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Let G (n) be an r-chromatic graph with # vertices in each colour class. Suppose
;= 63[1.1} and §(G), the minimal degree in G, isat leastn+ 1 (r = 1), Wt. prove that ¢
contains at least #3 iriangles but does not have to contain more than 413 of them.
Furthermore, we give lower bounds for § such that & containg a complete 3-partite
graph with s vertices in each class. Let /,(n) = max [s(G):G= G,(n). G does not contain
a complete graph with » vertuebJ We obrain various results on f,(u). In particular, we
prove that if ¢, = lim,_, . fn)fn. thenlim,._, o (¢, — (r = 2)) = 132 and we conjecture that
equality h(}ldﬂ. We prove several other results und state s number of ungolved problems.

1. Introduction

Denote by G(p,q) a graph of p vertices and g edges. K, = G(r,(3)) is
the complete graph with r vertices and K, (¢} is the complete r-chroma-
tic (i.e. r-partite) graph with ¢ vertices in each colour class. fin; G(p,q))
is the smallest integer for which every G(u: fin; G(p, ¢))) contains a
G(p.q) as a subgraph. In 1940 Turdn [9] determined f{11: K,) for every
r= 3 and thus started the theory of extremal problems on graphs. Re-
cently many papers have been published in this area [1-6].

In this paper we investigate r-chromatic graphs. We obtain some re-
sults that seem interesting to us and get many unsolved problems that
we hope are both difficult and interesting.

G,(n) denotes an r-chromatic graph with colour classes (;. |Gl =,
i=1, ... r. Here and in the sequel | X| denotes the number of elements
inaset X. A g-set or g-tuple is a set with g elements. £(G) is the num-
ber of edges of a graph G and 8(G) is the minimal degree of a vertex of
G. As usual, [x]is the largest integer not greater than x.
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At the Oxford meeting on graph theory in 1972 Erdés [7] conjectured
that if §(G,(n)) = (r—2)n + 1, then G (n) contains a K. Graver found 3
simple and ingenious proof for r = 3 but Seymour constructed counter-
examples for r = 4. This discouraged further investigations but we hope
to convince the reader that interesting and fruitful problems remain.

We prove that if 8(G;(n)) > n + ¢, then G contains at least ¢3 triangles
but does not have to contain more than 4¢3 of them. For n = 5¢ prob-
ably 443 is exact but we prove this only for ¢ = 1.

It is probably true that if 8(G4(n)) > n + Cn"? (C is a sufficiently
large constant), then G contains a K;3(2). (Erdds and Simonovits
determined f(n; K3(2)), but these two problems are not clearly related.)
We can prove only that §(G4(n)) > n + Cn® ensures the existence of a
K4(2) subgraph of G;(n). More generally we obtain fairly accurate re-
sults on the magnitude of the largest K5(s} which every G;(in} with
8(G5(n)) = n + t must contain, but many unsolved problems of a tech-
nical nature remain.

Our results on G,(n)’s for r > 3 are much more fragmentary. Denote
by f,(i2) the smallest integer so that every G, (1) with 8(G,(n)) > f,(n)
contains a K. It is easy to see that lim, _, .. /,(n)/n = c, exists. We show
that

=2+

1
Cq_/ E,

1
chr—2+%-—m forr> 4.

We conjecture lim, , .. (¢, =7 +2)= L. 1t is surprising that this problem
is difficult; perhaps we overlooked a simple approach. We can not even
disprove lim,, .. (¢, —r+2)= 1.

Analogously to the results of (6], though we can not determine ¢,,
we prove that every G,(n) with §(G,(n)) > (¢, + €)n contains at least
nn” K,'s. We do not obtain interesting results for 8(G,(n)) = n t1t,

t = o(n) for r = 4, though we believe they exist. As a slight extension
of Turdn’s theorem, we determine the minimal number of edges of a
G,(n) that ensures the existence ofak; 3<I<r.

