SOME NEW APPLICATIONS OF PROBABILITY METHODS TO
COMBINATORIAL ANALYSIS AND GRAPH THEQRY

P. Erdids

Probability methods have often been applied successfully to
solve varlous combinatorial problems which in some cases have been (and
still are) unassailable by other methods. A systematic discussion
of this method can be found in my recent book with J. Spencer.

In the present paper I give some new results obtained by this
method. I do not give detailed proofs, but by following the very
sketchy outlined instructions, they can easily be supplied by the
interested reader who is familiar with the method.

P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics,
Acad. Press and Publishing House Hung. Acad. Scl. 1974.

1. Let Gr(n) be a uniform hypergraph of n vertices (i.e. the
basic elements of our hypergraph are vertices and r-tuples, for » = 2
we obtain the ordinary graphs, see e.g. the excellent recent book of
C. Berge, Graphs and Hypergraphs, North Holland and Amer Elsevier 1973).

K(G) will denote the chromatic number of (. Let f}(m,k;n)
be the largest integer for which there is a Gr(n) with K(Gr(n))= fr(m,k;n)
and such that all m point subgraphs of our Gr(n) have chromatic number

not exceeding k. I proved

1/3 1

@ fmam > e 10y By

(a],cz,... denote absolute constants). (1) has the surprisinge

consequence that for every I there is an e = (1) > 0 and a graph
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G,(n) satisfying K(Gz(n)) = 1, yet every subgraph of [en] vertices has
chromatic number at most three. I have no nontrivial upper bound for

fzﬂﬂ;3,ﬂ) valid for all m. Perhaps
1_
fym3,m) < e, "

holds for some @ and all m, but I have not even been able to prove that

there is an A(x) which tends to infinity as £ + = and for which

Fom3m) < e, 2eady™

f}(m,B;n) =3 ﬁ-is. of course, trivial but it is not clear how much it
can be Iimproved (the case m = e¢n, n + = seems difficult).

Now we investigate whether (1) can be improved for all m. It
is very easy to see that the exponent %—can not be replaced by a number
greater than % .« If m= 4 the condition that every subgraph of 4 vertices
has chromatic number = 3 simply means that Gz(n) contains no K(4) (a
complete graph of 4 vertices) and by a theorem of Szekeres and myself
this implies K(Gz(n}) < cnzfs:

Results of Faudree, Rousseau, Schelp and myself which are not
yet quite complete will, I feel sure imply that (1) can not hold for all
m with an exponent greater than %-. At present I can only show that

it can not hold for %-- €. It would be nice if the following would be

true: For every € > 0 and n > nu(e)
n 1i-e
fym,3in) > e () °

Following G. Dirac we say that the graph G is (vertex) critical

if the omission of any vertex decreases its chromatic number. My
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proof of (1) was based on the obvious fact that every f-chromatic
eritical graph has all its vertices of valency = 3, thus if it has

n vertices it has at least %?-edges. Gallai proved that a 4~-chromatic

critical graph of n vertices has at least C% + é%ﬁ n edges but Dirac

showed that this can not be improved to %; + E%£ < ;? . My proof

of (1) actually gives that, 1f every 4-chromatic critical graph of
n vertices has at least on edges, then the exponent %‘can be replaced
by £§£ . Thus, by Dirac's result, my method will certainly not give

2
a better exponent than —

S - Gallai's result gives (1) with an exponent

'576 instead of % .

The situation is somewhat confused for f(m,2;n) and this, as
I now explain, is my fault. Gallai constructed a 4-chromatic graph
G(n) the shortest odd circuit of which has length > [¥%]. 1In other
words, Gallai proved fz([ﬁ?];z,n) > 3. Perhaps this result is best

possible., I stated that I can prove that, for a sufficiently large

constant ¢,

(%) fo(le/n),2;n) = 3.

Unfortunately I have not been able to reconstruct my 'proof' of (4)
and perhaps it was incorrect. In any case (4) has to be considered

open at the moment. Gallal and I conjectured that there are constants

cfz) and cgz) so that

1), 1/1

() Fylle’ L2my =141 but Folleant P12 » 2+ 1,

(1) (1)

It may be that the constants e¢; ' and ¢; ’ are independent of 7.



We made no progress with the proof of (5) and its proof ox disproof

may not be easy. On the other hand, I proved that there are constants

cgz) 51) so that every G(n)with K(G(n)) > 1 contains a circuit

having fewer than cgz)log n edges, and yet there is a G(n) with

and ¢

K(G(n)) > 1 all whose circuits have at least cél)log n edges.

