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If b is the term with no prime factor exceeding 3, there are also six possibilities.

7. 22:3|b > ¢ =p*, d =2q° = (c,d) satisfies [p, q,2].
8. b=2-3"=> a=p* > (a,b) satisfies [p,3,2].

9. b=2%3tfa=>a=q’ = (b,a) satisfies [2,q,1].
10. b =2 3|a > ¢ =q’ = (b,c) satisfies [2,4q,1].

11. b=3% 2'la > a =2q° = (ba) satisfies [3, q,2].
12. b =3% 2*|la > ¢ =2q° = (b, ¢) satisfies [3, q,2].

By section 4, every possibility requires S to include a term with a prime factor
exceeding 11, which is forbidden. Thus S does not exist. #

The authors are indebted to Professor R. K. Guy for several expository improvements.
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AN EXTREMAL PROBLEM OF GRAPHS
WITH DIAMETER 2

BELA BOLLOBAS and PAUL ERDOS, University of Cambridge, England

Let | = k < p. We say that a graph has property P(p, k) if it has p points and
every two of its points are joined by at least k paths of length =2. The aim of
this note is to discuss the following problem. At least how many edges are in a
graph with property P(p, k)? Denote this minimum by m(p, k).

Construct a graph Go(p, k) with property P(p, k) as follows. Take two classes
of points, k in the first class and p — k in the second, and take all the edges

incident with at least one point in the first class. Thus Go(p, k) has (5) - (p ; k)

edges.
Murty [2] proved that if p =33+ V5)k then m(p, k)= , ) and

Go(p, k) is the only graph with property P(p, k) that has m(p, k) edges. He also
suspected that the same result holds already for p >2k. We shall show that this
is not so, in fact p =1(3+V5)k is almost necessary for Go(p, k) to be an
extremal graph, and we determine the asymptotic value of m([ck], k) for every
constant 1 < ¢ <!(3+V5), where [x] denotes the integer part of x.
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THEOREM. Let 1< c <i(3+V5), p =[ck]. Then m(p, k)= c**k*[2+ o (k).
Proof. Exactly as in [2] (or by a simple counting argument) one can show that

m(p, k) = c*?k*2 + O(k).

Therefore the problem is to prove an upper bound for m(p, k), i.e., to construct
graphs with property P(p, k) that have few edges.

Let ¢ >0. Take p =[ck] points and choose each edge with probability
d = ¢ *+ ¢. The law of large numbers implies that, as k — =, with probability

tending to 1, this graph G,(p, k) has (‘;) (d + o(1)) edges. Also, by another simple

application of the law of large numbers, we obtain that with probability tending
to 1 for every two of the points there are (d*+ o(1))p points joined to both of
them. Thus as p — = with probability tending to 1 this graph G,(p, k) has

property P(p, k)andithas = (d*+¢) (g ) edges, proving the required inequality.

If the reader is not familiar with the probabilistic terminology or does not like
it, we suggest the following combinatorial translation.

Consider all graphs on a set V of p labelled points having (g) d = g edges.

p
2

points and let x < k be an integer. Let us compute the number of graphs in which
there are exactly x points joined to both a and b. If there are x points joined to
both a and b, there are y points in V —{a, b} joined to a and there are z points in
V —{a, b} joined to b; then the edges incident with exactly one of the points a, b

can be chosen in
I (e
X y z

different ways. The remaining edges of the graph can be chosen in (q? e) ways,

The number of these graphs is (3) , where Q = ( ) Let a, b be two arbitrary

where Q' = (p 2_2) +1 and e = 2x + y + z. Consequently the number of graphs

in question is

W % | | e | Pt L

where the summation goes over all pairs of nonnegative integers (y, z) satisfying
X +y+z=p—2. Thus there are at most

()..2..CACTTCT )

graphs not having property P(p, k). By a simple but laborious estimation one can

prove that if k is sufficiently large then this is less than (S) (in fact the sum
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divided by ((?) tends to zero as k — =). This proves that if k is sufficiently large
there exists a graph with g edges that has property P(p,k).
REMARKS. 1. With a slight improvement of the same method one can prove

that if

[k g *2\/5 k — ki(log k)°

(a sufficiently large) then m(p, k) = ¢**k*/2 + o(k?) and the graph Go(p, k) is not
extremal.

A problem similar to the one discussed here and in [2] was solved in [1]. By
the method applied there one could improve the result in [2] slightly. One could
show that Gy(p, k) is extremal in a larger range than p =13+ V5)k, but the
method would not bring the lower bound on p down to3(3 + V’E)k = k*(log k)=

It would be of interest to determine as accurately as possible the smallest
value p = p(k) for which the graph G(p, k) is extremal. Furthermore in the
range where Gy(p, k) is not extremal determine (again as accurately as possible)
m(p, k) and characterize the extremal graphs.

2. One can also give a nonprobabilistic proof of the theorem. As before, let

I<c<iB+VS), >0, d=ci+e

Furthermore, let p be a natural number and @ = a(p) a real number. Denote by
G\(p, a, d) the following graph. The points are {1,2, -, p}, and i is joined to j if

(i—ja~-[(i—jlal<d

It suffices to show that @ = a(p) can be chosen in a such a way that if p is
sufficiently large G,(p, @, d) has property P(p, k) and has :dn*+ o(n”) edges. It
indeed follows from well-known theorems on diophantine approximation that
G\(p,a,d) has 3dp*+ o(p?) edges, provided a is irrational. The graph has
property P(p, k) if whenever 1 =i < j=p, the number of integers t, | =t =p,
for which

(t—iYa—-([(t—iYa]l<d and (t-jVa—-[(t-j al<d,

is d’p + o(p) uniformly in i and j. (For sufficiently large p clearly d’p + o(p) >
k.) We could not prove this but Cassels showed that this holds if we choose
a = a(p)=1/q, where q is the smallest prime not less than p. The proof uses
analytic number theory and will not be given here. The same choice of a also
ensures that G, has 1dp*+ o(p?) edges. This result completes the proof of the
theorem.

[t would still be of interest to prove the result for every irrational a.
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