgraphs of a given graph
of chromatic number > 8,. However presently we do not go in this di-
rection. The little we know about this is published in [13].

Unfortunately the problems (II), (III), (IV) become very difficult for
n=>3 and strictly speaking we only have partial results even for k = w,,
n= 3.

Our knowledge about (II) and (III) will be summarized at the end of
§§10-11 respectively. (IV) will be discussed in § 14 and we will restrict
our attention mainly to triple systems.

The first part of our paper, § § 2-5, contains Theorems going in the
direction of Theorem B a), the rest is mainly devoted to constructions
going in the other direction.

Corresponding to (II), (II) and (IV) we can define functions A, (¢, @),
g,(t, ), g,(t,a) as follows:

hn(t, o) = min {m: There is an n-tuple system & on 3u+1 without
free N . -sets such that all subsystems induced by ¢ points contain at
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most m n-tuples of &'},

éﬂ(r, «) = min {m: There is an n-tuple system » on R__, of chromat-

ic number N such that all subsystems induced by ¢ points contain

a+t+ 1
at most m n-tuples of ¥},

g, (1, ) = min {m: There is an n-tuple system ¥ of chromatic number
> Na such that all subsystems induced by ¢ points contain at most m
n-tuples of /'}.

We will be able to prove that

- 2
(')  G.CH.=h,y(t,0) = [(_"%41)_]_
2
(1) G.CH.=§g,(t,0) = [.{8‘].
3 3
)2 r€g3(t‘ o) < [!] 2’

n

(o) = [ ]" + ot ') for n>a.

avy |

See Corollaries 10.7, 11.14 and Theorems 14.4, 14.6. Note also that

2
hy(t, @) = [;] éz('a o) =g,(t, a)= [%] because of the remarks made
after Theorem C, and because of the well-known theorem of Turdn that

2
2 P . t
a graph of ¢ vertices not containing a triangle has at most [—4—] edges.

G.C.H. is used only in the upper estimates in (II') and (II1"). These are the
most general theorems we can prove concerning problems (II), (IIT), (IV).
There is another Taylor type problem which arises in connection with (IV).

(V) Determine the smallest cardinal A with the following property:

If a finite triple system 4 occurs in all triple-systems having chromat-
ic number > X, and cardinality <A then it occurs in all triple systems
of chromatic number > R,.

It is fairly obvious that such a A exists, and the example of two
triangles with a common edge shows that A> N,. This problem was al-
ready asked in [13] Problem 5. There we claimed that in this paper we
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will exhibit a finite triple system which does not occur in a triple system
+

Bo
of cardinality (22 ] and of chromatic number > R, and for which
we can not improve this estimate. Working through the material of this
paper we Killed all these candidates. We may conjecture but we have no

Mo
hape to prove that A< 22 ~. We are going to state more problems of
this type at the end of §14.

Our inquiry led us to some other questions which are more or less in-
dependent of the main lines of the paper described above. Results con-
cerning these problems will be included as well, but they will be summa-
rized in the respective chapters only. For the convenience of the reader
we will state in detail most of the results we use from our earlier papers
on this subject and sometimes we even give proofs for them.

§1. NOTATION

In what follows we work in ZFC. Our notation will be standard. In
particular, ordinals are identified with the sets of their predecessors, and
cardinals with their initial numbers. Greek lower case letters denote ordinals.
i,j,n k,I,m,n,r s denote non negative integers. We use both b“.a and

w, to denote cardinals. k% is the immediate cardinal successor of k.

We use the well-known partition relations, the ’ordinary partition re-
lation”, the “polarized partition relation’ and the ’square-bracket parti-
tion relation”. Since they are not our main subject in this paper we do
not give the definitions. We offer [8] as reference where the definitions
can easily be found.

By a set-system we mean a set of sets & such that |A|> 2 for all
A € . The purpose of this convention to make the following definition
possible.

Definition. Let % be a set-system. The chromatic number of &
is the smallest cardinal x for which there is a partition of length k of

Ug, U= U P, suchthat A¢ P, forall v<k and A€ ¥.
v<K
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The chromatic number of a set-system & will be denoted by
Chr (¥).

Obviously Chr (%)< |U &| for all set-systems <. (See [5] p. 66).

This is a generalization of the chromatic number of a graph. We say
that a set-system & isa A-tuplé systemif |A4|= A holds forall 4 € .
A graph ¢ is a 2-tuple system. That means we identify a graph with the
set of its edges. From our point of view it will be usually irrelevant if the
set of vertices is U % or any set containing U . If nothing else is said
and ¥ is a set-system then U & will be called the set of its vertices.

If & isaset-system and X a set we say that X is a free set for
& if no element of % is a subset of X.

Assume & is a set-system, A a cardinal. The \-tuple system in-
duced by % is defined as

{Y: |YI=AAJA(AE LAY CTA)}.

If & isaset-system, and X a subset of its vertices. The sub-set-system of
& induced (or spanned) by X is the setsystem {Y: Ye ¥ A Y C X}=
= Y N 2X).

Where X is aset, N\ a cardinal we put as usual [X]* ={Y C X:
I H =X TN ={FE X Y12 X

If X, (i<n) are pairwise disjoint sets, A; (i <n) cardinals then

X X

Q¥ B

=(¥c U X, 1X,nY|=)\ for i<n}.

i<n

A K(N, k)-bipartite graph is a graph of the form [X,, X, 111 where
1 Xyl =X, 1X,I=«k

A complete k-graph is a graph of the form [X]? where |X|= k.
(I 3 <j< w denotes a graph which is a circuit of length j.

If we say e.g. that a graph % contains a circuit C;, we mean that
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% contains a subgraph isomorphic to a Cf' We use similar conventions
for other classes of graphs or set-systems whenever there is no danger of
misunderstanding.

Finally we mention two conventions about ordered sets. Let R, <
be an ordered set. We put R|<x={y€R: y<x}. For A,BCR we
write A < B iff Va,bla€c ArnbEB=a<b).

Though we will try to make the rest of the paper self contained, a
knowledge of the introductory parts of [5] might be helpful.

§2. A THEOREM RESTRICTING THE CHROMATIC NUMBERS
OF RELATIVELY SMALL »-TUPLE SYSTEMS

In this chapter a generalization of Theorem A is proved for n-tuple
systems which yields the only if part of Theorem B. The method of proof
is the same which was used to establish results of similar character in [0]
§5, 5] §4, and [12]. In its simplest form this method is due to E.W.
Miller (see |21]).

First we state our theorem in its general form.

oo

Theorem 2.1. Let k, f}. Ew, 1<j<w besuch that k= 2 .';,‘,
j=1
and i, = O implies i, =0 for j<m. Suppose ¥ isa k+ 2-tuple
system with chromatic number > X . Then there is a positive integer m

such that

(1) foreach t < w there are pairwise disjoint i, + 1 sets A, (s <1)
and an NMm set B such that Ys<tVbeB3aXe ,‘./’(AS U {b} C X).
Hence in particular, there exists ' C ¥ with | ¥'|= R and

a-+m
o ) >,
Iﬂb’ ]/1m+1.

Note that for a given sequence of i}.'s we get the best result if we ar-
range them decreasingly.

Before turning to the proof first we show the only if part of Theo-
rem B follows from this.



Corollary 2.2. Let nZzmi+ 2. If & isan (n,i, Na)-system on
N vertices then Chr (¥)< N .

at+m

Proof. Since the chromatic number of the induced mi + 2-tuple sys-
tem is not smaller than Chr (%) we may assume n = mi+ 2.

Let k= mi, ‘}:f for 1<j<m and t‘j= 0 for j>m. Now by
Theorem 2.1, either % is not an (n,i, R )-system or the graph induced

by & contains a point of valency N__ ., a contradiction.

For the proof of Theorem 2.1 we need a sequence of lemmas.

Lemma 2.3. Suppose f: [\]<“ > [N\]S* where \ is an uncountable
cardinal and « < \. Then there is a decomposition

A= U 8§

p<ef(n) v

where the sets S are disjoint, |S,|<X and X € [ U SF]<‘" implies
T
fixyc U SF for v <cf(N).

p<w

Proof. It is an easy exercise or else it follows from the Lodwenheim —
Skolem theorem.

Definition 2.4. Let % be a set-system with set of vertices V. The
strong coloring number of & is the smallest cardinal X such that there
exists a well-ordering < of V satisfying the following:

For all x € V' and for all systems %' of pairwise disjoint subsets
of Vi<x with A€ "> AuU{x}e ¥, |¥'| <\ holds.

The strong coloring number of % will be denoted by Col*( &).
This concept was first introduced in [5] 13.7 where we called it quasi-col-
oring number.

Lemma 2.5 (see [5] 3.8). Assume & is a set-system of finite sets.
Then Chr (%) < Col* (¥).

Proof. Let < be a well-ordering of the set of vertices V of &
satisfying the requirement of the above definition with A = Col* (¥).
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One can easily define a mapping f: V- A by transfinite induction on <«
in such a way that f1({v}) is a free set of # forall v<A.

Lemma 2.6. Suppose 0<r<n<w<A. Set ¥ bean n-tuple
system with set of vertices N and Chr () > Na. Then one of the fol-
lowing conditions holds:

(1) Forany t< w and 1<\ there are pairwise disjoint sets As “
€[N, (s<1t) such that |{beX: Vs<tIXE S(A,U{b}CX)}I>T.

(2) The (n—r+ l)-tuple system induced by  has a subsystem
of cardinality < \ with chromatic number > Na.

Proof. Let 1< w and w< 1<\ be a pair for which (1) fails and
assume indirectly that (2) is false as well. Define f(X) for X € [A|“ as
follows. Assume X € [A]”. Let y € f(X) iff there are sets A € [X],

(s<1), U A =X such that forall s<¢ thereisa Y€ with
s<t

A U {y}C Y. Put fiX)= ¢ in the other cases. By the indirect assump-
tion that (1) fails we know that |f(X)|<7 for X €& [A]““. Hence ap-
plying Lemma 2.3 we get a decomposition

A= U §
v<ef(A) Y

satisfying the requirements of Lemma 2.3.

Now #n —r+ 1= 2, and we may consider the (n —r + 1)-tuple sys-
tems induced by # on the sets S for v<cf(A). Since [S <X and
(2) fails they all have chromatic number < X _, hence there are sets Su’p.
p<w, such that

5= L S and
v p{“"’n v, @

no (n-—r+ I)setof S . is contained in an element of . for v <
<cf(N), p< w, -

Put D = U S for p<w_ . This is a decomposition of A

v op<ef(n) P “« _ .

into the union of Nﬂ sets and thus we will be done if we show that .
is < Ha chromatic on each set Dp, p<w,.
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Let now p be fixed and put briefly Dp =D, S, 5= Z, for v<
<cf(N). For Xe &, XCD let v= max {u: Zu N X # ¢}. Then, by

the above mentioned properties of S p? Xn U Zu | = r.
% u<v

Let now
g ={ryeprtl:ixes Iv<ct

(Ycxaiynzi=1a1¥n U Z,1=r)}.

<y

Since forall X€ ¥, XCD thereis YE &, Y C X itis sufficient
to see that Chr ( s:") < Na.

Let now <« be a well-ordering of D such that Z# <Z,6 for pu<
<v < cf(N). By the definition of f, for all x & D there are at most
t — 1 pairwise disjoint sets 7C D| < x such that TU {x} € . This
means according to definition 2.4 that Col* (#)< t, hence by Lemma
2.5, Chr () <t<R_.

The following is an easy corollary of Lemma 2.6.

Corollary 2.7. Assume v is an n-tuple system with chromatic
number > R _ and let k be an infinite cardinal. Either the graph induced
by & contains a K(t,k") forevery t<w orelse ¥ has a subsys-
tem on < Kk vertices with chromtic number > X _.

Proof. Assume that for some < w the induced graph does not
contain a K(z, k") subgraph. By minimizing we may assume the existence
of a subsystem such that the set of vertices is A, and all subsystems
spanned by a set of smaller cardinality have chromatic number < R, If
A >k, then using Lemma 2.6 with 7=k, r=1 we get a contradiction.

Note that Theorem A stated in the introduction follows from Corol-
lary 2.7 if we put k= Ra, n=2,

Now we can give the

Proof of Theorem 2.1. Let /= min{j — 1: ff. = 0}. If (1) is false for
m =1+ 1, then by Corollary 2.7 we may assume that the set of vertices

- 435 .



has cardinality <X __,. Now we apply induction on k. For k=0 we
have /=0 and by now the statement is trivial. Assume k> 0 and the
statement is true for all k' < k. Then /> 0. Put k"= k —i, Using
Lemma 2.6 with r= i+ 1 we get that either (1) holds with m =1 or
the k' + 2-tuple system induced by & has a subsystem &' of chromat-

ic number > bﬁa having at most N vertices. Let f; = .*']. for j<lI,

a+l-1
1} =0 for j=1, k'= > ij' . By the induction hypothesis &' satisfies
J=

(1) of Theorem 2.1 with some m and m <! for this m because the
cardinality of & is small. Hence & satisfies (1) as well.

§3. COROLLARIES TO THEOREM 2.1. THE LOWER ESTIMATES
FOR 7h,(t, ), &,(t,q), g,(1, ).
The following is an obvious corollary to Theorem 2.1.

Corollary 3.1. Let & be a triple system with Chr(¥)> R _. Then,
either the induced graph contains a K(t, N . ,) for every (< w, or else
for every t< w there are pairwise disjoint 2-sets As (s<t) and an

Na+1 set B such that AS ui{blte ¥ forall s<t, b€B.

Now we draw the first corollary for §3(r,a).

Definition 3.2. Let §3{t, o) = min {m: There is a triple system %
on N‘H ) points with Chr (%) = NM ) such that all subsystems induced

by t points have at most m triples}.

Corollary 3.3. If & isan R__  -chromatic triple system on R __
points, then for all t < w there are disjoint 2-sets As (s <t) and an

NM , set B such that As uible ¥ forall s<t, beB. Hence for
2 2
all t> w there are t points contining [%] triples i.e. §'3ft, o) = [%]

Proof. The first statement follows from 3.1. The second follows from
this with an easy discussion.

3.3 will be shown to be best possible using G.C.H. (see §11. Theorem
11.13).
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Now first we deduce a stronger result for triple system on 8 __
without free N__  -sets.

Definition 3.4. Let h,(f, @) = min {m: There is a triple system
on N‘H [ without free &H | -sets, and such that all subsystems induced
by t points have at most m triples}.

Lemma 3.5. Let & be a triple system on
N_,-set. Then there is a set AC w

[+

i without a free

a+1? |Al = RU such that

(1) {Ye v: XCY}N=R_,, forall Xe[A)?.

+ 1

Proof. Let ¢ be the graph on w_,, whose edges are the X €
€ [w, ., 112 satisfying (1). If % contains a complete X, graph we are
done. If this is not the case, then by the Erddés — Dushnik —
Miller theorem NM e (R, ;1 Nﬂ)z we obtain an N‘H pset B such
that (1) is false for all X € (B]?. Then, by 3.3,  is <N_ chromatic
on B hence there is an X__  -subset of B free for &, a contradic-

tion.

Corollary 3.6. If & isa triple system on w_, , With no free
R{H \-set then there are points o, f;, i< w such that o, <; < Q;,
{0y, B;s “;} € &, (a8, ﬁj} € Y forall i<j<w. Hence forall t<w

12
there are | points containing [Q‘ 4“ ] triples i.e. hy(t, o) >

2 2
>[40,

Proof. To prove the first statement one chooses the points «;, f5;
by induction on i< w using 3.5. It then follows that for every < w
there are 2¢ points containing #(¢f — 1) triples. The rest is obvious.

For upper estimates see § 10 Theorem 10.5. The next corollary is
included just to show the strength of Theorem 2.1 for those readers who
prefer numerical examples.

Corollary 3.7. Suppose < is a 4tuple system with chromatic num-
ber > X,. Then the following two statements hold:

(1) Thereis &, C % such that either

1
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| & 1= 8, Iﬂy’li?B orelse | & 1=R,, IN&,1>1.
(2) Thereis ¥,C & such that either
| #,1=8,, IN#,122 orelse | &,1=8,, |N£,1>1.

Proof. Both statements follow from Theorem 2.1. To see the first
choose J’c1 = 2. k; =0 for j>1, for the second one put ki =k, =1
and k}.=0 for j> 2.

At this point we have to confess to the reader that Theorem 2.1 is
still not general enough to get the promised lower estimate of the g (f, &)
functions. We now describe the proof of the necessary generalization for
n=23 only.

Theorem 3.8. If a triple system & has chromatic number > l'#&
then one of the following statements holds.

(1) For every t< w there are t disjoint edges and N,
joined to all of them by a triple of ¥ .

41 Ppoints

(2) Forevery t<w thereisaset F, |F|= t2, and there are
No+1 vertex-disjoint K(t, t) such that each edge in a K(t,t) is joined
by a triple of % to some point in F.

Proof. Let A\ be the smallest cardinal such that there is a triple sys-
tem & with set of vertices A, Chr(¥)> Na for which (1) and (2)
both fall say for ¢, and ¢,. Then, by Corollary 3.3, A > R_, ,.

We define two functions f,f, on [A]<“ as follows. For Y€
e (\7Y put yef,(Y) iff there are ¢, disjoint 2sets A, (s< 1) with

U A;=Y suchthat 4 U{y}€ ¥ for s<t,. Put fi(Y)=¢ inall
s<ty
2

other cases. For each Z € [7\]&“2 choose a maximal system #(Z) of
2t,-sets satisfying the following conditions:

(3) The elements of #(Z) are pairwise disjoint, and for A4 € #(Z)

there are A,, 4, E[A]rz, AyUA; =A such that for all a; € 4,
a, €A, thereisa z€ Z with {aj,a,,z}€ . Put f,(2)= U #(Z) and
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let f,(Z)=¢ incase t3<|Z|<w. Let further Z)=f,(2)V f,(2).
By the assumption on 1, and t, we know |flZ)| < NMI for Ze

€ [A\]°“. By Lemma 2.3 we get a partition \ = l_fJ S, satisfying the
v<ef(A)

requirements of Lemma 2.3. By the minimality of X\, & is < Na-chro-
matic on the sets Sy. Choose sets Sv o0 P <w, free for & with Sv =

- .o<l£:,, SWJ, and put Cp = v<<l:'tJ(M Smp for p< w, - Again it suffices

to see that ¥ is < Na-chromatic on each Cp.