Observe that f}(m,z;n) behaves very differently from
fzow.k;n) for ¥ = 3. This is perhaps not surprising since the critical
3-chromatic graphs are trivial (they are the odd circuits) whereas the
critical 4-chromatic graphs can be very complicated. For r > 2 the
3-chromatic graphs already have a non-trivial structure (probably too
complicated for complete characterisation). Actually for r > 2

f}(m,z;n) does not behave very differently from fr(m,k;n).

The proof used for (1) glves in this case

(6) £om2m) > o T

For the proof of (6) one needs in addition the following
result of Lovasz and Woodall (Which did not exist when) proved (1)):
Every critical 3-chromatic r-graph (r > 2) of n vertices contains
at least n edges. Woodall also proved that this result is best
possible i.e., there are such r-graphs with exactly n edges.

P. Erd8s, On circuits and subgraphs of chromatic graphs,
Mathematika 9(1962), 170-175.

P. Erdos and G. Szekeres, A combinatorial problem in geometry,
Comp. Math., 2(1935), 463-470.

T. Gallai, Kritische Graphen, Publ. Math. Inst. Hung. Acad.

Sci. B(1963), 165-192 Sec in particular pp 172-173 and 186-189,
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G. Dirac, A theorem of R.L. Brooks and a conjecture of Hadiriger

Proc. London Math. Soc. (3) 7(1957) 161-195.

L. Lovasz Craphs and set systems, Beitrage zur Graphentheorie
Conference held at Ilmenau 1968 H Sachs editor) Teubner Leipzip 1968
99-106, D.R. Woodall, Property B and the four colour problem
Comglnatorics, Proc. Conference Oxford 1972, Institute of Math. and

Applications, 322-340.

2 Uniquely colourable graphs. This work was done jointly with
Ehud Artzy. A k-chromatic graph is called uniquely colourable if the
% independent sets into which our graph can be decomposed are unique.
Trivial examples of uniquely colourable graphs are the complete praphs
less trivial examples were known but they were relatively few in number.
In particularly in was not known if for every X and 1 there is a
uniquely colourable k-chromatic graph of girth I. During my last visit
to Israel I discussed these problems with E. Artzy and we noticed that
the methods used in my paper quoted below, apply here too. A previous
problem of Sauer should be mentioned here which was very helpful. Sauer
asked (oral communication) several years ago 1f for n > n, there exists
a 3-chromatic graph not containing a triangle and having n vertices of
each color so that it should not contain an independent set of more than
n points. I observed that the probability method relatively easily
glves the existence of such graphs and we observed that the same method
gives a k-chromatic uniquely colorable graph of arbitrarily larpge girth.
I give a brief outline of the construction. Let k and I be

given, € = e(k,l) sufficlently small, n > nutc.k,Z) large. Consider all
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graphs of kn vertices, with k color classes 51,... % each Si has n
vertices. Si and Ss are joined at random by [n1+e] edges. The number

of these graphs clearly equals
[ i ]n
14e
[n™ 7] An i

A simple computation (involving only the first moment) shows that, with
the exception of G(An) of them, these graphs have o(n) circuits of length
< 1. From each of these circuits we omit an arbitrary edge. The resulting
graphs clearly have girth > 7 and a simple (but slightly more complicated)
computation gives that all but U(An) of them have no independent sets of
size n other than the Si (1 = 1,...k). Thus these are k-chromatic
uniquely colorable graphs of girth 7.

Some further refinements are possible., This methed gives that
there are absolute constants ¢, and e, so that for every 1 and n there
is a uniquely colorable graph G(n) of n vertices, girth 7 and chromatic
number > en czfl_

We can further show that all but U(An) of our graphs have the
property that no set U of its vertices is independent which intersects
two Sils insets of size > nl-n where n = n(k,l) is sufficiently small.

At the recent conference in graph theory in Prague (June 24 - 28,
1974) Miller gave uniquely colorable k-chromatic graphs of girth 1 for
every k and 7 by a direct construction without using probability
arguments.

Chung. C. Wang and Ehud Artzy, Note on uniquely colorable graphs,

J. Comb. Theory ser. B 15(1973), 204-206.
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P. Erdbs, Graph theory and probability I and IL Canad. J.