2. Three-chromatic graphs

Recall that G5(n) is a three-chromatic graph with colour classes CI
ICjl =n, i € Zy. Forx € C; let D*(x) (resp. D~ (x)) be the set of vertices
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of Cip (resp. C;_;) that are joined to x. Put d*(x) = [D*(x)l, d (x) =
(D™ (). d{x) = d*(x) + d™ (x) is the degree of x in G5(n).

We shall frequently make use of the following trivial observation
that we state as a lemma.

Lemma 2.1. Suppose x € C;, y € C;_,,and xy is an edge. Then there are
at least

d'x)y+d () —n

triangles containing the edge xy. There are at least
2 (d* ) +d () —n)
ye
triangles with vertex x, where D' € D,

Theorem 2.2. Let G = G3(n) have minimal degree at least n + 1. Then G
contains at least min(4,n) triangles and this result is best possible,

Proof, Put df =max{d*(x): x € C,.}, d; =max{d (x). x € C;}. We can
suppose without loss of generality that df = a‘; and a'f’ = d;. Let
x, € Cy, d*(x,) =d;. Note that d*(x) + d"(x) = n + 1 for every vertex x.

Suppose df < n—1 and let z € D (x,). If d*(z) =n—1, then by
Lemma 2.1 there are at least 2 triangles with vertex z. If d*(z) < n—1,
then again by Lemma 2.1 at least 2 triangles of G contain the edge x,z.
Thus at least 2 triangles contain each vertex of D™ (x) so G has at least
2|D7(x )| = 4 triangles.

Suppose now that d; = and the theorem holds for smaller values of
n. Let us assume that G does not contain triangles T, 75 such that
d*(x;)=n foravertex of T}, i = 1, 2. Then Lemma 2.1 implies that
D~(x,) consists of a single vertex, say D™ (x,) ={z,},and d*(z;) = n,
d(zy)=1.Let D"(z;) = {y,}. Then similarly d*(v,) =n and D (y;) =
{x,}, otherwise we have 2 triangles with the forbidden properties. Let
G' =G3(n—1)=G — {x,, y, z;}. In G" every vertex has degree at least
#n, 80 G’ contains at least n—1 triangles and G contains at least » triangles.
Thus, in proving the theorem, we can suppose without loss of generality
that G contains triangles Ty, T, such that d*(x,) = n for a vertex x; of
T, i=1,2. Analogously, we can assume that G contains triangles T,
T such that d(x}) = n for a vertex x; of T; i=1,2.

Let us show now that either these 4 triangles are all distinct or G con-
tains at least n triangles.
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Let x,x,x5 be a triangle of G, x; € C;, d*(x)) =n. If d™(x,) = n, then
for every edge vz, ¥y € C,, z € C3, xpz is a triangle. As there are at least
n such edges, G contains # triangles. If d (x;) = n, then G contains at
least n triangles with vertex x5. Finally if d"(x3) =n, G hasn triangles
containing the edge x,x4. This completes the proof of the fact that ¢
has at least min(4,n) triangles.

Let us prove now that the results are best possible. For n = | the
triangle is the only graph satisfying the conditions. Suppose G, =
G4(r—1) has minimal degree at least n (= 2) and contains exactly
n—1 triangles. Let the colour classes of G, | be C;, i € Z5. Construct a
graph G, = G5(n) as follows. Put C; = C; U {x;} and join x; to every ver-
tex of C;;y. Then G, has the required properties and contains exactly
n triangles (Fig. 1).

To complete the proof of Theorem 2.2 we show that for every ¢ > 1
and n = 5t there exists a tripartite graph H(n, ) = G3(n) with minimal
degree n + ¢ that contains exactly 4¢3 triangles. (For the proof of
Theorem 2.2 the existence of the graphs H(n,1). n = 5, is needed.)

We construct a graph H(n,t) as follows. Let the colour classes be
CiICl=n, i€ Z,.

LetA CC IAI=JI-— 2k.B,~=C;- —Ai,iEZ3.andB| :Ez UEE,,
lB =k j=2,3.