Let p< w, be fixed and assume X C Cp, Xe & Let vwX)=
= max {u < cf (N): S“.p N X # ¢}. By the choice of Sy.p.

1S IXNS, 4,12 Put &, ={XEL XCC,AIXNS,y |=
for i=1,2. We now claim that the graph induced by 5;‘2 on S 5 is
< N _-chromatic for all v <cf(X). By Corollary 2.7 it is sufficient to see

that it does not contain a K(rz, ty).

i}

Assume A C Sv’p, |A| = 2:2. LAO|: IAl l=1t,, A= Ao U Al
and all the edges {a,,a,}, ay; € A,, a; € A, belong to the graph induced
by Sy For each such pair a,,4a, pick z with {ao,a1 ,zre & and
let Z be the set of all z chosen this way. Then |Z|< ti and by the
definition of ‘5’;’2* Zec U S“. By the choice of the set § , then

<V
L@ =U #2Zc U S, and this contradicts the maximality of #(Z).
- <
It now follows that S = | § where the sets S are free
v, p §< g v,p,o v,p,0
sets for the graph induced by 5”2. Put D= U s o.‘ Then the

i p<ef(n) UP
sets JD‘J , are free sets for &, as well. It is now enough to see that each
Dp 5 is the union of at most Na_ subsets free with respect to s}’l.

However just as in the proof of Lemma 2.6, this follows from the fact
that by the choice of f|, o , has strong coloring number at most t
on Dﬂ ,- This completes the proof.

Corollary 3.9. If a triple system has chromatic number > 8, then

for each t< w there is a set of 3t* points containing > t> triples of
3

2
it and as a corollary of this g,(t,a)> [%] —t forall a.
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Proof. If either of the conditions (1) or (2) holds we can choose ¢
“edge-disjoint” K(t,t)’s and a set F of at most t? elements disjoint to
the union of this K(t, t)’s so that every edge of a K(¢, 1) is joined from
a point of F by a triple of .

We now state a similar corollary for n-tuple system.

Corollary 3.10. Let & be an n-tuple system of chromatic number
> NO. Then for each t< w there is a set of n+ t" -1 points containing
" n-tuples of <,

n

n-1 n—1
gn(r,a}2 [—}%] +o[r ] :
We have proved this for n=2 and n= 3.

The general result is to be proved by a common generalization of
Theorems 2.1 and 3.8. The proof does not require new ideas. We omit the
details.

In §14 we will state an upper estimate for g,(t,a) (see Theorem
14.6) for arbitrary «. However in what follows we will focus our atten-
tion on the numerous problems and difficulties arising for triple systems.
Our results will determine gg(r, «) for small values of ¢ (see Theorem
14.4).

§4. A GENERAL THEOREM FOR SET-SYSTEMS

In 8§82 we have seen the use of the strong coloring number. There is
a theorem for graphs both trivial and well-known saying that if the valency
of each vertex of a graph is < Na. then the graph has chromatic number
at most N .

Let us make the following

Definition 4.1. Let ¢ be a set-system. We say that a vertex p
has strong valency > X if thereisan ' C ¥, [ ¥'|> N, such that
XNnY={(p} forall X#Ye ¥

To the best of our knowledge the following generalization of the
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graph theorem mentioned above is not stated in the literature.

Theorem 4.2. Let <& be a set-system of chromatic number > Sa
and consisting of sets of cardinality < Na. Then there is a point of strong
valency > X .

Proof. Assume no point has strong valency > X _. For each vertex
p let #(p) be a maximal subfamily of & such that pe X for X€&
e #(p) and X# Y€ #(p) implies XN Y= {p}. Then | #(p)|l< Nu
and |f(p)I< R, for fip)= U #(p). Let )\ be the set of vertices. Let
us say that A C A is closed if fix)C A forall x € A. Obviously each
£€ ) is contained in a closed subset At of cardinality < Na.

Let BE =AE - U A11 for £ < \. Considering that |JB£|€NQI

n<t
there are sets (“p, (p<w,) such that each Cp meets each BE in at
most one pointand A= U (‘p. We claim that each Cp is a free set for
o< W

& . Assume indirectly Xe &, XC ('p. Put £ = min {n: XﬁB,1 # ¢}.
Let {{}=C NXNB,. Then ¢€A4, fi)cA, fiyc U B,
o 3 £ 3 weg O

xXn U Bﬂ = {¢}. It follows that then #({)uU {X} still has the property
n=t
that the intersection of any two elements of itis {{} and this contradicts

the maximality of #({). This proves the claim.

Remark. The assumption that the elements of & have cardinality
< R seems fairly natural. However, we can not prove it to be necessary.

8
Problem 1. Let ¥ C [w,] I be such that each vertex has strong
valency < N,. Isit true that then Chr (%)< No'?

A. Mité pointed out to us that the answer is negative provided there
is a non-trivial X -complete ideal / on N, that the Boolean factor alge-
bra P('N} )1/ has a dense subset of cardinality Nl . However, considering
the simplicity of the question it would be nice to have more information.

In this chapter we only draw one corollary of Theorem 4.2. In what
follows we will introduce notation for a number of special triple systems.
We will usually give a diagram with the definition, and at the end of the
paper we will give a Jist with reference to the place of its definition.
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Let 7 be the triple system with six vertices and three triples having
pairwise one element in common (see Diagram 1).

g

Diagram 1

Let 7, be the triple system with seven vertices and four triangles.
Three of them have one point in common and the fourth meets each of
these three in a point different from this point (see Diagram 2).

Diagram 2

Corollary 4.2.

-~ 13
([} NC\""l—'}(N -'1}1

at+l? 24

(2 Wi Wi T

Proof. Let & be a triple system on w_,, with no free set of
cardinality N(H T Then Chr (¥) = Rat1- By 4.1, there is a point with
strong valency > R _. That means there is a vertex p and N__  disjoint

— 442 -



2-sets each joined to p by a triangle of . Since there is no free B
set, & must contain a triangle meeting three different 2-sets. Hence <
contains a J,. This proves (2) and (1) is a corollary.

The point is that .7, is the simplest triple system 7 for which
H{H 1~ (Ra+ 1° .f')3 holds and is not of the type obtained in Corollary
3.6.

§5. SOME CONSEQUENCES OF MARTIN’S AXIOM

Our first aim in this section is to prove Theorem 5.6. This is a result
pointing in the main direction of this paper. Assuming MA and 280 s
large, it gives a strengthening of a special case of Corollary 2.2, and shows
that it can not be best possible in ZFC alone. However, we will generalize
a theorem of Baumgartner and Hajnal as well. For Martin’s axiom
see [24], p. 232.

Definition 5.1. Let % be a set system with set of vertices k. A
partial function from k into w is said to be a good coloring if it is not
constant on any X C D(f), X € .

Lemma §5.2. Assume MA . Let & be asystem of finite sets on
Kk, with Chr(%)> R,. Then there is a sequence f, (a< w;) of good
colorings such that fa U f,@ is not a good coloring for a+* < w, and
|f3|< NO for a< W, .

Proof. Let P be the set of good colorings f, |f| <X, with the
partial order f=<g iff f2 g. The sets De ={feP: £€ D(f)} are ob-
viously dense in P for § < k. If the requirement of the lemma does not
hold then P satisfies the countable chain condition. By MA ~ then there
is a set ( generic over the family of Dt ’s. Then FF'=UG is a good col-
oring of k, hence Chr (%)< NO, a contradiction.

As a corollary we get

Lemma 5.3. Assume MA . If & isagraph on k vertices with
Chr (9)> X, then there are X, “vertex-disjoint” finite subgraphs such
that any two of them are joined by an edge.
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Proof. By 5.2 there is a sequence [, (a< w,) of good colorings
such that |f, |< N, and f U fIB is not a good coloring for « # (. Let
A, =D(f,) for a<w,. By the Erdés — Rado theorem (see
[15]) we may assume that the A _ from a “A-system” i.e. there is a
set D such that 4 N Aﬁ =D forall a#f and that [ |D zfﬁhif)I
forall o, < W, . If a«# (@ then there must be an edge joining A —d
and A.a — D otherwise f U f‘G is a good coloring.

Theorem 5.4, Assume MAN . If 9 is agraph on an ordinal <
&

<"'Jar+l
'y<wl.

with Chr{@))ﬁo then % contains a K{'y,wl) for every

5

Note that as a corollary of this MA, ~ implies w, ~ [“’1’ [0;1]]

for all y< w,. This result was stated in [2] without proof. A proof of
this is given in Laver’s paper [20] in this volume even in case the first
two w, are replaced by a x with cf (k) > w. The present result is
much stronger, but the proofs are almost the same. They are based on one
of the main lemmas of [2]. First we state the following immediate

Corollary 5.5. Assume MA_, and r<w<cf(w,). Then ] ~
&

wi])2 g .
- [w;, l ‘Yl” and “stationary subset of w_ - | stationary subset of W,
2
[“’1]] " hold for y< w,.
v

Proof of Theorem 5.4. By 5.3, there are disjoint sets 4 (v < w,)C
C # such that for v # u there is an edge of ¢ joining A  and AF.
We may assume that v is an indecomposable ordinal (i.e. of the form w°
forsome 1 <0< wl), and that |A [=m for v < w,.

Let a,, denote i-th member of 4 for v<cw,. We may assume

for v<u<w,, i<m. We are going to consider the complete

av'i<a“ i :

bipartite,graph K(vy,w, —v) and a partition of length m
For pu<wy, v<w; —7 put {g,v}E€ P(i,j) iff {aﬂli,aub}.}&‘: %. Bya
result of [2] (see p. 202, Corollary 2), a>0 and MA_ implies that

of this graph.

there is a K(7, w, — v) homogeneous for this partition. That means there
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are sets BCy, CCw,; —v, tpB =1, tpC= w, and {i,jye 2 such
that {u,v}€ P(i,j) for all pe€ B, v & C. But then the complete bipartite
graph spanned by the sets {a, ;s HE B}, {a, ;s VE C} is a subgraph of
%, and tp {a, ;: u€ B}=1v, tp {av‘j: VEC}= w,.

i

We now prove

Theorem 5.6. Assume MA . Suppose 1<n<w, ¥C 173 G
Chr(#) > R,. Then thereis X € (kK]** 1 such that |{YE€ ¥: XC Y} >

>
= N,.

Proof. Let < be a set-system satisfying the conditions of the theo-
rem. By 5.2, there are good colorings [f | <R, (a¢<w,) such that
/L, fﬁ is not a good coloring for a# < w,. Just as in the proof of
5.3, we may assume that D(fa_} = Aa, Aa N A‘3 =D for a#j, fa | D=
=f3ID. Let B,=A —D for a<w,. If a#p and f U S, isnota
good coloring then DU Ba U ;“3‘{3 must containa Y € & which is not con-
tained eitherin A4 orin AB' Note that in this case Y must meet both
Ba and Bﬁ, and one of the intersections Y N Aa, Yn Aﬁ has at least
n+ 1 elements,

We now assume that the conclusion of the theorem is false and define
a set mapping f: w, > [w,|°¢ as follows.

For a< w; let
fly={<w;: B+ardXe[4, "*!IYey

(XCYAYNB, #9¢)}.

By the indirect assumption we have |fla)| <R, for a<w,. It now fol-
lows that there is an independent pair o, < w,;, a# B, for this mapping
and this is a contradiction.

To clarify the situation let us point out some conclusions. Consider
the case n= 1. Then the above theorem implies that if MA _ holds then
every system of edge disjoint triples of chromatic number > R, has more
than k vertices, and thus MA implies that the number of vertices must be
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N Ry . .
> 20 no matter how large 2" % is. Corollary 2.2 which was our result

proved in ZFC says only that the number of vertices is > R, .

If we look at the next simplest case where n = 2 we see that if &%
is a S-tuple system such that any two 5-tuples have at most 2 points in
common the above theorem says again that assuming MA the set of vertices

must have cardinality = 2™, However, this result is not directly com-
parable with the corresponding result of Corollary 2.2, which says that a
S5-tuple system of chromatic number > X, must have at least X, ver-
tices even if the intersection of any two S-tuples has cardinality at most 3.

The situation is complicated further by two more facts. One of them
is that we do not know the answer to

Problem 2. Does Theorem 5.6 remain true if we replace the require-
ment by [{Y€ &#: XC Y} >¥8,? To put the question in a simpler
form:

Is it consistent with ZFC + ZHO >N, that every (3, 1,8 ) system
has cardinality > 2809

The second fact is that the presence of MA changes the estimates

obtained for the number of vertices of large chromatic set-systems even

beyond 2M0 45 it is shown by the following

X :
Theorem 5.7. Assume MA. Let 29 = Ry If 1<i<w, m<w
and n=(m+3)i+ 1, ¥Clw,, . I" and Chr(v)>R,, then thereis

i+1 =
an X€|w,, .1 such that |{Y&€ ¥ XCT Y} 2R,

(Here we do not know again if N, can be replaced by N )

Proof. We may assume »n= (m + 3)i + 1. Our proof goes by induc-
tion on m. We now assume thatif m > 0 we know the result for m — 1.
<<
= u‘+fﬂ| = - lwﬂ+ﬂ!
P X =U{Y€ ¥: XC Y} and put
fiX) = ¢ in the other cases. Note that w

Assume the conclusion is false and define an [: [w e

as follows. For X € [w
atm = @ cven for m=0. By
Lemma 2.3, we get that
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= U S

w
at+m p< el (e

v
c:+m}

where the S = satisfy the requirements of Lemma 2.3. For X € v let

vX)=v=max{u: Xn SJLl # ¢}. By the construction of Sv, | XN SB(X) | =
= (m -1+ 3)i+ 1. Now using our standard argument, to obtain a contra-
diction, it is sufficient to see that the ((m + 2)i + 1)-tuple systems induced
by ¥ are <X _-chromatic on each .S'v, v < cf(wa+m )). Let us remark

that, by the construction |S |<w, . -

Considering the indirect assumption, the claim follows from Theorem 5.6
in case m = 0 and from the induction hypothesis in case m > 0 respec-
tively.

Again we point our one instance. Theorem 5.7 implies that if MA
holds and ~ isa >N, chromatic 4-tuple system and two 4-tuples have

only one point in common then ' has at least 270 vertices. Corollary

2.2 proved in ZFC gives that &~ has > N, vertices.

3

We now leave the reader alone to ponder about the mess we are in
until we give the “upper estimates” in § § 12-15. These will clarify things if
we assume G.C.H. and make the matter worse without this assumption. See
the problems stated in §16.

§6. THE CONCEPT OF SIMULTANEOUS CHROMATIC NUMBER.
A PROBLEM. A RESULT IN L.

In the rest of the paper we are going to construct 3-tuple systems and
n-tuple systems having some specific properties and chromatic number
> k. In quite a few cases the constructions will be inductive using »'-
tuple systems 2 < n' < n with large chromatic numbers already constructed.
These proofs lead us to the following generalization of the chromatic num-
ber, The idea is that the stronger property supports inductions better.

Definition. 6.1. Let &, (v<QA\) be asequence of set-systems having
the same set of vertices V. The system is said to have simultaneous chro-
matic number x if k is the smallest cardinal such that there is a partition
of length Kk of the vertices
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such that for each & < k there is v < k such that Pt is a free set for
S .

v

Obviously the simultaneous chromatic number of the system is less
than or equal to all Chr ( .9*”), hence it is a very strong assumption to
have a system with large simultaneous chromatic number.

The concept defined above will be most frequently used in the follow-
ing form.

Definition 6.2. Let & be a set-system with set of vertices V.
P(¥, )\, k) is said to hold if there is a partition of & into the union of
A disjoint set-systems &, (v<A) in such a way that this system has
simultaneous chromatic number = k.

For the convenience of the reader we give a direct definition:
P(#, N\, k) holds iff

A > AVK' <kVg: VoK IE<kK'Vo<AIXE ¥
Xcg l{EHafX) =v).

We will often use a stronger property which can not be put in terms
of the simultaneous chromatic number.

Definition 6.3. Let & be a set-system with set of vertices V, and
let A, k,r be cardinals. P*( ¥, \ k,r) is said to hold iff

Af S > AVK' <kVg: VoK FE<K' FAE [V VW<<AIXE ¥
(ACXAXCg l{ENAAX)=V).

Obviously P*( &, N\, k,0)« P(¥,\, k) and P*( &, N\ k,r)=P(S,\ k)=
= Chr(¥)=k for A= 1.

In case % is agraph and r=1 we write P*(¥%,\, k) for
P*(%,\ K, 1).

Again it is obvious that P(¥,1,k)« Chr (%) > k, and seemingly
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P(Y,2,k),...,P(¥,| <1, k) are much stronger assumptions. In fact to
prove the existence of a graph ¥ with Nl-vertices satisfying P(¥, Rl, NI)
we need C.H.

In spite of this we do not know the answer to the following

Problem 3. If % is a graph with Chr(¥)=k> R
P, k, k) hold?

0° does then

If ¥ isan N -chromatic graph on w,, does P(%,2,R,) hold?

Surprisingly enough, our partial results point to a yes answer. We can
prove that most “known graphs™ of chromatic number X, “split”. Those
results will be given in the next chapters and will be used later to construct
strange 3-tuple systems. However, we have hopes to prove a positive answer
only if the Y -chromatic graph has some essential "large parts’™ to split.
We will show in this section that this is not necessarily the case.

" Definition 6.4. A Shelah-graph is a graph % on set of vertices V,
where |[V[= R, and there is X€ [V]No such that |{x € X:

{x,a}e :9’}]2‘30 forall a€e V — X.

Answering Problem 32 of [8] Shelah proved the following results.
Theorem 6.5 (See: S. Shelah [22]. Theorems 2.1, 2.4).

(A) Assume CH. If ¢  (a<w,) isa system of Shelah graphs then

w; * [Q(le r&a]f‘l.

As a corollary of this we know that there is an Nl-chromatic graph on

w, containing none of the ¥ .

1
(B) Assume V =L then w, > (iﬂ'}% holds iff
Col (%) < w .

Note that all Shelah graphs have coloring number > w.

The coloring number of a graph % (see [5] p. 66. Definition 2.9) is
the same as the strong coloring number of % as defined in 2.4.
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Now we ask

Problem 4. Can it be proved in ZFC or does C.H. imply that there
is an RN, -chromatic graph on w, containing no Shelah graphs?

We are going to prove

Theorem 6.6. If V =L, then w, = (stationary subset of w,,
Shelah graph)z.