Math 11(1959), 34-38 and 13(1961), 346-352,

3. Answering a question of Berman I showed that for sufficiently
small € > 0 and n > nu(c) one can direct the edges of a X(»n,n) in such
a way that every subgraph of {nZ-E] edpges contains a cyeclically directed
€y The proof is stralightforward. One can show that if one dirccts

the n? edges of our K(n,n) at random all but c(2n2) of these praphs
will have the required property. I have not been able to determine the
best possible value of €., I am quite sure that for every N > 0 and

n > nu(n) one can direct the edges of a K(n,n) in such a way that every

subgraph of [n3f2+n

] edges contains a cyclically directed £, . Perhaps
this already holds for subgraphs of cnaiz edges 1if e is a sufficiently
large absolute constant. Similar results will hold for cyclically
directed Cﬁr's - perhaps for every subgraph of size crnl+lfr .

The question of Berman led me to the following problem which
is of independent interest. Let G(k) be a directed graph of k vertices.
A(n;G(k)) is the largest integer so that there is a graph G(n) (of n
vertices) which can be directed in A(n;G(k)) ways so that none should
contain a subgraph isomorphic to G(k) (isomorphism here of course
means that all the edges are directed as, in G(k)). Determine or
estimate A(n,G(k)).

Perhaps the following modification of this problem is mere
interesting and useful, Let now G(k) be an undirected graph of X
vertices and let f(n;G(k)) be the largest integer so that there is a

Gln;f(n;G(k)) [G(n;l) is a graph of n vertices and I edges] which does

not contain our G(k) as a subgraph. . The function f(n;G(k)) is of
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course well known from the theory of extremal graphs, e.g. (Turan in his
ploneering paper determined f(n,X(k)). Denote now by F(n;r,G(k)) the

largest integer for which there is a G(n) whose edges can be coloured by
r colors in F(n,r,G(k)) ways so that there should not be a monochromatic

G(k). Clearly

@ P(nsr,G(k)) = v CHEKD)

To see (1) observe that by definition of f(n;G(k)) there is a
G(n;f(n;G(k)) which does not contain our G(k) and hence its edges can
be coloured arbitrarily. It seems that for very many (perhaps all)
graphs G(k), F(n;r,G(k)) is not much bigger than rf(n;G(k)). In

particular Rothschild and I conjectured that for n > ngy
2
@ Fa(nicy) = 21741

and more generally for every & and n > nj(a)
@) F (nik(e)) = of (K@)

where f(ﬂ;Ks} is the number of edges of the well known Turan-graph

i.e. the largest graph on n vertices which does not contain a X(s).

(2)clearly does not hold for all n. It is possible that

Fnir,G(k)) < pHRIF036(D)

will hold for all (or "nearly" all) graphs G(k). Clearly analogous

problems can be stated for hypergraphs.
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4 . Professor Even and others considered the following quastion:

A graph G(n) is called a rigid circuir graph if every circuit of it
contains at least one diagonal. They obtained various algorithms for
determining a rigid circuit graph G(n) which contains a given G(1) and
has as few edges as possible. Not being good at finding algorithms
but being interested in extremal problems, when Even told me of these
questions I asked: Determine or estimate the smallest integer f(n) so
that for every G(n) one can add = f(n) new edges so that the resulting
graph should be a rigid circuit graph. I first thought that

f(n) < (1+o(1)) %; , but Even showed by a simple construction that
f(n) must be greater than [%?]. Then I observed that in fact

fn) = E;—(1+c(l)) . More precisely the methods of Rényi and myself
give the following result: Let a > 0 be sufficiently small. Consider
all the graphs G(n;t) where t = [nz-u]. The number of these graphs

is clearly p = [(23]. There 1s an o’ > 0 so that all but o(p) of these
graphs have the following property. Consider all those Ca’s of our

G(n;t) which do not have any diagonals. Add one of the diagonals to all

the 04'3. Then the resulting graph will always have more than

n 2-a' edges.
() -n
This clearly implies

-g

w foy > Gy - n

for a certain € > 0. I suspect but can not prove that this method might
+
give f(n) » (;) - g3,
The exact determination or better estimation of f(n) seems to me

to be an interesting problem. I have no non trivial uppertound for f(n)

< T =



and can not even prove

f(n}ﬂﬂ;-cn

for every ¢ > 0 and n > no(c).

Even informed me that the following problem has been considered:
Let & be a planar graph of n vertices. Find the smallest rigid circuit
graph containing G(smallest of course means having the fewest number of
edges). If I remember correctly examples are known of planar graphs G
for which every rigid circuit graph containing & must have at least n3}2
edges but no non trivial upper bounds are known.