Jom every vertex of 4, to every vertex of A; U Aj, join every vertex
ofB to every vertex of Cj‘ j= 2,3, and join every vertex of B; to every
vertex of G;fori=2,j=3andi= 3,j = 2. Finally, join every vertex of
B tok arbnrary vertices of 4; fori=2,j=3andi=3,j=2. (In Fig. 2,
a continuous line denotes that all the vertices of the corresponding
classes are joined, and a dotted line means that every vertex of B; is
joined to & vertices of the other class.)

Fig. 1.
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It is easily checked that the only lriangles contained in H(in, k) are of
the form x,v;z;, x; € B;, y; € B,, =2,j=3andi=3.j=2. This
shows that H(u k) containg L,xactly 4!»3{ tnangles, The proof of Theorem
2.2 is complete.

It is very likely that every graph G4(n), n = 5¢, with minimal degree
n + t contains at least 4¢3 triangles. i.e., that the graphs H(7,¢) have the
minimal number of triangles with a given minimal degree. Though we
can not show this, we can prove that ¢3 is the proper order of the mini-
mal number of triangles.

Theorem 2.3. Suppose every vertex of G = G3(n) has degree at least n+1,
t < n. Then there are at least 3 triangles in G.

Proof. We can suppose without loss of generality that for some subset
Ty of Cy,IT| = t, we have

= 2 d(x)= E da*(y)
xETl el

foral TC Ci,ITI =1t i€ Z;.

Note that d~(x) > n + t — d”(x) for every vertex x. Forx € C) let
T, € D™(x),|T,| = ¢. Then by Lemma 2.1 the number of triangles of G
containing one vertex of T is at least

2 E (@) +d () —n) > Z 2 (t+d*x) d*on

x€T; yT T, yeT,

> 2 (r2+td+(x}— 2 d*(y))> 2 (2 4tdt(x)-S)
xETy X yeT, xeTy

>3 +1S—1S=1.
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Theorem 2.3 will be used to show the existence of large subgraphs
K5(s) in a G4(n), provided 6(G4(n)) = n + . First we need a simple
lemma.

Lemma24. Let X ={1,...,N}L, A, C X, i€ Y={1, .., p}, {14, > pwN
and (1—adwp = ¢, 0< a < 1, where N, p and q are natural numbers.
Then there are q subsets A, ..., qu such that

q |
!n A; ] = N(aw)4.
=p

Proof. Forice Xlet YV, ={j: i€ Aj, j€ Y1 y; =1Y,|. We say that a g-set 7
of Y belongs to i € X if i € Mg, A;. Clearly (%) g-sets belong toi € X.
Af
As Z{ y; = pwN,
N
Vi wp Py (WPY[(P) = (F q
25 6> NP> NG) PG > QNGwf.

Thus at least one g-set of ¥ belongs to at least N(aw)? elements of X
and this is exactly the assertion of the lemma,

The following immediate corollary is essentially a theorem of
Kévdri et al. [8].

Corollary 2.5. Let n'=Y8 > 5 Then every graph G with n vertices and at
least n*>~Y¢ edges contains a K,(s).

Proof. Let X be the set of vertices of G, let A; be the set of vertices
joined to the ith vertex. Put w = 2n s o = 1,q =s, and apply the
lemma.
Theorem 2.6. Suppose 6(G4(n)) = n +t, and s is an integer and
& [( log 2n )uz]
5 |\fogn—log s + (og 273/ [

Then Ga(n) contains a K4(s).

Proof. Let Y= C, ={1, .., n} and let X be the set of n? pairs (x,),

x € Cy, y € Cy. Let 4; be the set of pairs (x,y) € X for which (i,x,y) is
a triangle of G5(n). As by Theorem 2.3 the graph contains at least 3
triangles, Lemma 2.4 implies that there exist s vertices of (7, say
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1,2, ...,s, such that
4l
A,.]
Thus, by Corollary 2.5, the graph with vertex set C, U C; and edge set

E contains a K,(s). This K5(s) and the vertices 1, 2, ..., s of C; form a
K3(s) of G3(n), as claimed.

|E| = = 2 (B31andy = Qnyr e,

Corollary 2.7. Let n = 28 and suppose 6(Gy(n)) = n + 2742 3% Then
G4(n) contains a K4(2).