This result is also stated and proved in [19] and as a corollary of this
the answer to Problem 4 is affirmative provided V = L. This is the result
which makes Problem 3 awkward to answer.

Proof of Theorem 6.6. By V=1, OWl holds. That means there ex-

ists a sequence S, C #(a), |S, |< R, for a<w; such that {a< w,:
XNnae Sa_} contains a closed unbounded subset for all uncountable
XC Wy -

We may also assume that for all limit «, Y €S_ implies that Y is
cofinal in «. Now for every limit number a < w, we can choose a set
Ra Ca tp Ra = w, Ru cofinal in « and such that Y n Ra #+ ¢ for
Yes,;

We define a graph % by
% = {{x,a}: x€ER_Aa alimit number < w,}.

Obviously % does not contain a Shelah graph. To conclude we show
there is no stationary subset X free for %. Assume X is stationary.
Then there is a limit a< w, such that XN a€ S, and a€ X. It fol-
lows that there is x€ XN an R_, hence {x,«a}C X, {x,a}€ %.

§7. SIMPLE PROPERTIES OF P(v,\ k), P*(¥ N K, 7).
PRELIMINARY LEMMAS
Theorem 7.1.

(1) If k= w, k>N then P(L N\ k)= P*(¥, Nk 1)
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(2) If mn<w, then Pl m,mn+ 1)=P*(¥, m,n+ 1,1).

Proof. Let V' be the set of vertices of the set-system 4. Let us
now assume that either k= w and x> X or k=mn+ 1, A\=n+1
and P*(v,\, k, 1) fails. Choose an f: & — A\ establishing P(¥, \, k).

Then there are k' < k and a partition V= U T, such that for all
E< K’

§E<k', peT,, thereisa v(p) <\ such that p€ X C TEAﬂX)=v(p)
holds for no X € ¥'. Define T {pGT v(p) =v}. Then we get a

contradiction since V= U U T is a partition of length k'A< «k
E<p v A

or < pm such that for all £ v in question no Xe & with fliX)=v

is a subset of TE ,- This proves both statements.

Theorem 7.2, Let ' be a set-system with set of vertices V. If
A= w then P(v , X, \") holds if and only if

3f ¥ = AVg: V=A3XE ¥YVxe Xigx) =fiX)).

Proof. The "only if” is trivial, we prove the "if”’. Suppose we have an
f such that Vg: V> A3XE ¥ Vx€E X(gx)=fiX). Let A= U N,

v< A
where each |N | =\ and the N are pairwise disjoint. Let &=

={X€ v: fiX)e N, ]. Then the sequence &, (v<A) has simultane-
ous chromatic number > X. Assume the contrary, then there is a partition

y= U I, and a function v: N> X such that foreach ¢<\, 7, isa
E<A

free set for '-"u(z)' Choose a one-to-one function /i: A= N with h(§) e
IS .-'\-"pm‘ Define g: "= X so that g(x)= l(§) for x &€ Tr' By hypothe-
sis, there exists X € & such that g(x)= f(X) for x € X. It follows that
XCT, forsome & and fiX)=/N(§)e N, so X€ & . But this

contradicts the assumption that T, is a free set for & ..

Theorem 7.3. Let A= w. Assume ¢ is a set-system which con-
sists of finite sets. Then P(/ N AP)= P(s , MATY)Yv P(y AT, A7)

Proof. Let o be a set-system with set of vertices 1, & C [V]*%,
Assume P(7 A AF). Let f* & — X\ be a mapping which establishes
this fact. Assume now that P(»', X\, A" ") fails. Then, as a corollary of

this, there exists a disjoint partition V= U i T of the set of vertices
E<A
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such that for all §< A" there isa v(§) < \ satisfying fle) # v(§) for
MIeE[TA‘“r1yz

We now define f: & - At and show that f establishes P(, A*, \*).
To define f first we choose 8; (¢<\*) mapping N\ onto ¢+ 1, and
we fix a well-ordering < of V' satisfying 7, <7  for §<n< X*. Let
eE ¥, y= m{ax e. Put f(e) :gn(ﬂe)) for the 75 satisfying y € Tr:‘

Let now V= U R“ be a disjoint partition of V. Assume this partition
JTR

is bad for f We will obtain a contradiction by exhibiting a partition of
length A which is bad for f too.

Let now u < \. Put R, =R. Thereis a o such that fley# o
for all e€ [R|%. Let T,=T,NR for ¢<\*. Then

R= U . T..

gat Tk

Let P= U T'E. Then R= U T;UP and since all T; omit
G<E<A t<o

the color vw(§) for &< o0, we only have to define a bad partition of P.

Let P,={x€P: x€T, rg()=0}. Then P= U P . Let
vl A
v< A, eC Pw e € S. We claim that f{e) #v. Otherwise there is a unique

£ with max e=yv € T;, gztv} = ¢ and f(e) = ¢, a contradiction.
<

Definition 7.4, Let . be a set-system, k a cardinal. With some
abuse of notation we denote by ' « k a set-system which consists of «
“vertex-disjoint copies’” of . If we claim a statement for & -k we
mean that the statement holds for all set-systems which can be written in
this form.

Lemma 7.5. Assume P&, Ha, 8) and & < N& Then

Py - R +n+0) holds for n < w.

& i
at+n? Nu
Proof. We prove that P(v ,k, &) implies P( v + k. kt.8) for

K= w, d§<kT.

The lemma follows from this by induction on »n. Assume
P(v ,k,8) holds. Let V' be the set of vertices of v. Put WE = V X {£},
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W= 1x (k" k),
Se={(XTW,: DX)E £}, 4= U v
k=p<it ¢
Then 7 is ./« k' with set of vertices W. Let fi 4 =k be a color-
ing of the elements of ./ which establishes (.7 . k. 8).

Let &y be a one-to-one mapping of k onto § for k< §< k.
For X & 7 put

JIX) = gz(ﬂ;’)(,\’)}) .

Assume now W= U T is a disjoint partition of W, for some

cardinal o< 6§ < k' Slllci]”[hal[ for all v< o thereis nv) <kt satisfy-
ing f[/\,} #nv) for X C T,, X€ . Thenthereisa §< kb with

sup (n(v): v< o< g We now obtain a contradiction by showing that the
partition U 7 induces a partition of the g-th copy of ./ which is

v g

bud for f. Namely Wt = U W.n r: V= U !)(H't nNTH X))+

TR £ v
£g Y(nv)}) for XC D‘Wt NT) Xev, v<ao.

We now state two lemmas without proofs.

Lemma 7.6 (A. Maté). Let k. A be cardinals k2 A=z w. A
regular. Let 1= U A | LA > Kk and et I be a set-mapping on A

M<K

such that x€ A Ap<k=fix)N .-lu | << A. Then there isa free set X C A
such that | X N A 1=K for all p < K.

The proof of Lemima 7.6 is given in [ 19] 7.3 Lemma.

Lemma 7.7 (P. Lrdés G. Fodor). Let & bhe an infinite
cardinal and let o be an ordinal less than w. Let [ be a set-mapping
on K such that x € k= tp flx) < o

Suppose A € (k| for w<X forsome cardinal X\ <. Then there
is a free set X C k such that 1XN0A 1=k foral p<k.

In [4] the theorem is proved assuming G.C.H. In [18] a proof is out-

lined without assuming G.C.1. In both papers « is assumed to be a car-
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dinal. The idea of looking for free sets if « is an ordinal < k occurs
first in [16]. The proof outlined in [ 18] works for this case without essen-
tial changes.

§8. GRAPH CONSTRUCTIONS

The next theorem contains one of the main ideas of several transfinite
constructions to be given later,

Theorem 8.1. Letr N\ be an infinite cardinal and let & be the least
cardinal such that \° > \. Then there is a "triangle-free” graph % on
N such that P*(%, X\, 8).

Proof. Note first that & is a regular cardinal with w < 6 < cf(N).
First we split A into the union of & disjoint sets each of cardinality A:

A= U 4, .
t<s ¢

Put BE = U Aﬂ for £< 8. We define the graph and a mapping /f:
n<g

% — X\ inductively by defining for each x € Ai‘ £E< 8 asubset G(x)C

C Bz' The intention is that G(x) = {y € BE: y isjoined to x in %},

and the mapping f|{{y,x}: ¥y € G(x)} will be defined for each x.

Assume that ¢ < & and this has been done forall n<§, x€ .»'-1TT
ie. ¥ lBE is already defined.

Let Ks ={XC Bt: X is a partial transversal of the An‘ (m<§)
and X is a free set of 1€|BE}.

Now considering that N'¥' = X =|A4,| we can arrange matters so
that G(x) € Ks should hold for all x € AE and moreover forall X & Kt’
g€ X\, there are pairwise disjoint sets Az(}(, g)C AE satisfying
IAt(X,g}| =\ and G(x)= X for x€A4.(X, g Finally for y € G(x),
X€E Ai(X,g] we put

fx, ¥} = g(y).

This defines the graph %, and a mapping f: ¥ - A of it. We claim that
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this mapping establishes P*(%, A\, 6). It is clear from the construction that
% contains no triangles.

Assume A= U T  forsome &' <§ is a disoint partition of the
v<é

vertices of .

Assume further indirectly that for each y€ 7 , v< &' thereis a
p(v) < A for which

() fUix,»H # p(y) holds forall xe T with {x,y}le ¢.
Let N={v<§: [{E<é: 1Tur1/1t|=?\}|=8} and put M=8 — N.

By the definition of N there is a one-to-one mapping ¢: N— §
such that | Tu A "%(u;i =\ forall veN. Put FF=¢(N). Then |F|<

<§ <§<cf(N). and |T_i({£})ﬁfl£[:7\ for §€ F. Using the regu-
v

larity of & we now finda {<§ such that FC¢{ and [T N AE <A
for ve M. After this we consider the set mapping G(x) on the set

U r 1 M A,. Then, as a corollary of Lemma 7.6, there is a set
teF ¢ (b §
X which is free for the set-mapping G(x) and meets T N Aw(u) in ex-
actly one point for ve& N. By the construction, X € Ks.

Let
(2) g() = p(r) for yelx
where the p(1) are defined by (1).

Considering §' < §<cf(N). |4, N U” T, 1<\ Hence there are x €
HEd

€A4,(X,g) and vE N such that ve T . By the choice of X there is
ye X, r&€T . Then by the definition (2) of g and by the definition
of i

{x.r}c T, flix,yD=2g0)=pW), {x,y}€¥
and this contradicts (1).

Theorem 8.1 implies that if 2% = k* then there is a “triangle-free”
graph % on k" satistying P*(%, k", k*). However, if we assume this
hypothesis we can do better than that.

- 455 -



First we restate some old results.

Definition 8.2. The generalized Specker graph S, (k) is defined for
1 < n<w asfollows. The vertices are the increasing n® + n + l-tuples

N
e tntle Two vertices x, v are joined if either

X, <pr,<x s g <y
n <0 n+ 1 -1 nign gl

or

Yp S Xg <<y <...< _1',‘2“’ < _\'”2 ;

As to these graphs we offer | 13] as a reference where several other
generalization and history are dealt with.

We state

Lemma 8.3 (P. Erdés A. Hajnal |5] p. 76, Theorem 7.4).
(A) GSH(K) contains no C,. | Jor 1<i<n.

(B) If n<ws=<sxk then Chr(GS, (k) = K.

As a corollary of this for all k= w and | < n < w there isa graph

on k containing no short odd circuits ¢ (I <i<n) and having

RIE
chromatic number k.

Since in [5] GS, (k) was defined differently (using 2% + I-tuples
instead of n? + n+ [-tuples) and the statement analogous to (A) was not
actually proved we outline a proof of (A).

First we prove an clementary lemma. Assume 1 < i< < w,.

(..., 2+ l}=luu1]. Iy 0y = ¢. Iy 1 > 14} 1. Then there cxist
=) g RN . '

Kgns o s Kyiop €07 4 n+ 1 such that

JjE€l; = k;. = k}. N

JEL =k =k +nt 1.k <k,

To see this, without loss of generality we can assume that bl =

=i+ L [l 1=i For 1<j<2i+1 let $; 3 noil jel,. =kl
if je I Let g= mn{0os. 8 # 8. o ond §¢ b oot 85,1 For



0</j<2i+1, let k;= u+s +...+5. It is easy to check that all

requirements are fulfilled.

Now suppose (S, (k) contains a C
(2i+ 1)

52 forsome l<i<n. Let
.a be the set of vertices of this C,,, ,. For 1 </j<2i+ 1
put jel, if d/" V<al) and jei, if a) <adf . l'hen |1y #
00k
the above lemma. By the definition of S, (k) we then have

H“” ]

+* 111 [, and we may assume |;’U | > I."1 |. Obtain & from

(0) (1) (2i+ 1) _ a\0 (0)
() ARG i SRR A | - < g
ko K kaiv1  Fkag ko

a4 contradiction.
We now state another old result.

Lemma 8.4 (P. Erdés A. Hajnal E.C. Milner [10]
p. 222, Lemma 14.1).

Assume k= w. 2% = k', Then there is a mapping [ [k’ ]2 -kt
s':'u'.-’: that ,('m' all A€k, Be |kt ¥ Y there is a te A such that
= {f{& n}): nEe B}

This is a generalization of k' - and the proof is to be
P

carried out using auxiliary functions g ]ust as in the proof of the pre-

vious theorem,
Theorem 8.5. Let k= w. 2% = k. Then forany n< w there
is a graph v on k% such that P*( s, k"

C

kY)Y and % contains no

Jor 1<si=sn

241
Proof. First we split k' into the union of k' disjoint sets x* =
= ] .y where |4, = k" . By Lemma 8.3, we can choose a graph
<K s
v on k' such that Chr(4)=«* and 4 contains no Cyipqp for
1 <i<n
Ligt i = <:_|,-1£.,-in]: {&.nte w1 Let further f be a mapping sat-

istying the requirements of Lemma 8.4 and let /= f| %. % being homo-

morphic to % contains no € for 1 <i<n either.

2i+ 1

457 -



Let now k* = U+ T, be a disjoint partition of kt. We define
<K

f’v={£<x+:JTvﬁAE|uk }. By kt - (x* )i, wehave k* = U T .

v< K .
Using that Chr (%) = k™ it follows that there are v < x and E+n€ f‘v,
{&,n} e . Then there are A C TpnAg, BCT, ﬁA”. |[Al=«k, |Bl=
=kt. By 8.4, thereis p€ A with k' = {fi{p, 0}: 0 € B}.

Without assuming G.C.H. we can prove the existence of a short odd
circuitless graph ¢ satisfying P*(%.x%, k') only on a set of cardinality
@247,

Theorem 8.6. Assume n<w<k. Thereis agraph ¢ on (2")*'
such that P*(%,(2%)" kY)Y and % contains no Cyipy Jor 1<is<n.

Proof. Let A= (2%)". We now split A into the union of M\ dis-

joint sets A= U A such that lAE' = A for §<A. Applying 8.3 we
E<A

choose a % on A\ with Chr(t&} = X and not containing (.'_,J.Jrl for
I<isn Let ¥ = {{A,. 4,1 for {£,m} € %}. Just as in the previous
proof % does not contain Cﬁ“ for 1 <i<n. Letnow E<n<A,
{£,n} € % be fixed and define f| lAE’An] as follows. The set

B, .=UX. gk Xe |A£]€'~' Ag: X-> A}

has cardinality A. Choose a one-to-one mapping h of BE i into

An' If ye 4 , l—h {X g) forsome (X, g)EB and x< X put
fUx, v})—g(x) and put f{{x v} =0 in the other Lases

We claim that this f establishes P*(4 . \. k%) on #%. Let A=

= U 7, be a disjoint partition of X, the set of vertices. into the union
p< K

of Kk sets.

Assume now indirectly that for all x€ 7 and v <k there is
p(x) < A such that

(1) JUx,y} # p(x) holds forall ve T
Define R(Y)C A forall Y€ P(k) as follows:

R(Y)={E< A\ Y={<k: AEﬂTvaﬁq)}}.
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Obviously A = U R(Y). Since Chr(f&) = A > 2%, there are
YePk)-{¢}

Ye Pk) — {¢} and £<mn, & ne R(Y) such that {(,n}€e 4. Then there
is XE[AE]“ such that [ XN T |=1 forall vE€Y. Define g: X~
as follows:

For x€ X let g(x)= p(x) where p is the function defined in (1).
By the construction there isa y = ht.n(X’ g)E AH and f({x, y}) = g(x)
for this » and x € X. Using that n € R(Y), v€ Y for the v with
y€T,. Then for this v thereare x,y€7T , {x,y}€ % with fi{x,y}) =
= p(x) a contradiction to (1).

§9. GRAPH CONSTRUCTIONS. SPLITTING KNOWN GRAPHS
First we recall a technical lemma about sets of the form ‘k.

Lemma 9.1. Let k> w, A a set of ordinals. Let Inc k)=
={xedg: X, <Xg for a<f; a,B€ A}. Each of these sets has a natural
lexicographical ordering <= <, . Assume now that 1<j<w, §<
<cf(k) and Inc(k)= U Tz is a partition of Inc (k). For i<j
define gt

T; = {x € Inc (‘k): {y€lInc (¢~ x):

(xo...xl. Vo Y

i YET)

has type k=% in the lexicographical ordering}.
The following statements are easy to verify.
(A) Inc(ky= U Ty for i<j.
E<b
(B) If XETL, i<j, then |{y <K:(Xg,....X;_ |, € T =

(C) Assume iy, i, <j, x€ T;(', ye T;'; x, #x, for v<iy,
r<i,. Then for any ordering condition < of the set {x, : v <j}U
U {y“: u<j} which is an extension of the given ordering of {x,:v< io} U
Uy, m<i } there are x',y' € TE, x'ig=x, y'li;, =y satisfying the
ordering condition.
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We leave the verification of these statements to the reader.

Lemma 9.2. Let k= w, A= 1. Suppose there are N edge-dis-
joint™ graphs G (§E<N) on k such that for anyv partition of rk into
< & classes there is a class in which each of the graphs has a vertex with

relative valency k. Then P(GS, (k). N, 8) holds forall 1 <n< w.