Several modifications of the problem of estimating f(n) seem to
have some interest, here I only state one of them, Let fl(n) be the
smallest integer with the following property: To every G(n) we can add
= fl(n) edges so that the resulting new graph should contain at least
one diagonal of every Ch of our G¢. In fact in (1) we really proved
fim > (2} - nz-a. It is not difficult to show

frm < Gy = enl2,

Clearly fu(n) =2 f(n). An intermediary function fz(n) can be defined as
follows: fé(n) is the smallest integer so that to every G(n) we can add

= fz(n) edges so that in the resulting graph every C, should have a diagonal,
Clearly f(n)=z fz(n) z f(n). T am certain that for n > n, the inequalities
n332+c

are strict, perhaps fl(n) > (;) - for every € > 0 and n > nD(e).

5 Hamiltonian circuits of random graphs, Rényi and I conjectured
n
that if ¢ 1s sufficiently large then all but c[[(g)J] graphs G(n;t),

t = [en log n] are Hamiltonian,
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M. Wright proved this with t = [a-n'lzj. Recently Posa proved ocur

conjecture and by a refinement of his method Komlos and Szemeredi proved
that the result holds with ¢ = [(1/2+ e)rn log n].

Perhaps the following two problems of Rényi and myself are of
interest: TFor what values of ¢ is it true that if we know that G(n;t)
is connected then with probability tending to 1 as n tends to infinity,
it 1s Hamiltonian?

) .

Put &cn]] = T(n,e). Is it true that there is a function [f(2)

so that all but o(T(n,e)) graphs GC(n;len]) have their longest circuit

1
of size (l+o(1))f(e)n? We know that f(e) = 0 for ¢ =< and believe that

2
f(e) 1s continuous strictly increasing for % < ¢ < w , further
lim f(e) = 1.
c=“

Spencer and I have the following further conjectures.
Rényi and I proved that if ¢ = [-‘},_-n logn +%n loglogn+ en] then the
probability that G(n;t) has all its vertices of valency 2 2 is 1—9'9-20.
We hope that the probability that it is Hamiltonian given by the same
expression.

The results of Rényi and myself on linear factors of random
graphs give our conjecture some support.

Spencer and I have various further conjectures on this subject
we had no time to think much about them thus we are not sure whether
they are likely to lead to good results. Let G(n;t) be a random graph.

Suppose we know that each of its vertices has valency = 2. For which

t can we conclude that the conditional probability of it having a
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Hamiltonian circuit tends to 1. We feel sure that this will hold for

much smaller values of ¢ than %ﬁtlog n(omlog n)2).

Further we formulated the following two problems: Let G(n;k)
be a graph of n vertices and %k edges which has no Hamliltonian circuit.
We add edges to it at random. How many edges do we have to add that
with probability tending to 1 the resulting graph should be Hamiltonian?
In this generality the problem is trivial G(n;k) may be such that the
addition of every further edge makes it Hamiltonian, but it seems that if
k 1is not too large (say < en or en log n) then we hope that one will
have to add "many" edges (more than cn?) to make the graph Hamiltonian
with probability tending to 1.

The other problem is perhaps more interesting. Consider all the
(g)l numberings of the edges of the complete graph with the integers
1,2,....(;}. To each of these enumerations we assoclate two integers
nyandn, n=n; =n,< (2) so that n, is the smallest integer for which
the first n; edges give a graph each vertex of which has valency = 2
and n, is the smallest integer for which the first n, edges give a graph
with a Hamiltonlan cycle. What can be said about the expected value
and distribution of n, - »y7 It may be that n, = n; for almost all of
the (;)! permutations. This could be an extremely strong result but it
appears very difficult to show.

Clearly both these problems can be formulated for other properties
too.

The following further (non-probabilistic) problem is due to B.Bollob#

Determine the smallest integer A(n) for which there is a graph G(n;h(n))
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which is mot Hamiltonian but 4if one adds any further edge the zZraph

becomes Hamiltonian. As far as we know the problem is still

unsolved.

P. Erdbs and A. Rényi, On the evolution of random graphs, Publ.
Math. Inst. Hung. Acad. Sci. 5(1960), 17 - 67 and On the strength
of connectedness of a random graph, Acta Math. Acad. Sei. Hunpar.

12(1961), 261-267, see also The Art of Counting p. 574-624.
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