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REMARKS ON SOME PROBLEMS IN NUMBER THEORY*

I discuss in this note several disconnected problems in number theory . I have written
several such papers but here I will give details (or at least outlines) of the proofs and will
not concentrate on stating unsolved problems (except in III) . Several of the problems which I
discuss were suggested by questions in other branches of mathematics .

I. Denote by S (x) the number of integers n< x for which there is a
non-cyclic simple group of order n . The well known classical result of FEIT
and THOMSON states that every such number must be even . DORNHOFF proved that

S (x) = o (x) and DORNHOFF and SPITZNAGEL proved S (x) < c,x
(log log log x t t2)

log log x
(c,, c 2 , . . . denote absolute constants .)

I proved in a paper dedicated to the memory of the well known Indian
mathematician D. D . KoSAMBI that

(1)

	

S(x)<xexp(-
\2 +0(1)) (log X log log #12

dince the paper where I proved (1) is not easily available, I will outline the
Sroof of (1) and discuss a few related results and conjectures .

Let V be the sequence of integers Vi< V2< • • . having the property that
for every p v, v, has a divisor t;==-1 (modp), t,>1 . U is the sequence of
integers u, < u 2< . . . where the above property only has to hold for the largest
prime factor p; = P (u,) of u, . Clearly U : V.

It follows from the classical results on non-cyclic simple groups that if
there is a non-cyclic group of order s then s E V. For if p a I s, pail I s then the
number of SYLOW subgroups t (a, p) of order pa is a divisor of s and further
t (a, p) > 1 and t (x, p)-1 (mod p) . Thus clearly S(x)<V(x)<U(x) and (1)
will follow from (A (x) is the number of integers not exceeding x of the
sequence A)

(2)

	

U(x)<x exp(-(I +0(1)) (log xloglogx) 1. 12 )

To prove (2) denote by 4 (x, y) the number of integers not exceeding x
all whose prime factors are <y . Put y-- =x and assume z<y l l2 logy A theo-
rem of DE BRUIJN then states that

~ (X, y) < c 2 x (log x) 2 exp (-Z log z - z loglog z + c3 z) .

* Presented at the 5th Balkan Mathematical Congress (Beograd, 24-30 . 06 . 1974)
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(3) now easily implies (2) and (1) . We split the integers u,<x into two
classes. In the first class are the integers u,<x all whose prime factors are

less than exp 1 (21og x loglog x) 1 1 2 . In the second class are the other u's. U, (x),
2

i= l, 2 denotes the number of u's in the i-th class . From (3) we obtain by a

simple computation that here
z= ( 21ogx 1/2

loglog x )

(4)

	

U, (x)<xexp

	

1
(-(

2
+0(1)1

	

(logxloglogx) 11 ') .

For the u's of the second class we evidently have (in

	

the summation is

1 /z
extended over the primes p> exp ( I log x loglog xl

l2

(5)
X

U, (x) <

	

--- -

	

x

	

x

P t=1 P (tp 1)

	

n t=tP (tp+ 1)

X

	

I< :' x	<2xlogx Z	 <xexp -( +0(1)) (Iogxloglogx) 1 1 2

PZ t=1 t

	

PZ

	

2
(4) and (5) proves (2) and (1) . With a little more trouble I could prove

(6)

	

S (x) < U (x) = x exp - (1 + o (1)) (log x loglog x)ltz .

We suppress the details . The principal tool is again a result of DE BRIJUN,

namely ~ (x, y) >
(Z !)1+& .

The true order of magnitude of S (x) is probably much smaller . It is
generally conjectured by group theorists that S(x)<xl_E and perhaps even
S (x) = o (x 1 1 3 ), but our methods are far too crude to prove this . Using V (x)
instead of U(x) it should be possible to improve (6) a little bit . Unfortunately
not very much since I can show that

(7)

	

V (x) > x exp - c 3 (log x) 1 1 2 loglog x .
I am sure that (7) gives the right order of magnitude for V(x) and in

fact that there is a constant c ; so that

V (x) = x exp - (1 + 0 (1)) cs (log x) 1 1 2 loglog x

but so far I have not been able to prove (7) .

References. N. G . DE BRUDN, On the number of uncanceled elements in the sieve of
Eratosthenes, Indag. Math . 12 (1950) 247-250, see also : Of the number of positive integers
<x and free of prime factors >y, ibid. 13) 1951), 50-60 .

L. DORNHOFF, Simple groups are scarce, Proc . Amer. Math. Soc . 19 (1968), 692-696 .

L. DORNHOFF and E . E. SPITZNAGEL JR ., Density of finite simple group orders, Math-
Zeitschrift, 106 (1968), 175-177 .
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H. The following problem is due to H . HADWIGER : Denote by D (n) the
set of integers with the property that if k D (n) then the n-dimensional unit
cube can be decomposed into k homothetic n-dimensional cubes. C . METER
denotes by c (n) the smallest integer so that every k > e (n) belongs to D (n) .
He proves

(1)

	

e (n) < (2 n - 2) ((2"- I)-(211-2)n-n

	

1) + 1 .