Proof. Note that the assumption implies & < cf (k). Let j=
=n? + n+ 1. Then, by definition 8.2, Inc (/k) is the set of vertices V
of GS, (k). We define f: GS, (k)= A by the following stipulations. Let
{x,1r}e GS”(:{}. Put f({x,v})=§& if {.\‘0._1'0}6 “.'?‘E and let f({x,1}) =0
if {xgq,)o} €& sy:\ Gy To see that this [ establishes 2GS, (k), X, 8)

let V= U T, be a partition of the vertices with § <8, By 9.l, k=
v Y

= U Ti is a partition of k into the union of < § sets. By the assump-
v< b’

tion, there is v< & such that for all £<X thereis x, € TI], with rela-
tive valency k in G- Let &<\ be fixed and let x, satisfy this re-
quirement. By 9.1 (B) we can choose x'€ ?--::+1 with x; = x,. By the
assumption, there is Yo € Ti with {xp: Vg1 € "{’z' \n <y, By 9.1 (C)
there are x, 1y € Tv. {x,y}E (,',S‘H(KJ such that Xin+ 1=x", 1|1= L
Then [f({x,y})=E

We now obtain

Corollary 9.3. If k= w is regular and k [.lc|§ then
<

!’(GSn (k), N, k) forall 1 <n<w.
Proof. Let f: [k]®> = )\ establish k ~ [K,]i. Let 4, ={e€ [K]°:
fle)=&}. Assume k= U T forsome & < k. Then, by the regularity
S

of k, thereisa v<§ with |7 |=«k. Forthis T ecach ¥, contains

an x € T with relative valency k otherwise there is a free set of ¥,
with cardinality |7 | = «. Hence the result follows from the previous

lemma.

Note that by Corollary 9.3 we sec that the relation k — |K]i plays
an important role in constructing graphs satisfying P and P* propertics.

We restate here some old results,
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Lemma 9.4 (F. Galvin — S. Shelah [17] pp. 170, 171).
@ w (@]
(b) of (20)» [cf 27O)2 A 270w (270 .
We get the following corollaries.
Corollary 9.4.1. Forall 1<n<w, PYGS, (w,), 4, R)).

Proof. By 9.3 and 9.4 (a) we get P{GSn(wl'}, 4, N,). Then, by 7.1,
we have P*(GS, (w)), 4, R,) as well.

Corollary 9.5. If cf (2"%) =R, then forall 1<n< w

1
PGS, (w,), R}, R)).

Proof. By 9.4 (b) X, + [¥,]{ , hence, by 9.3, A(GS,(w,), Ry, §)).

Considering that P(%, N, R,) is false for every graph ¥ on w, the
result now follows from lemma 7.3.

- . 8 . .

. Note that by theorem 8.5 the stronger assumption 2 0 = N, implies
the stronger conclusion that P*(4, X, , N,) holds for some "short odd
circuitless” ¥ on w,. We want to mention that with the proof of Lem-
ma 7.3 one can obtain the conclusion R, -+ [R, ]io =8, »[R, ]?2“1 as

well.
Now we state two other corollaries.
Corollary 9.6. P*(GS, (cf (2"0))), R,. cf (270)).

Proof. ¢f(2°0) is regular. Hence the corollary follows from 9.3,
9.4 (b) and 7.1.

Corollary 9.7. Let N be an infinite cardinal and let & be the least
cardinal such that \° >X\. Then forall 1< n< w, P(GS, (M), A, ).

Proof. [t is easy to see that the graph constructed for the proof of
Theorem 8.1, and the coloring f of this graph given there satisfies the
requirements of Lemma 9.2 with Gy = £ Y&} for &< \. We omit the
details.
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It is now time to state some open problems.

Problem 5. Is it a theorem of ZFC that there is a graph % on w
such that P(%,R,, R, ), orin fact does P(|w, 12, Ry, ¥;) hold?

1

Note that this is equivalent to P(, Nl, Nl) (by 7.3). The relevant
partial results are Corollaries 9.4, 9.5 and 9.20 (a) which will be proved
later.

Also note that, by 9.2, a positive answer would follow if w, +

+ [stationary subset of w, ]2 s provable in ZFC. However, we do not
1 hﬂ p

know the answer to this problem either. In view of the fact that the results
stated in 9.4 give all we know about the - [ ] symbol in ZFC this latter
question is probably even more interesting than Problem 5 itself.

Problem 6. Is the following statement provable in ZFC?

(A) Forany 1<n<w thereisagraph % on 2™0 such that
Pr(w, 200, X,) and % containsno C,, , for 1 <i<n.

By Theorem 8.5, C.H.= (A). By Theorem 8.1, (A) holds for n= 1.
By Theorem 8.6, P4, (20 0)* R,) holds for some % on (2750y*
By Corollary 9.7 we have P(GSH{ENO}, 20, R,) hence by 7.3 we also
have P*(GS,(2"%),R,,R,). By Corollary 9.8 we have P*(GS, (cf (2" 0)),
Ry, cf (2" ).

We now formulate some results and problems of finite character.

Corollary 9.8. P(GS, (w), Ry, ) holds forall 1 <n < w.

Proof. By Corollary 9.7.

Corollary 9.9. lorall n,h k< w thereisan m < w such that
PGS, (m), h, k) holds.

Proof. By Corollary 9.8 and by compactness.

2 2 _ :
Theorem 9.10. If m~> (p) """ b oand m -+ Ipl,::," a2 for
some p then P(GS, (m), ik + 1).



Proof. By the assumption there is a g: [m}z” 21+ 2 1 such that

all X C m, | X|=p are completely inhomogenous for this g i.e.
g([\‘]“"I 2142y = h. Let now V= Inc (”2“”' Inm) be the set of vertices
of GS,(m). V can be canonically identified to [rrr]”2+”+ I Let now
x,VEV, {x,y}€ GSn(m}. Put fi{x,»}) =g (Range (x) U Range (»)).
We claim that [ establishes P{GSn(m}, I,k + 1). Otherwise there is

fyk I, = V contradicting this. By m ~ {p)22+"+ A, [)o:']"z"“’r b e T, for
some j< k, | X|=p and this X is not completely inhomogeneous.

Corollary 9.11. If m~ (2n* + 2n + 2)22“’ *1 then
Chr {GSn(m')} > K.

This is the general method which is used in [5] to construct short odd
circuitless large chromatic graphs.

Finally to conclude this chapter we prove scme results about splitting
graphs of different type.

Definition 9.12. If ¢ is an order type tp (R(<)=y¢ we consider
the cdge-graph L(p) the set of vertices of which is [R]E. Two pairs
{x, v}, {z,u} are joined in [L(yp) iff either x « y =2z <u or z<u=
=X =< W

Lemma 9.13 (P. Erd6s — A. Hajnal [7]). If |pl= X, then
Chr (E()) equals to the least cardinal x such that 2% = |¢l.

Lemma 9.14. Suppose |pl=|Y|=R , 8> w. Then
PE(@), N, 8) = P(E(Y), N, 8),
P*(L(p), N, 6) @ P*(E(Y), N\, 6) .

Proof. Assume tpw (<,)=¢, tpw (<,)=¥ for some orderings
<, and ~,. It is sufficient to prove the implications from left to right.
Let f: [c.ou[3 - A establish P(E(p), A, §). We claim that [ establishes

PE(Y), N, 8) as well. Let |w, 2= U T, forsome k<& be given.
v K

Put Tp ={{x,yhx <, yAx =, v}nT 7!"“I ={{x,y}:x<1y;\'
Ay=<,x}nT,. Then 2k < &, hence by the assumption, there are v < k
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and e <2 such that forall §<A\ there are a, <, a < o, with
f({ao’ al s a—z N= E; {050, al h {al » Oy }e Tu

o g d o, o e
? g — ~
€ E(p). Then either a, <, @, <, a, or a, <, o <, a, hence

{{ay, @) h{a,a, }} € E(Y) in both cases and {og, o }, {a), &y} € T.
The same argument works for the proof of the second equivalence.

Lemma 9.15. Let ¢,y be order types. If ¢+ [d/]i and @~ (gb)i
forall k<é then P(E(p), A, 8).

Proof. Let tp R(<)=¢. Let g: [R]® = )\ establish np***[l,b]i. Put
flix,y}) =glx U y) for {x,y}€ E(p). Let l{J T, =[R]* be a parti-
v K

tion of length k < & of the set of vertices. By ¢— (yb)i there are v <k
and XCR, tpX(<)=y¢ and [X)?C T,. Then, by the definition of
g, g([X1®) =\ and by the definition of £, f([[X]?]* N E(p)) = \.

To draw the consequences of this lemma we need

Lemma 9.16. Let A= w,v.06 be cardinals. Assume \ -+ [7162‘ Then
At e [y + l}g.

Proof. For each (<A let fE; (€] = & establish 7\-»[7]§. For

{f,mEre\TPP, F<n<E put fi{f,n, §)=f({&n, ). [ obviously
establishes A" » [y + 1]7.

Theorem 9.17.

(a) k=8 = PE)),2,«"),

(b) 270 < 2™ = pE((270)*, 4, %)),
(c) 2%+ [k*)2 = P(E((2°)*, 8,k").

Proof. For all proofs note that by the Erdés — Rado theorem
2 > (k* + lJi holds. We always apply Lemma 9.15, we only have to
indicate the  and the partition relations we use.

(a) y=«r*, (2)* » (k] follows from 22"+ (k")3, see [11]
p. 125, Lemma 5/A.
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(b) ¥=w,. By [9] (p. 13. Problem 17). 2"1 + [w,]3.
(¢) ¢y=«k*+1. By 9.16.

Let (n), and [n]; denote the minimal m for which n:ﬂ(n); and
m > [n]}, hold respectively.

Theorem 9.18. For cach 1 < k< w there is an m such that
P(E(m), k. k + 1). As a corollary of this P(E(w), NO, Ry) holds.

Proof. By 9.15 it is sufficient to see that there is an integer n for
which (n lf < [n]i.

By known methods (see e.g. [3]).

(uiﬁ < k%" while, for all €e> 0 and n> N(k,€),

[nl} >

(5 -<)n?
k g‘ — € ]H
1 I This proves the theorem.

Now we prove a lemma which leads to a strengthening of 9.17 (¢)
and 9.18.

Lemma 9.19. Assume 1. A= w and 8 <\. Then
Vi < 7(P(E(N), k, 7)) implies P(E(N), 8, 7).

Proof. By the assumption, P(E(N),|X|,7) holds for all X & [6]°7.
By & <\, we can choose a disjoint partition

EN= U Gy

X :lalf
such that (%, | X|, 7). We can choose a mapping f,: %, = X which
establishes this fact. Put f= U  fy. We claim that [ establishes
Xe|é |(‘ T
P(E(N), 8, 7). In factif [A]> = U T, forsome xk<r, then for cach
r<k

X € 8)°7, thereis v(X) <k such that forall {€ X there are u,ve
= Tvt.h with fl{u.v})=§& {u,v}€ %, C E(N).

Now the statement follows because there is a v <k such that
U{Xec[8]°7: w(X)=v}= 6. This holds because otherwise there is
n, UIXES]“T:v(X)=vh n <& for all v<k, and

- 465 -



X= {n,: v<k}€[8]°T, a contradiction
Theorem 9.20.
(a) P(E(w,), R, Ry) forall «
(b) 2% [kt ]2 = KE(2°)*), (2)*, k*),

(c) 2* =kt = PE(**), ktt, kh).

Proof. Considering NE—O &= Nﬂ (a) follows from Theorem 9.18 and
Lemma 9.19. By Theorem 9.17 (¢) 2% + [k*]? implies P(E((2%)*), k, k).
Applying Lemma 9.19 with A= (2*)", 6§ =(2%)*, 7=« we get that
P(E((2%)%), (2*)*, k) holds. This proves (b), (¢) is a corollary of this
since 2% = k™ implies k* -+ [k* ]i+.

Let us remark that for finite graphs 9.8 gives a result which is stronger
than 9.18 since GSH (w) does not contain short odd circuits. However,
here it is possible to exclude all short circuits.

Theorem 9.21. For any n< w there is a graph % on w such that
P, RO, NO) and % contains no C:‘ for 3<i<n+ 3.

The proof can be carried out by using the "probabilistic method™.
Since this is not in the line of this paper we omit it.

Finally we state a problem left open by the above results.

Problem 7. Given n < w, is there is short circuitless graph 4 on
w such that P*(¥, R, X,) holds?

Note that the previous theorem gives an affirmative answer P* is
replaced by P, and 7.1 yields then P*(¢, k, R;) forall k< w.
§10. CONSTRUCTIONS OF RELATIVELY SMALL n-TUPLE
SYSTEMS NOT CONTAINING LARGE FREE SETS

Definition 10.1. Let (R, ) be an ordered set, 1 <n<w, X, Y€
€ [R]". X, Y are said to intersect canonically iff X = {x;: i< n}, Y=
= {y;: i<n} where both sequences are increasing in the ordering -~ of
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R, and Xn Y= fr: IS N} = {v;: i€ N1 for some NC n.
Theorem 10.2. There is a triple system & on w, such that
(1) there is no independent X -set for &,

(2) n':e induced graph contains no complefe Rl (in fact for any
X € |w, | “1 there exist A€ X7 0, B e IX] such that no triple meets

both A and B).

(3) if two triples of ¥ have an edge in common then they intersect
canonically, hence

(4) each triple of v has two edges which ure contained in at most
Ry triplesof v and

(5) any four points contain at most two triples.

Proof. Let “ be a Specker ordering of w, and let <, be an
ordering of w, which is embeddable is the ordering of reals. Let ~ be
the set of all triples {x, V. z} € [w, 13 such that v <1<z, r REATE
and z <, v <, x. The first two statements follow from Lemma 7 of [17]

while (3), (4) and (5) are easy consequences of the definition.

Definition 10.3. Let 75 be the triple-system with four vertices and
three triangles. Let 7, be the triple-system having five vertices and three
triples having one point in common in such a way that two of the triples
meet in at most one point. See-Diagrams 3. 4.

%
l{,/// //' II:

/

Diagram 3 Diagram 4
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Corollary 10.4.
7 )3
Nl - (NI y T 3) ;

Theorem 10. 2 collects facts we can establish in ZFC for a triple-system
on w, not containing a complete X,.

Assuming G.C.H. we can prove the following stronger

Theorem 10.5. If 2% = k% then there is a triple system v, Y =

== U+ s, on kt such that
B<K

M v, N, =¢ for p<v<kt,
(2) there is no independent k*  for any o

(3) the graph induced by v contains no complete k*

(4) if two triples in & have a common edge it is the first edge of
both, hence they intersect canonically and
(n— I)3

(5) any n-set contains at most —-—-—4————] triples of /.

Let us remark that (5) is best possible by Corollary 3.6. We can not
prove (5) even for k = X, without assuming C.H.

2 .
Proof. By 2% = k™, we can choose an /: [k*]* = k™ which sat-
isfies the following requirement slightly stronger than establishing k" -
+ 92
ol Ol

(i) Foreach set BC k)%, |B|= k of vertex disjoint pairs and
forall o< «k* thereisa &<k"' suchthatforall §<n<«k® thereare
K different Z€ B with h({u,n}) =0 for ue 7

The routine proof of this we leave to the reader. We now define
R, C[£+ 1) for E<«* with the intention to put .~ = t{l% R, R,
will consist of triples of the form {xgs %5 £} = X such that {xgo ¥y 10
N{yg. ¥y, 1=9 for X#Y & Rz' Moreover we can choose Ré to sat-

isfy the following requirements (ii), (iii):

468 —



(i) hl{xg.x, D=1, 2<h({x,, £}) = h({x], E}) for X € Ry.

Let [k* ¥ ={d,: £<k*} and Fo={A;:n<EnA CE})

(iii) Let An € .FE. 2< o< ¢ There are k triples in RE such
that h{{xo,xl =1 h({.\-g. £}) = h({x, £}) = o provided it is possible
to choose k triples satisfying the above requirements at all. We now put
X={Xxq. %, E}E “f,u iff Xe Rz A h({x,, £}) = p + 2. Obviously then
¥ = | s, and (1) holds. (3) holds since /(e) # O for all edges e in

W< K
the induced graph. To see that (2) holds let 4 € [k']*", u<«k™.

By (i), there is a set B C [A]?, |B| =k of vertex disjoint pairs with

h(e)=1 for e € B. By (i) and (iii) there is a §, < k* such that for all
(y <E<k' thereisan {x,,x }€ B with {xg,x), EYER,, h({xy, D) =
=h{{x;,§})=0=p+ 2. Then thereisa £€ A satisfying this require-
ment, hence {x,,x,,§}€ [A]} n .9’“. (4) is obvious from the choice of

RE, and (5) is a corollary of (4).

The following are immediate

Corollary 10.6.

K ot + + 4 g 3
e = KE St [ L gl

P

CH =R, » (R, 3v7s,
This should be compared with Corollary 10.4 obtained in ZFC.

Corollary 10.7. If e N, then

+1°?

hiy(n, @) = [{_”___‘_4__1 }E ] )

Proof. By Corollary 3.6 and Theorem 10.5 (5).

The first two clauses of the next theorem show that there are arbitrari-
ly large chromatic finite n-tuple systems . with w, > (w,, F°,

Theorem 10.8. For any positive integer n = 2 there is an n-tuple
svstem & such that
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(i) k= (k, &)Y for every regular cardinal k.
(i) Chr(¥)= R,

(iii) forany v'cC ¥ with Chr(¥')>2 there exist X, Y€ '
with |1 XnYji=n-—-1.

Proof. Note first that is sufficient to prove that for each A< w
there are n-tuple systems &, satisfying (i), (iii) and Chr(~,)> k. In
fact if x> (k, ¥ )" for k<w, then k- (k, »)" where v is the
union of vertex disjoint copies of the &, (k< w). We now use induc-
tion on n. The statement is true for n= 2 and for all k < w because
of « - (k.k)> and since all graphs with valency one have chromatic num-
ber at most . Let now n > 3. and assume the statement is true for n — 1
for all &. We now use induction on k to prove the statement for n
and for all k < w. We may assume k> 2 and that the statement is true
for k.

Let v, bean (n— l)-tuple system with Chr(v ;)= k + 1 such
that (i) holds for . Let further »'(Y) be an n-tuple system satisfy-
ing (i), (iii) and Chr (v (Y) =k forall Y€ ;. We may assume Lo
S (Y) (YE »,) to be vertex disjoint. Foreach Ye v, let «(Y)=
={Yu{x}: xe U»(Y)}. Weclaim that v =U{¥ (YU S(Y): Y€

€ ¥4} satisfies (i), (iii) and Chr () >k + 1.