As we remarked in the introduction, it seems likely that already
8(G5(n)) = n + cn'’? ensures that G3(n) contains a K4(2).

Theorem 2.8. Suppose 6(G5(n)) = n +1. Let

_ { log 2n }
3(log 2n —log ) J"
3 3
§ < min [t— g X
4n? 4n?
Then G4(n) contains a K4(s).

i .

S

Proof. The graph G 3(17) contains at least e triangles. Thus there are at
least ¢ !2;1 edges ry x € Cy, y € Cy, such that each of them is on at
least 12 /2n® triangles. Let H be the subgraph spanned by the set £ of
the edges. Then, by Corollary 2.5, H contains a K = K,(S), say with
colour classes C¥ C C, and C3 C Cy, since (2n)2~ Y8 < 13 2m.

Let us say that a vertex x e C| and an edge e of K correspond to
each other if a triangle of G3(n) contains both of them. As by the con-
struction, at least 3/2n? vertices correspond to an edge of K, there is a
set CT cC,ICh= (#3/4n3) 52 edges of K.

Look at a vertex x € C‘]" and at the endvertices of the edges to which
it corresponds. The set of endvertices can be chosen in at most 225 ways
so there is a set B) C C¥ of at least

§ .
L y-25
an?
vertices which correspond to the same endvertex set B, U By, B, C (¥,
B3 C C%. Clearly,

i t3 2 _WI3S
mln(]le, I'BSI); Z; S /S.._3 >3,

4n
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and G4(n) contains the complete tripartite graph with vertex classes
B]. Bz. 33.

Corollary 2.9. Let 8(G4(m) = n + cnf(log n)*, where ¢ > 0 and o« > 0
are constants. Then there is a constant C = Clc, &) for which G 5(n) con-
tains a K(s) with s =2 Cllog m!32log log n.

3. r-chromatic graphs

Let now G, (n) be an r-chromatic graph with colour classes C;, |Cjf = n,
i=1,..,r Onecould hope (see [7]) that if every vertex of a G,(n) is of
degree at least (r—2)n+ 1, then the graph contains a K,. However, this is
not true for r = 4 and sufficiently large values of n.

Let n =gk, k> 1, and construct a graph F(n) = G4(n) as follows. Let
Ci=X, U XU X3, | X1 =k 1X,] =1X5] =4k, C;=A; Y B,, |4, = 8Bk,
1Bl =k, i=2,3,and Cy = A4 U By, |44l = 2k, |Bgl = 7k. Join every ver-
tex of X, to every vertex of A, U A3 U C4:join every vertex of X; to
every vertex of C; U A4; U Ay i, 7=2,3,1 =ﬁ j:join every vertex of A, to
every vertex of A, U Aj3: join every vertex of B, to every vertex of CyuCy;
and finally, join every vertex of 4; to every vertex of B, 1, j=2,3,i+# .
The obtained graph is F, (n) (see Fig. 3).

Clearly every vertex of F,(n) has degree at least 19k = (2 + §)n. Fur-
thermore, the triangles in Fy(n) — Cy are of the form xyz, where x € X,
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yE By, z€ Ayorx € Xy, ¥y € A3,z € B,. As no vertex of G, is joined to
all 3 vertices of such a triangle, F, () does not contain a K. This ex-
ample shows that if the minimal degree in a G4(n) is at least (2 + })n,
then G4(n) does not necessarily contain a K.
Let now r= 5, k> 1 and n = 2(r- 2)k. Construct a graph F,(n) = G,(n)
as follows. Let C; = A; U B;, |A,| = |B;| = (r—2)k =3 n, let
r—2
C,,=U A, |4]=2
1
r-2 ;
G=UJg, Bl=2l  LiFLwr=2