To see that (1) holds, let 2 be an n-tuple system on k such that there
isno k-set free for . Let Z={Y€E€[k]" ':|[{x€k: YUIx}€E 2} =
= g}. If there is a k-set A C k free for 2, then every maximal subset
of A free for 2z has cardinality k. Hence we may assume that there
isno k-set free for Z either. By the assumption on v . Z contains
o~ We can now choose disjoint k-sets A(Y)C k for Y€ Lo such
that YU {x}te # forall x€ A(Y). By the choice of v (Y), each
Z |A(Y) contains (YY) hence . contains .

We now claim Chr (¥ )>k. Let V=U~ and assume f: 17> k.
By the choice of &, thereare Y€ ¥ and v <k such that f{(Y)=
= {v}. Then. by the choice of #(Y) and F(Y) either fiz) = {v} for
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some z€ (YY) or f: U v (Y)=k—{v} and f(Z)={u} for some
Z€ (YY) and up<«k.

Finally to see that (iii) holds assume | XN Y|<n -1 forall X+#
#Ye ¥ forsome &'C . Let WV(Y), V, denote the set of vertices
of »(Y), &, respectively. Then, by the assumption, there are fy:
V(Y)- 2 establishing the fact that %' A #(Y) is at most two-chromatic.
By the construction, and by the choice of %', | &' A Z(Y)|< 1 for all
Ye £ Hence there is at most one vertex x € V(Y) contained in an
element of &'N ¥(Y) for Ye Lo We may assume that f), (x) = 1 for
this x and we can define f by fix)=f,(x) for x€ V(Y), Y€ 7,
and fix)=0 for x€&€ V. This f then establishes Chr (%)< 2.

We now state two more results which can be proved using similar con-
structions. The first of these theorems shows that for every infinite cardinal
k there are e.g. triple systems % with chromatic number > x such that
all subsystems not containing two triples with a common edge have chro-
matic number at most two.

An old problem of Erdés and Hajnal (5] asks if every graph of
chromatic number > k contains a subgraph of chromatic number > «
not containing triangles or more generally C,,, , for some fixed n and
| <i<n. This can be reformulated as follows: It is true that if 4 is
a fixed graph such that there are graphs with arbitrary large chromatic
number not containing ¥, then every graph % with chromatic number
> K= NO
containing %,. Theorems 10.9 and 10.10 show that a generalization of

contains a subgraph %' with chromatic number > x and not

this fails to be true for n-tuple systems with n >3 and in a sense for
A-tuple systems.

Theorem 10.9. Let 2<n< R, <. Then there is an n-tuple sys-

tem & such that:

(i) | 21=kE= 2 kM,

A< K

(i) Chr(.¥) = k.
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(iiiy Forany <'C % with Chr(%')Y>2 thereexist X,Ye€ &'
with | XNY|=n-1.

Theorem 10.10. For any infinite cardinals « and N\ there isa M\
tuple system & such that:

(i) X, YeFAX#Y=|X-Y|I=|Y-XI=\
(ii) Chr(&)= k.

(iii) forany ' C % with Chr(¥')> 2 there exist X,YeE &'
with X#Y and | XN Y|=\

We omit the proofs.

To carry out the contruction for the proof of the last theorem the
following lemma is useful.

Lemma 10.1 (P. Erdés — E.C. Milner [22]). For any infi-

: <R R )
nite cardinal k,[k] % is the union of 2 © antichains.
To conclude this chapter we state

Problem 8. Characterize the finite triple systems 7 such that
B, > (R,,7)° holds.

3.3 and 3.6 give classes of finite triple systems for which X, -
- {_Nl, 7)° holds.

4.2 shows that X, - (X, 72)3 holds where .7, does not belong
to the above classes.

Theorems 10.2, 10.5 and Corollaries 10.4, 10.6, 10.7 give negative
results.

Theorem 10.8 shows that there are finite triple systems 7 with 8, -
- (Nz‘ 7)3 having preassigned chromatic number k < w for all & < w.

We now call attention to a few instances of the above problem and
some related problems.
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Problem 8/A. Does Nl - (Rl. SV .9*‘2)3 = Nl - (Nl, .'/'})3 v
VI =8y, #5000

Problem 8/B. For which pairs &, X of infinite cardinals is it true
that for every finite triple system &, k= (k, ¥)3 = A= (A, ¥)3?

Definition 10.12. Let T T be the following triple systems

Diagram 5

Problems

8/C. Does B, » (R, 7,)°?

8/D. Does Nl - (N], 31‘6)3?

8/E. Does ZFC1- R = (R, 7,)%?
8/E should be compared with 10.4 and 10.06.

As to 8/C, .7 is the simplest (3, 1)-system for which we cannot

prove an arrow relation. On the other hand we remark that it is not a the-
orem of ZFC that N - (X, 7)? olds for all finite (3. 1)-systems 7
as shown by the following results:

A Steiner triple system v is a (3, 1)-system such that all pairs of
vertices of ./ are contained in an element of /',

Theorem 10.13.

(A) If there is a Suslin cf (k)-tree then there is a triple system Y

on K such thut
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(1) v has no free set of power K,

(2) -+ contains no Steiner triple system consisting of more than one
triple.

(B) If « is a singular cardinal then there is a triple system & on
K such that

(1) & has no free set of power K,

(2) If v is a finite Steiner triple system contained in & then
' has 2™ — 1 vertices for some m< w.

We omit the proofs.

§11. CONSTRUCTIONS OF RELATIVELY SMALL LARGE
CHROMATIC TRIPLE SYSTEMS

Quite a few of the constructions to be given will have a common
structure, We think it worthwile to introduce the following special con-
ventions. (All constructions described in this chapter give A chromatic
triple systems which assuming G.C.H. have cardinality \.)

Definition 11.1. Consider a fixed ordinal A. For «, <A let Fa =
= {{a, ). B< A} and Ra = {{a, B): &« << A}. The Rﬁ‘s are ranks, the
F ’s are files. A A-system (V-system)on A X X is a triple system
whose clements all have the torm {x, y,z} where x, v € RQ. X #y,
z € Rﬁ and a<f, (a>f). Wecall {x,y, 2z} a triple with base {x, )}
and apex z lying on the ranks o and B. We define graphs ¥, (&),
uf’z(.‘/’} on A as follows: {a,f} € [)\}2 is an edge of G.(7) iff there
is a triple in % whose base meets !-'u and FB‘ and edge of 9, ()

iff there is a triple in & lying on R and RB'

Lemma 11.2. Let N> X, bea cardinal, If GG, are A-chromat-
ic graphs on N\, then there is a A-chromatic H-system (V-system) ./
on AX N with & (¥)=1%,, 4,()=9,.

Proof. Let ./ be the set of all triples of the form

la;, @), e, 0,0, (B, B,)} where {a,a|}€ ¥, {a,,B,}€ %, and

1 | B
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a, <f,, (&, >B,). Then ¥ (¥)=19, for i=1,2. Let f: AX A>T
for some 7<A. Let Tp = {f < A: there are o, a'l such that
-{a],o{l}e 9, and f(a,p)) = fley,,pr)=v} for v<r.

Considering that Chr (%)= A, we have A= U T,. Using

v T
Chr(9,) =\ there are o,,f, <A and v <7 such that {a;.03,}€ 4,

and a,,f, €T . We can choose o, af'l and §, insuch a way that
{a, ct'l }e¥,, and file,,a, N = fB,, B, ») =v. This proves Chr(v') =
=\

Definition 11.3. Let ./, be the triple system with four points and
two triples. Let .7, be the triple system containing five vertices and four
triples such that three of these triples have a common edge and the fourth
triple does not meet this edge. Let .7 Dbe a triple system with ten ver-

tices and five triples and forming a pentagon as shown on the Diagram 6.

78

Diagram 6

Corollary 11.4. For any cardinal N= w, there is a \-chromatic

triple svstem on N containing no 7 7-

Proof. Inlemma 11.2 take ¥, to be the complete graph on A

and ¥, a A-chromatic graph on A containing no triangles.

Note that by the reasoning given in the proof of Theorem 10.8 X\ —
= (A, 7, )* holds for all regular .

Lemma 11.5. Let k be an infinite cardinal, and let G195, be
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k-chromatic graphs on x. For each ordinal a <k let P, =%% , and
let P= U P . Let v be the triple system on PX k consisting of

a< K
the triples of the form {{o,u),{0,v),{t,w)} where 0€P_, 7€ PB*

a<f<k, {a,f}€ 9,, 0Cr1, T(e)={u,v}, and w<«k. Then
Chr (¥) = k.

Proof. Let f: PX k> & forsome & < k. We now definea p€

“lg Ly induction on &< w

e i
Then g:I a€ P . Considering thalt Chr(¥,) =k, wecanpick u_,v €Kk,
{u v e, and v <3& such that flpla,u )= flplo,y ) =v, .
We then put p(a) = {u,,v 1} By Chr(¥,)>k, there are a<f <k,
{a, B € 9,5,
= W=y, o= pla, 7=pl|B. Then X = {{o,w), (o, v (T, W)} € ¥
and flX)={v}. Hence Chr(~')>=«k. Since Chr(¥') <k is obvious

this proves the lemma.

Assume p|a has already been defined.

and v< & suchthat v =v, =v. Putv=v =v_, u=u_,
@ 54 @ 5} a

Theorem 11.6. For any infinite cardinal k is a triple system Y
such that

(1) Chr(¥)=«",

(2) | &= 2%,

(3) & contains ho T s T3 T 4y T 70 T g,

(4) if SeC and Sy contains no 7 then Chr (¥ )< 2.

0
(5) if L and | Sl < NU, then X - (\, .‘/'013 for every
regular \.

Proof. We use Lemma 11.5, with k replaced by x*. We take for
¥, a graph with no triangles or pentagons, take for %, agraph with no
triangles, both of chromatic number «. (1) follows from the lemma.

, S i :
| & 1= 4 |%k|= 2% hence (2) holds.
a<at

To prove the rest observe first that if (r,w)€ PX x and a triple X
of . contains it, and X has a vertex (o, u) with D(o) < D(7) then
X is uniquely determined by D(7); X = {71 D(0), ud, {r1D(a), v), {1, w)}
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where {u, v} = 7(D(0)).

It follows that the pairs of P X k contained in more than one triple
of v have the form {(o, u), (o, v)} and all the other vertices of the
triples containing this pair are of the form {7, w) with D(7) > D(0),
oCT.

This arrangement implies immediately that . contains no 74 and
S 4+ 74 areexcluded because 4, does not contain triangles.

In case of 7| and 73 there is a unique way to pick an edge

from each triple so that these edges form a triangle and a pentagon re-
spectively. Now meditation shows that if % contained a 4, ora Jg
then the triangle or the pentagon would be contained in % 1 We omit the
cumbersome discussion. We only want to point out that the same argu-
ment does not work for circuits of length seven defined analogously. This
proves (3).

(4) and (5) follow since all finite subsystems &, of ¢ are con-
tained in systems constructed for the proof of Theorem 10.8.

Lemma 11.7. Let N be an infinite cardinal. Suppose ¢, %, are
graphs on N such that (%, N k) and P*(%,, N\ k). Then there is a
V-svstem % on NX N such that:

(1) Chr(¥) > k.

(2) @ (L) 9,0 are subgraphs of 109, respectively.

(3) any two triples lving on the saie two ranks have the same apex.
(4) no nwo triangles have the same base.

Proof. Choose mappings f|.fy establishing P(% A k) and
P*(5,, N, K) respectively.

Let /5 = /-7 where 11 isa Ato-l1 mapping of A onto A.

Let  » consist of all triples of the form

o 00, €6« By % <By . By}



such that a, <B,. {a,,8,}€%,. fL({a,, B, D=0, {B,,6,}€ %, and
S4By, By D = a,.

(2), (3) and (4) hold by the construction. Tosee (1)let g: AX A= §
for some & < k. By the choice of fl, for each [ < A there exists
v =g(B) such that for all a <X there are 7,8 <X with {y,8}€ 9,
Ji({y, 8D = a and g({y, ) = g({6,B)) = v. By the choice of f}. there
are v<§6 and o, < A such that for all £ <X there isa § with
{az,ﬁ}e 9y, f:}‘{_{az,ﬁ}) = § and é(azj = é(ﬁ} = v. By é(azb = v, there
is an o, such that g((al.az)) =v. Then there is a f, >A a, such that
gB,) =v, {a,,6,}€ ¥,, and h(f7({e,.B,1)) = ;. By g(B,)=v, there
are B, <X such that {8 .8\}1€ %, f (8. 8\ 1) = a,, and
8By, By By, By =v. Then X = [l 0,0, ¢B,.B,)¢B;,8,0} € ¥ and
g(X) =v. This proves Chr(¥') = k.

Lemma 11.8. Let N be an infinite cardinal, x the least cardinal
such that N > X and n<w. Then there is a V-system on XX N such
that:

(ly Chr(¥ )= k.

(2) L) contains no Gy, for 1 <i<an.

(3) w,(~) contains no triangles.
(4) any two triples lving on the same two ranks have the same apex.
(5) no two triples have the same base.

Proof. By the previous lemma it is sufficient to exhibit graphs @ |
%, on A such that PC% | N, k), P*(% 5.\ k), %, contains no Cois o
for 1 <i<n and %, contains no triangles. The existence of such graphs
follows from Theorems 9.7 and 8.1 respectively.

Lemma 11.9. Let k be an infinite cardinal such that 2% = kv and

let n<cw. Then there is a V-svstems v on kb X k™ suel that:
(1) Chr(v)=xt.

(2) % (¥) and %,(~) contain no Coiyq Jor 1 <isn
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(3) any two triples lying on the same two ranks have the same apex.
(4) no two triples have the same base.
Proof. By Lemma 11.7 and Theorem 8.5.

Definition 11.10. Let 7
threc triples. Two of these triples have an edge in common, the third triple
does not meet this edge; see Diagram 7.

be a triple system with five vertices and

.J'_g

Diagram 7

Theorem 11.11. Let N be an infinite cardinal, « the least cardinal
such that N > N Then there is a triple system /4 on N such that
Chr( /)2 Kk and o/ contains no 7 4.

Proof. Let ./ be the triple system constructed in Lemma 11.8 with
n=1. Then Chr(.~)> k. Assume ./ containsa .7,. Then the com-
mon edge of the two triangles of 7y meets two ranks, and then %
would have to contain a triangle,

+

Lemma 11.12. Let k be an infinite cardinal such that 2% = k™|
and let n< w. Then there is a B-system (V-system) & on kb X k?

such that:
(1) Chr{zy= K"
(2) 4, () and %,( /) comtain no Cy Jor 1 si<n

(3) any (wo triples with the same base have their apexes on the same

rank,

(4) any two triples with the same apex have disjoint bases.

479



Proof. By Theorem 8.5 we can choose a graph % on k" which
contains no C,;, , for 1 <i<n such that P94, kt,k*t). Let f be
a mapping f: % —> k' which establishes P(%, k" k*). Define m:

Kkt Xkt >kt by w8, B, =B,. For a,f<k* let #(a, ) be the
collection of all X such that:

(i) Xc [RBP.

(i) {x,y}€X={mx),n(»)}€¥% and A{mx), n(1)}) =
(ili) e# e EX=cNe = ¢.

(iv) 11X =«

Now, by a routine transfinite induction, one can construct a A-sys-
tem (V-system) & satisfying the following conditions:

(a) ¥, (), %,() are subgraphs of %,

(b) if a triple has apex (e, @,) and base {{3,,8,), (ﬁ'i ,B,)} then
ﬂ{ﬁl ) .6'1 “ 2 0-'2-,

(¢c) any two triangles with the same apex have disjoint bases,

(d) if {oy,B,}€%, a,> B, (o, <B,) and X € 7(ay,[,) then
for every sufficiently large « < k* there is a triple in ' with apex
(@, a,) whose base belongs to X.

We omit the details of the construction. Now ' satisfies the re-
quirements (2), (3), (4) by the construction. Let g: k* X k¥ - k. By the
choice of % foreach B < k' there existsa v= é{B} satisfying the fol-
lowing requirement. For each a < k' there are x* “vertex disjoint™
pairs {x, 1} € Rﬁ, with {mw(x), 7(y)} € %, [fUm(x), m(1)})=a and
glx) = g(y)=v. Again, b}/ the c]loice of % there arc “2-52 <k,
{orz,ﬁ2 } € %, such that g(cle = g(ﬁz} =v f?r some v < k', Say we are
constructing a A-system and o, <f,. By g(B,)=v thercisan XC
S '”(az‘ﬁz) such that ‘g:(,\') = g(y)=v holds for all pairs (x,y}e€ X.
Then, by (d), and by g,(a)=v there is an « such that
ga,, a,))=v and there isa triple Y in . withapex (¢, «,) whose
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base belongs to X. But then g(X)= {v} for this triple of . Hence
Chr(&)= «k*.

Theorem 11.13. Let k be an infinite cardinal such that 2% = k*

and let N < w. Then there is a «*-chromatic triple system % on k'

4
) . . n- .
such that for cach n< N any n points contain at most [E_] triples.”

Proof. Take ./ for the system given by Lemma 11.12 with some
n, 2n+ 1= N. It is a matter of easy finite computation to verify the
statement for this .

Corollary 11.14. Assume G.C.H. Then ,g:_,(m. o) = [I—’é‘] for all o

Proof. By Corollary 3.3 and Theorem 11.13.
To conclude this chapter we state

Problem 9. Characterize the (finite) triple systems that occur in every

N, -chromatic triple system on .

To have a short notation: Let G,(x) denote the class of finite triple
systems which occur in every k-chromatic triple system on k.

Corollary 3.3 shows that G,(w ) islarge eg. 7, € G (w,). By
Corollary 11.4, .7, & G;(w;) but R, ~ (R, 7, ). By Theorem 11.6
C.H.implies .7, 74, 7,, 73 & G4(w,). By Theorem 11.11 C.H. im-
plies .7y & G;(w;). Note that all these examples 7 € G,(w,) are such
that they satisfy the necessary conditions given by Corollary 11.14,

We now state the simplest unsolved instances and some related prob-

lems.
Problems
' s ZFC v+ 7 = 2 c G o)
9/A. Does ZFC Ty T yn Tga L gy g Flg(w) )]
9/B. s there an N, -chromatic triple system on «, which avoids
both ./, and ./ ,?
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9/C. Is there an R, -chromatic triple system on w, which avoids

1
e v s T ‘-r.
T s T3, 74 and 747

9/D. Let &, ¥, be finite triple systems. Suppose that for each
of them there is an N -chromatic triple system on w,, avoiding it. Does
it follow that there is an X -chromatic triple system on w,, avoiding
both?

9E. Let k,AZR,. Is G (K)=G3(7\)?

3

§12. CONSTRUCTIONS OF (n, i)-SYSTEMS HAVING LARGE
CHROMATIC NUMBER

:n(K)

Put 2,(k)=«k, 2, ,(k)=2 forall k and n < w.

The next lemma is our main tool in the constructions to be given
here. As we have already mentioned in §6, it concerns P and P* prop-
erties.

Lemma 12.1. Let 1 <r<s< NO < & < \. Assume that at least one
of the following conditions holds:

(a) s—r=1 and N <\ for k<8,
(b) s—r<r and \'" <\ for k<8,

(¢) 2<s- r and there are (s —r,r)-systems - such that
| &1 '
A Tl _ N and (& Kk, k") for 1<k <8.
Then there exists an (s, r)-system &, | &% | =N such that
P*( ¥, N, 6,r).

Proof. If (c) holds let ¢ = U v

v< K

&, establishing P(¥ ,k, k") for 1 <k <§é.

be a disjoint partition of

K, v

If (a) holds let & consist of a single one element set and put
SLon=, for v < k.

K, v

If (b) holds let ¥, = pEEP=r, S, =, , for v<k Let 7 be
the smallest cardinal such that A" > X. Then w<é<7< A\ and 7 is
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regular in all cases. We are going to define & on AX 7. Put R,B =
= AX {f}, Tﬁ=?\>< g for g< .

For each g< 7, let .7 (B) consist of the set of all sequences X =
=(X,: v<k) satisfying the following conditions:

(1) 1<k<8,
(2 X, TV, 1X,I=1¢,,, X,nX, =¢ for v,u< 8, v+,
(3) ANnB=¢ for A€EX, BEX#, A#B, v, u<K.

Let further #(8) be the set of all triples (X, g, £) such that X & .#(8),
Dig)= U Xw R(g)C A and £ < 7. By the assumption, |.# ()| =
P<K

=|1A4(B) =N forall <.

We can now assume that for each §<71 and A =<(X,g, §) there
are “vertex-disjoint’ copies f/'ﬁ{A) of ¥ in JRI3 where & = D(X).
We will denote by :/'i‘u(/\) the subsets of fﬂ(A} corresponding to
the sets &% for v < k respectively. We now choose a one-to-one map-
ping ¢, (A) of :/’ﬁ_u(/\,\ onto X foreach f<7, 1<Kk<$§, v<k,
A=(X,g & x(B). ¥ will consist of sets of the form YU Z, Ye
S [Rﬁ]’ r., Ze [Tﬁ]’ for <t satisfying the following conditions:

(4) There are <7, A=<(X,g §)€ A (B) such that Y€ sF(A)A
A K= D(X).

(5) Thereisa v <k suchthat Y& .:/'ﬁ'u(/\) and 7= Py LA)(Y).
We put (Yu Z)=p forall YuZeE .

First of all it is obvious that | .| = A. We now check that & is
an (s, r)system. Let U=YUZ U =Y UZ; U Uey¥, UzrlU,
BU)y=B, BU')=p8. If B+#p then obviously |UN U'|<r in all cases.
Assume g = f'. Considering that the ..'fﬁ(A) are 'vertex-disjoint™ and
| Z| = | Z'| = r, we can assume that U, U' € ##(A) forsome A =(X,zg,¥§),
D(X) = k. Then, by (3), (4), (5), and by the definition of goﬂ’v(A), Z
and Z' and disjoint. If (a) and (b) hold then |UNnU'|<|YNY'|<
<s-r<r If(c)holdsthen Y+# Y, hence |UNnU|<|YNnY |<r
because of the .~ are (s - r,r)-systems.
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It remains to see that P*( ./, A, §, r) holds. We define a mapping
f: ¥ =X\ asfollows. Let B(U)=8, U=YUZeE ». Then YE s¥(A)
for some A=<(X,g £)€ 4 (f) with D(X)=«k and Z€ U X . Let

v K

fU) = g(Z). We claim that this f establishes P*(.%, X, &, r). In fact,

assume AX 7= U P is a disjoint partition of the set of vertices into
< K

Kk < & classes. Let = {u < K: |P” |z 7} and M=k N By the regu-
larity of 7, we can choose a f<7 and an Xe&€ .7(f), D(X)=k such
that U Xp C P“ for pe N. Assume indirectly, that forall p <k, Ze
€L, | there is an /i(Z) <\ such that AY U Z) # (/) forall YU Ze

e vy, YUZC P“. Let g=h| U X”. We can now choose a (<
M<K

such that for A = (X, g. ©>e #(B), Uvw ﬁ(/\} C U P Then either of
peN
the assumptions (a), (b), (¢) implies that there is a u € N, such that for

all v<k thereisa Ye& Jf‘ﬁ.ul/\}, YcC PH. If (a) holds this is trivial, if
(b) holds this follows from xk* — (5 — r): and from the fact that each
Ye ./ﬁ belongs to each .‘/‘ﬁ , forall v<k. If (c) holds this is true

because ¥ = U & . establishes P(& .k, k*). Now pick a Y€
r< K 5}

e.sfﬁ (A}, YCP and let Z= Y50 (A)(Y). Then YU/CP
Yu AE . By thc choice of f, flY U Z) = g(Z). However this Lontra-
dicts the definition of s and g.

The next theorem yields the "if”” part of Theorem B.

Theorem 12.2. Let 1 <i<n<mi+ 1< NU <\ Let & bethe

. = (5 . 2
least cardinal such that \~™m 1 : > N, Then there is an (n,i)-svstem &

such that | | =N and P*(9, N, 6,10).

Proof. The assumption implies m > 1. We prove the theorem by in-
duction on m. Assume m=1. Put r=1i, s=n Then s r=1,

=3 l[f{.} =k hence A <) for k< &, and the statement follows from

Lemma 12.1 (a).

Assume m > 1 and the theorem is true for m — 1. Put r=1i, s= n.
Then s r<(m 1)i+ 1. We now apply the induction hypothesis for

. ; B S § ,
N =2, (k) foreach k< §&. Considering that X\ m =2 <\ for each

Kk, it follows that there exist (s —r,r)systems ¢ , | ¥ |=2 = (k)
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such that P2( P v ¥y k*) holds for x < §&. Then, by the definition of 8§,
condition (¢) of Lemma 12.1 holds, hence there is an (s, r) = (n, i)-system
&, | ¥ =N such that P*(, N, 8,i) holds.

Corollary 12.3. If 1l <i<n<smi+ 1 <R, <k than there is an
(n, i)-system & such that | & | =2 (k) and PY &, =, k), k't ., i) holds.

Proof. Since A~" '™ = for A= =, (k), m>1 we can use

the above theorem with A= :m(i{}. & =«kt.

Corollary 12.4. Assume G.CH. If 1<i<n<mi+ 1<R, then
there is an (n, i)-system Y such that | & | = N and

a+m
PH Y, B , N L0 holds and, as a corollary of this, Chr(¥)> R |
at+ 1 &

atm

We now state a corollary for finite set-systems.

Corollary 12.5. For anyv positive integers i,n,k with 1 <i<n
there is a finite (n,i)»svstem such that P*( ', k. k+ 1,0 holds.

Proof. There is an integer m such that n<mi+ 1. By Corollary
12.3, there is an (n, i)-system &' such that P*(v', k., k + 1,i) holds.
The result now follows by compactness.

In case we do not assume G.C.H. Theorem !2.2 is not the only way
to exploit the force of Lemma [2.1. In fact we are going to prove several
results which seem to be incomparable with 12.2 in the absence of G.C.H.

Theorem 12.6. Let | <i<n<mi< Nog <A and let & be the least
; - (6t) : - -
cardinal such that \~"™ 2 >N Lhen there is an (n, i)ysvstem Y

such that | v | =N and P*C, N, 6, 10).

Proof. By the assumptions. m = 2. We prove the theorem by in-
ductionon m. Let m= 2. Put r=4i, s=n. Then s r<r, and

A . . .
. 3(;{+ y=uxk1: N < A\ holds for k < &. hence the result follows from

Lemma 12,1 (b). Assume now i > 2 and that the statement is true for

m— 1. Put r=1i s=n Then r s<(m 1) Let X =2 = (k")
. .t ALl : i
for k<& Hence &6 " - g for 7< k. It follows, by the in-

h

duction hypothesis, that for each | < ik <6 there exist (s  r, r)-systems
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¢ _ + ¢ + . - 2k t)
Lo | L 1=2, _5(") such that P(#,k, k™). Since A <A
for k< 6, condition (c¢) of Lemma 12.1 holds. Hence, by 12.1, there ex-

ists an (s, r) = (n, i)system &, | & | =N with P*( ¥, N, 6, 10).

Corollary 12.7. If 1<i<n<mi<R; <k, then thereisan (n,i)-

system % such that | v | = 2 (k) and P*( 7,2 (K, K, 0).

m - m

Proof. Let A=2 (k). Since m=> 2, ?\:m - 26" ' < _ (k)

for all 7 < k. Hence, by the above theorem, P*( ., :m B l{fc), K, l) holds.

Lemma 12.8. Let 1 <r<n<V;<k<N\ Ifthereare order types
o, U such that |¢l=AN, ¢~ (\b}i and @ > [1,!/]‘;+ L then there is an
n-tuple system ./, such that | ¥ | =X and P*( 4,k k", 1)

Proof. In fact since there is no other requirement we can take ~ =
= [A]" and prove that P*(.#,k, k%, 1) holds. By 7.1, it is sufficient to
see that P(.%,k, k") holds. Let <, be an ordering of A such that
tp A(<,) = y. Let now 7 (At > k establish ¢+ (v’ L We write
each element Y € [A]" in the form Y=Y, U Y, where Y, € % e
Y, €N" 7! and Y, <, Y,. Define f: [\]" >« by AY)=AY,)
for Y€ |A\]". Let now A= U P,. Choose P =© UR so that

B<K

GH < RF, |RM |<n—r—1 and |R#| =pn-—-r--1 if (—JM has a last
element for u<k. By k= w, and ¢+ [\b]‘”rl we have |y | =k
Hence, by ¢ - (u}l there isa pu<k such that tp O (<,)=¢. By
= [t foreach v<k thereis V, ,E10, ot w1th ﬂY ) = V.
There is Yl‘ C P”, Yu,p = erp. | yl,ul =5 r 1. Hence

v 1
N }'U_u U Yl‘u):v, YG.u U Ylivci’ﬁ.

Lemma 12.9. Let 1<t<i<n<mi+ 1 <Ny<k<\ and m= 2.
Suppose there are order types @, ¢ such that |¢|l =\, ¢ = ( "’”1'
o [y} L Then thereisan (n,i)system 4 such that |/ |= 2
and P*(,3, (M), k¥, 0.

m

(A)

m—1

Proof. By induction on m. Assume m = 2. Put r=i s=n. Then

+
s—r<r+ 1. I1f s r<r then because of k* <A, 3 () <Z,(N)
holds. If s r=r+ 1 = t+ 1, then by the previous lemma there are
(s — r,r)systems v, | [<\ satisfying P(/ 7, ) forall 1<k
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Hence, by 12.1, there is an (s, r) = (n, i)-system ¥, | #|= S, -1
such that P*( &, - 1(?\}, k*,i). The general step of the induction fol-
lows from Lemma 12.1 the same way as in the previous proofs.

Theorem 12.10. /f 1<i<n<smi+ 1< &0 and m = 2, then there
is an (n,i)system & such that | ¥|=2 ](cf{ZhO)], and

P&, 3, (cf(270), R,

m

Proof. Choose =1, p=y = cf(2N°) in the previous lemma.
cf [2“0) - (cf (2“0))L0 holds because cf(ENO) is regular and > NO.
of (270) = [cf(?.xo)]ig is the result of Galvin and Shelah mentioned
in 9.4. The statement now follows from Lemma 12.9,

Theorem 12.11. If I1<k<i<n<mi+ 1N, and m=12 then

there is an (n, i)-system & such that | |=2  [(R,) and
*0 4 - N .
PRy an (i8S i)

Proof. Toapply Lemma 129 put t=k+1, o=y =cw,, k=R, .
By aresult of F. Galvin and S. Shelah [17]p. 168, R, + [R, JA*2.

Bg

Hence the theorem follows from lemma 12.9.

Theorem 12.12. If 1<r<i<n<mi+1<R,, m=>2 and

i

2 < NQH, then there is an (n, iysystem v such that | | =
=2, (B,,) and PP(r, 2, (B )R .0

Proof. To apply Lemma 12.9 pl;[ t=r,e=y¢y=8_, ., k=R8__ ;.
By a result of S. Shelah [23], 27°¢<R®__ =N - [Na+r];2.1+,'

Finally we prove a consistency result

Theorem 12.13. Con (ZF) = Con (ZFC + 2“0 = 2“1 = anyvthing
reasonable + for each integer m=2), there isan (m+ 1, 1)svstem &
such that | v/ | = 2 l(NO) and PY &, 2 l(tﬁg), Nl. 1).

m m

Proof. By a result of Baumgartner [1] Con (ZF)= Con (ZFC +

+ 270 = 2™ — gnything reasonable + R, = [R, ]iﬂ). Assume now that
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R, = [Nljig and 270 =2%1 we apply Lemma 12.9 with ¢t=1 = |,
n=m+1; k=R, ¢=y¢ =R If follows that there isan (m + 1, 1)-
system & with | |=2, ((R)=2_  (8,;) such that

P . 3 I(NG ), Nl , i) holds.

m

m -

§13. CONSTRUCTIONS OF 3-CIRCUITLESS »n-TUPLE
SYSTEMS OF LARGE CHROMATIC NUMBER

In [5] p. 94 a general concept of s-circuitless n-tuple systems was
defined. In this paper we are going to consider 3-circuitless set-systems and
we give a definition of this special case only.

Definition. A set-system .# is said to be 3-circuitless if no two
members intersect in more than one point, and every family of pairwise
intersecting members of . has a nonempty intersection.

Note that a 3-circuitless n-tuple system is an (i, 1)-system as well.
3-circuitless graphs are “triangle-free” graphs. Our aim is again to construct
3-circuitless n-tuple systems having large chromatic numbers. This way we
are going to generalize the instances concerning (1, 1)-systems of the pre-
vious results. The proofs of these results follow the same pattern as well.
First we prove a lemma corresponding to 12.1.

Lemma 13.1 Let 2<n< N < &< N lor each cardinal k,
l<k<N let v _ bea 3circuitless n-tuple system such that
P(.‘Jn_, K, k1), Assume that for 1<k <8 we have 2% < \= ?\l‘y k!
Then there is a 3-circuitless n + l-tuple system  » with | & | = N such
that P*( ¥, A, 6, 1).

We are going to prove the following more general result.

Lemma 13.1/A. Assume that the conditions of Lemuma 13.1 hold.
Let % bea graph on N with Chr (%)= \. Then the sct-system ¥ de-
fined below on N\ X X\ satisfies the requirements of 13.1.

(Note that for the proof of 13.1 @ can be taken to [A]%.)

Proof. Put R; = AX {8}. Foreach ¥ , 1<k<§é let
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s = |J &  beadisjoint partition of » establishing P(.» ,k,k").
K v b K,V K K

Foreach 8, §<X\ and 1<k <& we choose n-tuple systems :;"K(B, £)
isomorphic to .~ with set of vertices V' (B, £) in such a way that the
V. (B, &) are disjoint and R, = UV B8,8): 1<k<8ag<A}. We de-
note the corresponding partitions by 4B, §) for v<k.

Foreach a<X and | <k <& let #(«a, k) be the set of all se-
quences X satisfying the following conditions:

(1)(a) X—-(Xu: v < K,
(b) XUHXJu for v# u; v, u<k,
© 1X, 1=, ,] for v<k,

@ X=U X, XcRr_,

v< kK

(e) I XNV (a,H)I<] for 1 <k<8, §<A

Foreach <\, 1< k<& let 4#(B, k) be the set of triples A=<(X, g,
satisfying the following conditions:

(2)(a) There is a< g such that {a, g} € % and X€ #(a, k),
(b) g: XX,
(c) <A

Let L = {B: Thereisan «<f with {« f}€ ::}'}. It is obvious from the as-
sumptions that | # (a, k)| = | £ (B, k)| = N for a< A, BEL, | <k<8é.
Foreach € L and 1<k <& we choose a one-to-one mapping Pp of
A onto 4 (B, k). Foreach € L, 1<k<¥d, and £< X we choose a
one-to-one mapping Pt of v (B,%) onto X where npﬁ.xf&') =A
and A = (X, g, & insuch a way that P3¢ Maps :/'“.D(ﬁ, £) onto X .
This is possible by (1) (a)-(d) and (2) (a).

We are now in a position to define the »n + l-tuple system . sat-
isfying the requirements of the theorem. & will consist of n + 1-tuples
having the form Z= Y U {x} satisfying the following conditions:
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(3)(a) Thereare Be L, 1<k<§, £§<\ suchthat Ye & (B, §),
(b) x= “aﬁ.x,é(y)'

We now define an [ & - A which we claim establishing
P*(#, N 6,1). If YU {x} satisfies the above requirements, then
@B.K(E) =A=(X,g,n forsome A€ 4 (f,k) and x €& X. Put

Y U {x}) =g(x).
It is obvious that % is an n + l-tuple system with | ¥ | = A.

Note now that foran Y U {x} &€ ., the numbers @, k, £ are uniquely
determined and depend only on Y. We denote them by B(Y), (YY),
£(Y). Moreover there is a unique v <k for which Y& » (B, &) and
x € X for the corresponding x. Denote this v by w(Y). 'There is also
a unique a(Y)= o such that x€R_, {a, B} € g,

First we are going to check that & is 3-circuitless. Just as in the
proof of Lemma 12.1 it is easy to see that .~ isan (n+ 1, 1)-system.
To see that ./ is 3-circuitless it is now obviously sufficient to see that if
Zf = Yf U {x;}, i< 2 are three different members of ./ having pairwise
non-empty intersections then 'Qz Z.# ¢. Assume now that the Z. have
pairwise non-empty intersectim;s.