Join two vertices of U’| C; that are in different classes unless one vertex
isin A; and the other in B;,; U A’, or one vertex is in B; and the other
inA;UBLi=1,..r where A, =A;, B,,; = B;. In the obtained graph
F(n), clearly every vertex has degree at least § — 1/(r—2). Furthermore,
if K=K, ,C F.(n)—C,_, U C,, then either each 4; (i=1, ..., r=2) or
each B; (i =1, ..., —2) contains a vertex of K. As no vertex of C,_, is
joined to a vertex in each A, (i = 1, ..., ¥—2) and no vertex of C, is joined
to a vertex in each B, (i = 1, ..., r—2), the graph F,(n) does not contain a
K..

Denote by f;(n2) the maximum number of edges of a k-chromatic graph.
Turdan’s theorem [9] states that f(n, KP) = Ip_](rz) + 1. This result has the
following immediate extension to r-chromatic graphs.

Theorem 3.1. max {e(G,(n)): G,(n) P Kp} = tp_l(r}nz.

Proof. Suppose G = G,(n) does not contain a Kp. Let A be a subgraph of
G spanned by r vertices of different classes. Then H contains at most

p—107) edges. Furthermore, there are n” such subgraphs H and every
edge of G is contained in 7" ~2 of them. Thus G has at most T ,(r)n
edges.

The graph G, (n) obtained from a maximal (p—1)-chromatic graph by
replacing each vertex by a set of n vertices has exactly 7,_ 1(rin? edges
and does not contain a Kj,.

Corollary 3.2. Suppose 8(G,(n)) = 8. If t, _(rn < 318, then G,(n) con-
tains a K. In particular, f,(n) < (r-2+ (r—2){r)n 50
= lim f,(n)ln<r-2 +i—2.

11— o=
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Theorem 3.3. Let € > 0 and 8(G,(n)) > (¢, + e)n. Then there is a con-
stant §_> 0, depending only on e, such that G.(n) contains at least
81" K,'s.

Proof. Let m > myg(€) be an integer. We shall prove that for all but
n(;) (n>0is independent of m) choices of m-tuples from the sets &
the subgraph G,(m) of G,(n) spanned by the r m-tuples contains a K,.
(The total number of choices of the m-tuples is (:;}r.) This assertion
naturally implies that our graph contains at least

() (1-n) (,’;)’/(:;:})r = (1 + (1) (A=) /"

K s since at least (1 n}{” )" K,’s are obtained and each of them occurs
G 1) times. The relation (*) of course proves Theorem 3.3.

Let x € C;. Suppose x is joined to c®n vertices of C;, j # i. As

¢, >r-2, c}‘J > ¢ > 0 for absolute constant ¢. Call an m tuple in C;

bad with respect to x if fewer than (c"‘) €/2r)m of the vertices of our
m-tuple are joined to x. A simple and well Xnown argument using in-
equalities of binomial coefficients gives that the number of bad m-tuples
with respect to x is less than (1-n)" (), where n = n(e,¢) > 0 is inde-
pendent of m.

We call a vertex x and a bad m-tuple with respect to x a bad pair, Ob-
serve that if U| 4; (4; C G, 141 = m) does not contain a bad pair, then
the subgraph spanned by Ur A; contains a K, since each of its vertices
has degree greater than (c, + 3} e)m > f,(m) if m > my(e). We now esti-
mate by an averaging process the number of {4,}'] without a bad pair.

If (x,A;), x € C,, is a bad pair, there are clearly G 1} (”)’ 2 gets
{A |4 whu.h contain the bad pair. Thus if there are (]}) famﬂies {A H.
IAI m, A c C 1 < j < r, which contain a bad pair, then the number
of bad pairs is at least

(A {2 LI 2—7— (.
On the other hand, to a given vertex x there are fewer than r(1—n)" ()
bad sets, thus the number of bad pairs is less than

nrt (1-n)™ ().
Thus
v < rPm(1-n)",

which proves our theorem.
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