Put o, = af YI.J. B;=B(Y) k;,=«r(Y;), § =& Yf}, v; = \J(Y’-} for
i<2. Notethat |Y;[=n=2 for i<2 and the V; and different as
well. We may assume S, = 3, = 0,. We now distinguish several cases to
see that (1 Z # ¢.

i<2

Case a. By =P, =B,.

all. }0 N Yl + ¢. Then Ko = K| 20 = E;' Xg F X, hence }2
must meet say Y,. Then k; =«,, & =§,, x; #x,, x5 #x,. Hence

Y, must meet Yl as well. Then :Dz Yf # ¢ since ,‘/K(}(Bu. Ep) 15 3-
circuitless.

al2. Y.nY.=¢ for i,j<?2, i#j Then N Z ={x,}={x }=
i J i<y 0 0 1
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Case b. By =B, > B,.
b/l. Y, Y, =¢. Then I_Qz Z.={x4}=1{x;}.
bi2. YonY, #¢. Then wy=x,, =%, x, #x,. By the as-

sumption, Xgs Xy € Zz. By (1)(d) and (2)(a) we have « Then
&y = 133’ XgsX) € ij{ﬁr Ezj. This contradicts (1)(e).

0=C(1.

Case c. By > PB,,B,. In this case :Dz Z;={x,}.

It remains to prove that the f defined above establishes P*( ., A, 8, 1).

Let AXxA= U P, be a disjoint partition of A X A for some K < é.
[TR]

Assume now indirectly, that for each x €A X A, x&€ P thereisa
p(x) < X\ such that

(4) fiZ)+ p(x) holds forall xe ZC Pw Ze /. Foreach <A
let

OF) = {u < k: |I’MORB|:7\}.

Considering, that x < cf (N), O(p)# ¢ for <A Considering that
O(p) C P(k), 2*¥ <A and the fact that Chr (%)= A it now follows that
there are a< <A, {a,f} € 4 such that O(a) = O(B)= © # ¢. Note
that then g€ L. Using the fact that ]P“ N Ral =X for pn€®, and
that |V .(a, &) <A we can choose pairwise disjoint sets )f;J C R_ such
that |X“ | = |y ‘i | for up<k, Xn C P‘u for ue® and that
|Xu NV (a,pl<l for p<k, 1< K’ < 8, £< AN Then )
X=(X, u<K)€ #(a k), by (1). Let X= U X, and g=plX.

BR<K

Now using the fact that |PJu N Rﬁ| <A for u€&BO and xk < cf (M)
we can find numbers & n <\ such that V (B, §) C ge P and ¢, (§)=

In
=(X,g, n2= A. Using the fact that P(¥ ,k, k') is established by
s, , (W<k) wenow finda u€ O such that for all v <k there is a

Ye v, (B.E., YCP,. Picka YCP, Ye &, (8. Let x=
= ¥« E( Y). Then by the choice of this function x &€ X“ c PH, Yuix}e
€ v and by the definition of f, AAY U {x})= g(x).

Then, by the definition of g, AY U {x}) =p(x), xE YU {x}€ ¥,
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Yui{x;cC Pp and this contradicts the definition (4) of p.

Theorem 13.2. Ler 2<n< ND < N and let & be the least cardinal

=, _9(8) . . .
such that \°" 2 > N. Then there is a 3-circuitless n-tuple system &
such that | | =N and P*(#, N, 6, 1).

Proof. By induction on n. For n = 2 this is Theorem 8.1. Assume
the theorem is true for some n= 2. Let & be the least cardinal such
that A~n-1¢" )
< ?\:u 1K)

- =
=n— I{K)

> A Assume k< §. Then \°"

for k < &. On the other hand the least cardinal 7 for which
E‘T]

=N and 2% <

> 2, (k) isnot less than k™. Hence applying the
induction hypothesis we get that there are 3-circuitless n-tuple systems
s with | v =2, (k) satisfying P( .k, kt) for 1<r<§.
Then, by the previous lemma, there is a 3-circuitless # + l-tuple system

& with | ¥ [= A such that P*(.¥, A, 86,1) holds.

Corollary 13.3. If 2<n <R, <k, then there is a 3-circuitless n-

tuple system v such that | v |=2, (k) and P*(.», 1 (K, &£*, 1).

H H

2 T
Proof. Let A=2 (k). Then A" L A forall < k.
Hence the result follows from Theorem 13.2.

Corollary 13.4. [or any positive integers n, k with n=2 there is
a finite 3-circuitless n-tuple system v such that P*(v k. k+ 1.1)

Proof. As a corollary of the previous result there is an ./ satisfy-
ing all the requirements but the finiteness. The result then follows by com-
pactness. The following is an improvement of Theorem 13.2 for k=N
and n= 3.

0

Theorem 13.5. If 3 <n <N . then there is a 3-circuitless 1-tuple
: yt
svstem s such that | v | =2, ,(cf(2 Uy and

% by .
PH, 2, ,ef(270), 8, 1).

n

; ; el
Proof. By induction on n. Assume n = 3. Let A= 2°1C )

g cu o ol : W
§ = R,. By our Theorem 9.6, we have P*(GS (cf (277) R et (27
and by 8.3, GS, (1) is "triangle-free”. Considering f(279) = 8y, it fol-
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lows that for 1< x <N, there are “triangle-free” graphs %, satisfying

. 1%, a0 ;
PS5 kokt), N TR <N D = X Moreover if k< N, then

4 M
8 (a0
20 <20 <22 ) hence the result follows from Lemma 13.1.

The general step of the induction is to be carried out the same way
as in the proof of Theorem 3.2, We omit it.

Corollary 13.6. For any cardinal k, there is a graph % such that:
(1) % contains no quadrilateral with a diagonal,

(2) %= (3,

L

(3) k> Ny implies | 4| =2,

g0
(4) k=N, implies || =227,
(5) k< R, implies |4 ] <N,

Proof. The result follows from Corollaries 13.3, 13.4 and Theorem
13.5 considering the fact that if . is a 3-circuitless triple-system then
& is the set of triangles contained in the graph induced by &,

§14. THL "SMALLEST TRIPLE SYSTEMS” OF LARGE
CARDINALITY. THE UPPER ESTIMATES FOR g, (1, )

The induction method described in Lemma 13.1 does not work for
"s-circuitless” set systems. However we can get triple systems with some
specific properties if in the construction given in Lemma 3.1 we start from
graphs containing no short odd circuits. The word “smallest™ is used here
in an intuitive sense. We do not have a proof that all finite triple systems
which occur in the systems constructed below do occur e.g. in the special
triple-systems constructed in § 15 and [12] for the corresponding values
of parameters.

Theorem 14.1. Let n< ¥, <k and let \= 2", Let Ry =\U (B}
and assume R, = UiWB, &): B<NAE<A} where the V(B, §) are pair-
wise disjoint and have cardinality 2%, There exists a 3-circuitless triple
system 7 on NXON satisfving the following conditions
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(1) P, 22", k*, 1)

(2) If Xe v then (XN VB, 6I1=2, | XN WV, §)=1 for some
a, B, & n; a<p.

(3) Suppose x,y,x',y' € V(B, &), {x,y}# {x',y'} and {x,y,z},
x',y',z'}e &#. Then z€ V(a,n), z' € V(a, §) for some a<p, n+k&.

4) If s=1{x,y,z}ye »* where x,v€ V(B,§), z€ Via,n) let
e, (s) = {e, B}, e,(s) = {x,»}

Y, = {e,(s): s€ £}, ¥, ={e,(s): s€ ¥}.

Then the graphs %

1+ 9y do not contain C25+1 for 1 <i<n.

Proof. We apply Lemma 13.1/A. By 8.3 we can choose % on \
with Chr(#)=\ and not containing C,,, |
13/1/A with & = k*. For all Y (1< §) we canchoose a graph ¥ on

for 1 <i<n. Weapply

2% not containing C for 1 <i<n and satisfying PA(%,x, k). By

2i+ 1
our theorems 8.3 and 9.7 GS,(2%) is such a graph. It is easy to see that
the construction described in 13.1/A gives a triple-system satisfying the

requirements.

38

Theorem 14.2. Let n<Ny. Pur \=29C"" Let R, and
V(B, £) have the same meaning as in 13.6. Then there exists a 3-circuitless
triple-system ¥ on N X N such that

M
PY g, 290, 8 1)
and v satisfies the requirements (2)(4) of 13.6.

Proof. We do the same as in the previous proof except for that we
R o ;
choose % to be graph on c¢f (27 %) not containing Cyipq for 1<isn

and satisfying P(%, Ro» 8y). By Theorems 3.8 and 9.6 GSﬂ{cf(ZNUJ}

is such a graph. Theorems 14.1 and 14.2 give the “smallest™ triple systems
of chromatic number >k and > 8, we can construct. Note also that
these triple systems do not contain 7 ,..., 7, and xr Let g (f, )
be the function defined in the introduction.
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2
As we have already mentioned 8, (1, o) = [%] forall @ and ¢ < w.

Our next theorem collects the information we have about g, (7, ).
This is one of the main results of our paper. First we give

Definition 14.3. For ¢t < w, let

. ko ;;
&(0) = k.:g}.éfr;c i:Z; ma (!0, [Z_]]

Theorem 14.4.

(1) If & isa triple system with Chr (&) > R, then, for each
t<w, thereis Xe€[U Y] suct that | & N (X1°12 g'3(t}.

(2) For any infinite cardinal x there is a triple system .+ such that:
(a) Chr(&)> k,

(b) 1£1=22" if k>R, |&|= 212"0) e R,

(¢) foreach t<w if Xe[UZV, then |¥ n[X)I< g,(1),

3 3
2

v ty2 .
3) (3) - t<&0<(3) foral t<w,
4) 83t3)=1¢> forall t< w,

(5) The first few values of g'3{.f) are given by the following table:

o] 1] 2| 3| 4| 5| 6| 7| 8| 9|10|11|12]|13

0] 0 0} 1] 1

rJ

2| 3| 4| 4| 5| 6| 8| 8

1415116 17[18]19] 20 Z.’,IJ 22(23124|25|26]| 27

9110 12|12(13|14|16|18|18|19]|20|22|24|27
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Proof. (1) follows from Theorem 3.8, since by this theorem if
Chr(~)> R, and k,s< w we can choose k “vertex disjoint” K(s,s)
and an sZ-subset [ of the vertices such that every edge of a K(s,s) is
joined from a point of /* by atripleof ». If s> ¢ and 1, + ...+ ¢ =t
we can then easily choose a f-subset containing > 5,;3(1] triples of v .

(2) follows from Theorems 14.1 and 14.2 respectively.

These theorems give us triple systems satisfying the requirements (a)
and (b) of (2). We only have to show that (2) (¢) holds for triple-systems
satisfying requirements (2)-(4) of Theorem 14.1.

From (4) we only need that «, does not contain triangles. Put

S
il f
N i ) :

i U ) = min [fo. [ 74 ]] We need the following

Sublemma. Assume X, ..., X = 1. Then there are m, yg. ...
oy, = 1 such that

(i) ﬂyu. i vy P VB f¥gns we 3 2,) and

(11) Yo e s wb W Sy e SO . X

(iii) yy=zn, min(,xg)<m<n, v

(2N for ism.

Proof. We may assume v, =...2x, . The claim is obviously true

with y, = x, if n<x;. Assume x, <n and that the claim is truc for n 1.
By the induction hypothesis we can choose z, ...,z with flz,, ...,z )=>
Zfgseeon¥y, N Zgttzp=xe b by, L 52y, (U< k).

zg=zn—1, xg<k<n-—1. We may assume x, >2Az,=n— 1, other

0 0

wise m=k+1, v,=z, (i<Kk), y,,, =x, satisfics the requircments.

X
H ~
Now we choose m=k, v,=z,+x - l,, ] We can define v,

>

; "
b " )
= A gk | 4 | and il

I <i<k insuch a way that >z ; ;
= h

!'::
i i . '\.H .
I={l<i<k: y;>z;} then | /] = min [_\'ﬂ, l 5 ]] It is casy to check

that (i) and (iii) hold. To see that (i) holds it is sufflicient to sce that
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2

,"(,1‘0, s oin, o DD ﬂzn. vy 2 )= min [,\'0. [%’]] Let i€ /l. Then

Xy,

[7', ) [i J S g [-2 ] >N - [ 2—]. Considering that

=% I;’] it follows that f(yo,...,yk) ,f‘(zo,...,zk)z

#2

> & minlr [ 2)1 min (2. []) > -z

el

. mm( g [ 5 ]} > mm Xgs [ ]] and this proves the sublemma.

Let now X € [AX A]<“. Let @, <...<a, bean enumeration of
all ordinals a <\ for which XN R_# ¢. Put 1= 1X).

For | <j<1t let Xﬁ, 1 <s< n, be an enumeration of all now
empty sets AN I"(a}., £). Put w(X) = max mj.: 1 =<j<HX),. Weare
going to prove by induction on #(X) that there is a sequence ) ——

such that |[‘L’j3 n .Yy |"“"'~"ﬂ-"0' e ron s ¥y Mg H s we T =X and Yo 2

= max (w(X), x,). This is trivial for ¢ = 0. Let X be as above with
t=1tX)>0 and assume that the statement is true for r 1.

Put o(Y) = [[Y]P N ¥ | for Y€ XX N, Put X' =U{XN R, : i<t}

By the assumption therc are z,,....z, ~sothat zy=>x,, 24 F ...+

= [ X', e(X)< fizy,...,z,) and z; = w(X') = max {n;: 1 <j<t).

m

Now the arrangement of the triples in . described in (2) (3) and (4) im-
plies that

3

n, }_
e(X)<e(X')+ 2. min [max (xg, w(X")), [ I}
s=1
where .\'; = X:,I for 1 <s< My Considering that max (.\'”, w(X")) < Zy
we have e(X) < AZgan oy zm..\‘i ...... \;‘;I}. By the sublemma there are

~1 1 . 1 — ™ . - < ¥
Ygr---+¥, suchthat yo=>2m+n, zn, y,22, and e(X) < fly,
y,). Then v
» Y :

0 =X, and y, = w(X) and this proves the claim. We
omit the easy (inite computations showing (3), (4) and (5).
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Definition 14.5. We define functions g'n(t) by induction on n for
n= 3. §3 is defined in 14.3. Assume éﬂ(!) is defined for some n = 3.
Put

k
g . ()= max min (£, £ (¢,)) .
n+1 Kot sertp =1 0 gn i
f:f0+...+1k

Theorem 14.6.

(1) If & isan n-tuple system, n= 3, with Chr(v')> R,, then,
for each t< w thereis X€[U ] such that

| N X" I<g,).

(2) For each infinite cardinal k there is an n-tuple system Y such
that

(a) Chr (%) > K,
(b) 1¥1=2, ;K if k>R,
| 1=32, ,f2"0) if k=R,
(c) foreach t<w if XU then
|20 (X" <g,(0),
- .
v n-1
3 g0<(5)" .
(4) éﬂ(!:r”'i}ﬁﬂ.

Proof in outline. By induction on n. We proved this for n= 3 in
Theorem 14.4. To carry out the induction one uses the construction de-
scribed in Lemma 13.1 and the ideas of the previous proof. (4) follows
using corollary 3.10.

To conclude this chapter we state

Problem 10. Characterize the finite triple systems that occur in every
triple system with chromatic number > K.
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A positive result is given by Theorem 3.8. Negative results are given
in Theorem 14.2 and in the results listed at the end of §11. We now state
the simplest unsolved instances and some related problems.

10.A. Does either 7, or ., occur in all triple systems of chro-
matic number > X,?

10.B. Let &,, ¥, be finite triple systems. Suppose there are
>N0-chr0matic triple systems ;/"l, ,*/"2 not containing &, and v,
respectively. Does it follow that there is a > N -chromatic triple system

not containing either of ¥, and +,?

10.C. Let . be a finite triple system. If every triple system with
chromatic number > X, contains ~, does it follow that every triple
system with chromatic number > X, contains ~?

10.D. Given a triple system .« with Chr(¥) > ND does there ex-

b
. : 0
ists a triple system ', on 22 such that Chr (%) > X, and every
finite subsystem of ., is embeddable in &7

§15. SPECIAL CONSTRUCTIONS

The construction described in this § give (1, /)-systems of large chro-
matic number and sometimes of smaller size than the general constructions
described previously. Most constructions use ideas which can be found in
[12]. We need some preliminaries.

Definition 15.1. If 1<r<w, weput F(k)=2, |(k)* forall
infinite cardinals k.

Lemma 15.2. Let By Hyge e 5,

. be positive integers and let Kk be

an infinite cardinal, Then
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for all m < w.

This is a corollary of the resultsof Erdés and Rado for polarized
relations, see e.g. [11].

Definition 15.3. Let n,r,,...,r, be positive integers. An (r ...
., ry)-hypergraph is an » + ...+ r -tuple system  » whose vertices
are partitioned into disjoint classes V,,..., 1 sothat [/ |=r,

forall Hex, 1 <i<n.

Theorem 15.4. Suppose there is finite (ry. ... r, Vhypergraph 7
such that | # | =h and x€U # = |{He #: x€ H}|=v. Assume that

R m r! s ..,f'n )
i Bl R for every m < w, forsome N\ K= NO. There is an
A m ),

(h, h  v)system v such that Chr(Y) >k and | ¥ | =\

Proof. Let 1”7 denote the set of vertices of # and assume 17 =
=V, u...uV isa disjoint partition of the vertices establishing the fact

that & isan (r;., ..., r, -hypergraph. Assume that (17 i =5, [ 11 =3
for 1<i<n. Fix a well-ordering <, of " such that V,—, [; for
i <j. We now choose disjoint sets 1., 1|~ A We fix a well-ordering
<, of ¥=_ U FV suchthat V=, I, for 1<i<j<n.
l<i<n ! v el

Define W = (V' ,... .V """ W will be the set of vertices of
&

Put v =(XE€ |Il’]"’. There is a set /€ [l*'I R, l-"” lsl """ " such
that the unique monotone map of |, <, onto Z =, maps # onto
X}

& is obviously an /i-tuple system, | | =X Assume X, X, € ~/,
IX, 0 Xy1>h v Let Z, 7, be the unique sets which make X, and
X, belong to v, respectively. If 72, # Z, then either X} X, or
X, — X, has =v clements. Hence 7, = 7, and thus X, = X,. This
shows that v isan (I, r)-system.

Assume that W= U P, is a partition of W into « classes. Then,

(LS
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by the assumption, there is a set Z € | ijl, p— l;“ Is"'"'s" homogeneous
for this partition i.e. there is a v < x such that
VAR Zn ¢ eine p
P ZN V] :

Hence for the X & ¢ determined by this Z we have XC P . It fol-
lows that Chr (%) > k.

Corollary 15.5. Assume G.C.H. Suppose there is a finite (75 wnny )
hypergraph # such that | # |=h and |[{HE #: x€ H}Y|Zu. Then
Jor any ordinal «, thereis an (h, h — u)system ' such that Chr(.4) >

>Na and |"/|=Ra+f’1+...+f’n-

Proof. By Theorem 15.4 and Lemma 15.2.

Theorem 15.6. Ler n,i,r be positive integers, i<n and let Kk be
an infinite cardinal 1f

([u';fl];n

then there is an (n, i)-system & such that Chr(Y) >k and | Y| =
- o
=2, K",

Proof. Let A = [”m'}]_ To prove the theorem, by Theorem 15.4,

we only have to define an (r)-hypergraph i.e. an r-tuple system on k
vertices such that # has n-clements and every vertex is contained in at

; K
least n — i elementsof #. To do this let us first remark that by lr ]2 n

there exists an r-tuple system #, on k with | 7 |=n. If X€E 7,
ue X, v@& X and '/.r‘b = 7, (XTU{X {u}u{r}}, then fr'o =7

The valency of u« in | isone less, the valency of » in 7 ;} is one

more than in  # , the other valencies remain unchanged. Repeating this
procedure a finite number of time, applying it for « with maximal valen-
cy and » with the minimal one we obtain an  #, |.# | = n such that
[{He #:uell}| |{He #:velll|, u,veEk has absolute value at

most one. This # obviously satisfies the requirements.
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The following two corollaries are Theorems 2 and 3 of [12] respectively.

Corollary 15.7. Let 1<i<n<N, <k, then there is an (n, i)ysys-
tem & such that Chr(¥)>«k and | ¥ |= = NI

n—i-

Proof. Choose r=n — i in the previous theorem.

—1
Corollary 15.8. If 0<r<t< R, <k then thereis a ”:.l' l!’ r ”

system & such that Chr(#)>«k and | & |=2, (k).

in the previous theorem. It is

Proof. Choose n = {i], ;‘:[

easy to check that the requirements of the theorem hold.

Lemma 15.9. Let 1<i<n<R;<d<k, A=1, tIR,. If there
isan (n,iysystem & such that | ¥ =k and P(Y¥, N\, 6), then there
isan (n+t,i+ t)»system Y such that ¥ =k and P&\, 8).

Proof. We may assume that the set of vertices is k. Let f: v >\
establish P(v, A, 6). Define

¥ ={XUY: XESANYEk]'AXLY].

Let }(X UY)=flX) for XuYe . We claim that f establishes
P(F X\, 6).

First let Xl U Yl, X2 U Y2 be two elements of ~ . We may as-
sume max X| < max X,. Then X, F\X:Z =¢ and (X, VYN
N ()(2 U Yz) C (deﬂ Xz) U Yl, hence :{ isan (n + ¢, i+ t)-system.
Assume now that [ fails to establish P(v, A, §). Then there is a parti-
tion k= U P for <4 such that for each v <A thereisa p(v)< A

v<T

for which XUYe ¥ A XU YC P implies fIXU Y)# p(v).

We now choose P/ C P such that |P - P | <N, and either
cf (tp P.:] > w or P; = ¢. We can choose o< 6 in such a way that

k= U PV U P" where the P! are one element sets. This is a parti-
v<T vCo

tion of length < & of k. By the definition of & and fIX)€ 7 A
AXC P’u implies f{X) # p(v). This contradicts the fact that f establishes
H‘Ij't h\ 6]-



m

Theorem 15.10. /f 1< [2

] <i< NO < K, then there is an

(i + m, iysystem  such that

(1) 1¥1=2%)" and Chr(¥)> «k,

(2) 2“=x* =P, ktt k")

Proof. For the proof of (1) first apply Corollary 15.8 with t=m + 1,
r= 2. We get that there is an ”m; ll, [’;”-system 4 of cardinal-
ity (2¢)* with Chr(~,)>«. Now apply Lemma 159 with =

+
= f— [T] Considering [m 5 1]= ’T] + m we get (1).

: [’;J ]-syslem given by Cor-

ollary 15.8 can actually be chosen so that the set of vertices of ~ is
[(2")+|2 and /= {[X]E: Xc2)t A1 X|=m+ 1}. Now it can be
seen just as in the proof of Theorem 9.20 (c) that 2% = k* implies

P(v o k" k"), We omit the details of this proof. (2) now follows from
Lemma 15.9.

+
To prove (2) note first that the Hm 5 :

m . ’
Theorem 15.11. Let |1 < ) ] i<n<ritm<RW, <k, r=22 If
2% = k', then there is an (n, i)-system Y such that | Y | = 2, ]{K++J

and P*(v =, l{x*' By, kt, ).

Proof. By induction on r. For r= 2 the result follows from The-
orem 15.10 and from Lemma 12.1. For r> 2 the result follows from
the induction hypothesis, and from Lemma 12.1.

Note that Theorem 15.11 is of interest only if 2% = k* and PSS
> k', otherwise it gives a weaker result than Corollary 12.3.

Lemma 15.12. Let V=V, u.. .UV, ¥V,.n0 !f’f. =¢ Jor i#].
Suppose # C |V satisfies the following conditions:

(1) If Xe w, then | XN l«"f_| =2 and XN V}.l =1 for some
i,j with j<I,

(2) cach element of | Vilz is contained in at most one element of /.
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(3) if {a,b,e}, {d',b',c'} are distinct elements of &+ with a,b,
a,b' €V, then c¢#c.
m] " [I\]
3 2)

Proof. We may assume that the V, are non-empty. For nonnegative
. . Lo r;
integers define flr,,...,r)= Z min [rl + ookl g [ i]] Then

Iif |V|= l;?]—%k where k< m< ND, then | Y| <

=1
» Iéf(iVlie---=lVr')' We prove that if #y +.__+rI: -’;1]4_:(’
k
then ﬂr],....r;)él};]Jr[Q]’ Let m, =maxq m; ’; gr}’ =
Y- “;" <m,. It is sufficient to sec that if r=r, + ...+ r, then
k.| .
f(rl,.“.ff}‘“{\ n;r +[2(] 1.€. f(rl,__,,r,}éﬂ],z.---um,,_Lkr}'

m
2

P

We prove this by induction r. Let r, +...+r, | = { y + k, k<m.

By the induction hypothesis, fir;,....r, )<fU1,2,...,m~1,k) so

Kiryssweq i) 8 Ly 25 aus jimi— l,k.rfl=l};1]+ [;]+

3] 1))

Case 1. m, =m; then k. =k+r,<m, and fir,,...,r)<
m k+r m k r m k
g[3]*[ 2']€[3]+[2]+[2']4[3'%[5]'
e S0 AT i ( v &[] 4 k R G s
ase 2. .m_=m ; then flr;,...,r)< 3 ) ) N
m m [m+ 2 m, m, [k,
<{3}+2[2 J””‘[ 3 {‘“[3]"‘{"3 12

Case 3. m = m+ 1 and k,=k+ 1.

2]

m
3

m+ l]+ [k+ l]g
3 3

Then firy;: .. 7)< [

7)1

=

- 504 —



Cuse 4. m =m+ 1 and kék Then k+r,=m+k and
'%kém, SO [k‘+[ ] {m] [i] Now f{rl,...,rk)é

(5] () <[z 2)+ (-3 ) 3)-
(3)+14)

Theorem 15.13. For any k= Ry, the triple system o =
={{a, B} {oa, ¥}, (B, ¥} a<B<y<(2%)'} has the following properties:

(D 1 | =257,

(2) Chr(¥) > k,
3) If n [m] +k, k<m< R, then max | ¥ N[XP|=
Xeluy )t
_[m k V2 5
- [3]+[21“T”
(4) If 2% =t then PCr,k**, xkh).

Proof. (1), (2) and (4) follow from Theorem 15.10 or else from The-
orem 9.20, (3) follows from Lemma 15.12. To apply Lemma 15.12, if
Xe|lUs ) put T=UXx= {ag, ..., )} and V;={{e,4}: j<i} for
1 <i< (. Note that though Theorem 15.13 gives a weaker upper estimate
for g,(f, @) then Theorem 14.4, the underlying set has “smaller” cardinal-
ity in this theorem.

Theorem 15.14, If 2<n< Ry <k then there is an (n,n — [} n)-
system  such that Chr(¥)>k and |4 |=x*T.

Proof. Let 7 = K([)n],(yn]). Then . isa (1, 1)-hypergraph
such that | # |=m<n. Foreach xe U7

{He #: x€ H}| = [}n].

- 505 -



1,1

i o
On the other hand it is well-known that l o ] - [ y ] holds

K
for all < w. As a corollary of Theorem 15.4 there exists an (m, m —
— [Va]-system &, |»|=x**t with Chr(¥)=«**. The result then
follows from Lemma 15.9.

Theorem 15.15. Let 1<n<2 < Ry For any ordinal o there is

a (2n,n)ysystem & such that Chr (%) > N“ and | % | = Na i 4

Proof. Let V,,...,} be disjoint sets of two elements } =

r+ 1

= U Vi Let o'=[V,..., ¥, ] ! Then |4 |1=2"*! For
i=1

each n, 1< n<?2" thereisan # C A4 such that | # |= 2n and

He #» =V -He # . Then |{HE€ #: x€ H}|=n foreach x€ V. On

s
r+1°

N 1., 1

the other hand [ e ] - [m " holds for all m < w. Hence
Retrs1 L

the result follows from Theorem 15.4.

Note that, by Theorem 5.6, this result is best possible in the sense
that for any "fixed Nﬁ” it is consistent to assume that all (2n.n + 1)-

systems of cardinality RB have chromatic number < K.

On the other hand there is no counterexample to the following

Problem 11. Is the following statement provable in ZFC? For all
n, 3<n<w thereisa (2n, n)-system of cardinality N, and of chro-
matic number > X,. (See the remarks in §16 for more information.)

Note that 15.15 yields a (6.3)-system of cardinality X, and chro-
matic number > NO and a (12,6)-system of cardinality X, and of chro-
matic number > X . In view of this last remark the following result gives
some new information.

Theorem 15.16. forany k= R, thereisa (12, 6)system & such
that Chr (¥#)>k and | & |=(2%)"*.

Proof. Let Vl, V2 be disjoint sets, V = Vi U l"z, | [’l | = 4,

| V,yl=2. Let # =[V,,V,]*'. Then # isa (2, 1)-hypergraph,
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|.# | = 12. It is easy to see that |{H{€ #: x € H}| =6 holds for all
(2%)* m |1
{2")++l_)[(2"}++]x holds for all
m < w as an easy consequence of the fact that (2%)* - (:c*')‘z< holds.
Hence the theorem follows from Theorem 15.4.

x € V. On the other hand

Note, that by Corollary 12.7, we know that there is a (12, 6)-sys-
tem & with Chr(%)> k and cardinality P

Another theorem of similar type is

Theorem 15.17. lorany k= Ry there isa (6, 2)-svstem & such
that Chr(v¥') >k and

x+
| 1= min (22", [2‘3k)+]+] :
+

Proof. The existence of an | with Chr(y’l)‘}» K, | & 1= 22"
follows from Corollary 12.7 if we apply it with i=2, m=3, k= k",

Let now V=V, 0V, [V, I=1V,1=3, IVI=6,
Vi=tlayap.a3h Vy=tay),apy. 0553 Let o =({V,V,] -
—{a, pay ¥ [TV

Then | #|=6, and |[{He€ #: x€l}|=4 forall xeV. # isa
(2, 2)-hypergraph. On the other hand it is easy to see that

l[gtz"ﬁr] [”?]2.2
' -
2%)F m)

holds for w < w because of (2*)* = A*)2. for A> R,- It follows

from Theorem 15.4 that there is a (6, 2)-system Sy with | 7,1 =

= (207" }+ and Chr(.>,)> k.

Note, that, Corollary 2.2 if k= Ro and v isa (6, 2)-system with

+
Chr(¥)>«k, then | ¥ |2 k"t IfG.C.H. is true, then 22" = x+++
[2(3"]+ )-!-

]

= k" but it is easy to see that G.C.H. can be violated so

that the second number is smaller than the first one.
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To close this chapter we prove one more general result which can
yield partial results similar to the ones obtained before.

Theorem 15.18. Let 1<i <n <K, 1<i,<n, <R;. Suppose
there exist an (Hl o i) Fsystem  F, with Chr ( F>K and | S 1=«
and an (n,,i,)-system &, with Chr(/,)>a and |&,|=f. Let
n=mn, Ny, i=max (ni,, nyi). Then there is an (n,i)system & with
Chr(¥)>«k and |~ |=8.

Proof. 7 ={X, X X,: X, € & A X, € v, } satisfies the require-
ments. We omit the details.

§16. DISCUSSION OF SOME RESULTS CONCERNING THE
SIZES OF (n, i)-SYSTEMS WITH LARGE CHROMATIC
NUMBER. PROBLEMS

Definition 16.1. Let 1 <i<n< NU and let k, A be cardinals. Let
O(n, i, k, \) hold iff there is an (n, i)-system . such that Chr(v) =«
and | ¥ | =\

We avoided the uses of this symbol up to now for two reasons. First
we wanted the paper to be easy to read an second most of the results con-
cerning the relation © contain additional information which we wanted
to state. Note that using this symbol Theorem 15.8 says

&y Eps KT, N A O(n,, iy, o=

S ] ; ; +
= O(n, + ny, max{n i, n,i, Fo 0T

The simplest instance of the problems which remain unsolved is if it
is a theorem of ZFC that ©(6, 3, X, R,) holds. This was already stated
in Problem 11. on p. 154.

Here is a list of informations concerning this type of problems.

(a) 110(6,2,8,,R,), 10(6,3,%,,R,) and 16(6, 3,%,,8,) fol-
low from Corollary 2.2.

(b) ZFC -+ O6(7, 3, Nl, Nz) by Theorem 5.6.

~ 508 -



(¢) ©O(5,3,8,,8,) and ©(6, 4, N,,8,) hold by Theorem 15.14.
(d) ©(6, 3, 8,, 8,;) holds by Theorem 12.2.

(¢) ©06,3, 8 .N8,;) holds by Theorem 15.15.
(f) ©6.3, 8. (2"9)") holds by Corollary 15.8 (because
3

(g) ©(06,3, 8, ENI) holds by Corollary 12.7.

(h) By Lemma 15.9 we have ©(5, 2, N, 8,)=06(6, 3, 8.8, =
=0(7.4,8,,8,)=6(8,5,8,,8,)=0(9,6, 8, X))

Note that ZFCl+ ©(5, 2, N, X,) by Theorem 5.6, and ©(9, 6. N, .8y
by Theorem 15.14. The following remains open:

Problem 12. Does ZFC - O(8, 5, N, N,)?

Or  ZFCir-6(7,4, R, R,)?
Let us now recapitulate our knowledge about ©(3, 1, X . \).
(@) O3, 1.8, M) =2xr=R, by Corollary 2.2.

(b) If MA holds. then 1©(3, 1, 8 ,\) holds for A< 270, by The-
orem 5.6.

(€) O3, 1,8,,(2°%") holds by Corollary 15.8.

(d) Con (ZF) = Con (ZFC + 270 = o

by Theorem 12.3.

L= R, +6(3,1.8,.2"9)

Problem 13. Is 10(3, 1, Nl. 2“”) consistent with 2HU > N] 7 or

8 . . .
Is 103, 1, N, 27 1) consistent with ZFC? Note that

b b b . .
103, 1,8, 271 =270 =271 n o - |stationary subset of mllio,

Let us now turn to the problem of ©(4, 1, RN
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(a) ©(4,1,8,,\)=A=>R, by Corollary 2.2.

(b) MA=-10(4, 1, 8,,2"%) by Theorem 5.7.

N
(c) ©(4,1, Z"Cl,(Z2 0)+) holds by Corollary 15.7.
(d) 2% =k* =04, 1,k*,2<"") by Theorem 15.11 hence C.H.=
=04, 1,8,,2"2),

h
2!.'((2
, 2

0
€) O, 1,8, ') holds by Theorem 12.10.

®
(f) Con (ZF)= Con (ZFC+2"0 = 2"l =8, + 0(4,1,R8,,22 )+
5 2
+ 22 - N,). This follows from Theorem 12.13 since there we may as-

s
sume 2 2 = RB as well.

Of course there are many problems not answered by these results.
Here is one of them.

Ry +e+
Problem 14. Does ZFC|- G4, 1, Nl,(Z 0y "y

The case of ©(4, 2, N] , A) is completely settled since
104, 2, 8,, 8,) by Corollary 2.2 and by Theorem 15.15, ©(4, 2, R R,)
holds.

Finally we say a few words about ©(5, 2, R,,N). It was one of the
problems of [12] (see p. 7) if G.C.H. = ©(5,2, R, R,). We now know
this

(a) ©Of(5, 2, NN =A=NX, by Corollary 2.2.
(b) MA=76(5,2,8,,\) forall A< 2"0,
(¢) ©(5,2,8,,2"1) holds by Theorem 12.11.

Problem 15. Does ZFC - (5,2, %,.(2"0)")?
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*Added in proof. Theorem 11.13 can be sharpened as follows. Un-
der the assumptions of 11.13 there exists a k" -chromatic triple system

2
on k% such that any n points contain at most 54—] triples for all

n<w. To prove this take S to be the triple system given by Lemma

11.12 such that ¥, (%), ¢,( ) do not contain triangles. To compute
2

that n points contain at most [%] triples of & one can use the follow-

ing lemma. Assume ¢ isagraph with set of vertices n and x;; i<n are

5 2

nonnegative real numbers with Z x.=n, then 2 X.x, < [—?-I—- ;
i<n ! {xi,xj}e(f L 4

See P.S. Motzkin, E.G. Straus, Maxima for graphs and a new proof of a

Theorem of Turdn, Canadian Journal of Math., 17 (1965), 533-540.

LIST OF SPECIAL TRIPLE SYSTEMS DEFINED IN THE PAPER

.7*0, p. 475 fs, p. 473
7, p. 442 g2 D. 473
7, p. 442 7, p. 475
75, p. 467 Tg. p. 475
7 4. p. 467 Ty, p. 479
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