Earlier W . PLÜSS gave a somewhat greater upper bound . It is easy to see that
c (2) = 6 and in fact kE D (2) except if k = 2, 3 or 5 . METER conjectures
c(3)=48 and asks for an improvement of (1) . He remarks that the problem
is attractive because of the interplay of geometric and number theoretic ideas .
I agree with him .
First of all I give an improvement due to BURGESS and myself of (1) . We prove
(2) ,

	

c (n) < (2n - 2) ((n + 1) n - 2)) - 1 .

To prove (2) we first show the following

Lemma. The set of integers kn- 1, 2 < k < n + 1 is relatively prime .
Observe that if p I kn - 1, 2 < k < n + 1 we clearly must have p > n + 1 .

Thus the congruence xn - I -0 (mod p) has the roots k = I , 2, . . . , n + 1
which is a contradiction since it can have at most n roots . This contradiction
proves the Lemma .

To prove (2) observe that in the decomposition of the unit cube into
smaller cubes, a cube of the decomposition can always be replaced by kn smaller
cubes . Thus every integer of the form

n+1
ck (kn - 1),

	

Ck -> 1
k=2

belongs to D (n) . A well known theorem of A . BRAUER states that if (a	a,) _
=1, a,< . . . <a, then every integer greater than (a,-1)(a,-])-1 can be

k

expressed in the form

	

c, a; , c; > 0, which proves (2) .
i=1

(2) can in fact be improved . Put dk =(a,, , .

	

ak ) . A . BRAUER proved
n

that if do = 1 then every integer > ak+1 dk fdk+l is of the form

	

ck ak , Ck > 0,

k=1
and it is not hard to prove that this gives a (n) < a nn+ 1 for some absolute
constant x . I am certain that if n+1 is a prime c(n)>nn but as far as I know
HADWIGER's result c(n)>-2n+211 -1 is the only lower bound for c (n) .

Now we make a few purely number theoretic observations. Denote by
h (n) the smallest integer for which the numbers

{2n -1,3n-1, . . . , h(n)n-1}

are relatively prime If n+ 1 =p is a prime then h (n) =n+ 1, and it is easy
to see that conversely if h (n) = n + 1 then n + 1 =p . To see this observe that
if p kn - 1 for every 1 < k < n then x n - 1- 0 (mod p) can not have any other
roots, but this is possible only if p = n + 1 (for odd n (n + 1) n-1 (mod p) and
for even n (n + 2)n -1 (mod p)) .
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Denote by A (n) the greatest prime qk for which qk - 1 1 n . Clearly
h (n) > qk+, . But h (n) can be much larger e .g . h(15)= 5 and A(15)= A (2 n +
+ 1) = 2 . It is easy to see that for odd n h (n) is unbounded .

I proved (unpublished) that the density of integers n with A (n) = qk exists .

Denote this density by Ek,

	

= 1 . I can not prove that the density 8 k of
k=1

integers with h (n) = qk exists . I am sure that the density exists and

	

8k = 1I
k=1

It is possible that if A (n) is large (say>w) then A (n) =h (n) . I can not
prove that h (n) does not tend to infinity .

Define now H(n)=1 as the least integer so that there is a k < I with
(k"- 1, I"- 1) = 1 . Clearly H (n) > h (n) . Probably (2"- 1,3"- i) = 1 holds for
infinitely many n or H (n) = h (n) = 3 infinitely often . but I can not prove that
H(n)=h (n) holds for infinitely many n . On the other hand I prove that H(n)
can be unexpectedly large for suitable values of n . In fact I prove that for
infinitely many n (exp x = ez)
(3)

	

H (n)> exp nc,10091°g n)Z .

To prove (3) we use the folloving theorem of PRACHAR . For infinitely
many n, n has more than exp nC2 / (Iog' O $ ")2 divisors of the form p - 1 . Let
p ("), . . . , ps"

)
, s> exp n`Z/(I°slog ")Z be the primes p with p - 1 in . Clearly if

s
(k"- 1, l"- 1) = í we must have k1-0 mod f1p;") or by the prime number

(=1

theorem kl -> 1 1 p ;"~ > exp (1 - o (1)) s log s which proves (3) .
i=1

I have no good upper bound for H(n) . It seems likely that there is an
absolute constant c so that for every e > 0

(4)

	

H (n) > exp (n(`-e)/Ioglog n )

holds for infinitely many values of n but for all n>no (s)

(5)

	

H (n) < exp (n(-O,1°glog n)

but I am very far from being able to prove (4) or (5) .
Denote by HI (n) the smallest integer k for which (k" - 1, 2" - 1) = l .
Clearly Hl (n) > H (n), nevertheless it seems likely that (5) holds for Hl (n)

too. I can prove that there is a c>0 so that for n>no (c)

(6 )

	

HI (It) <exp nl - c .

The proof of (6) uses BRUN's method and is somewhat complicated . I do
not give it since it seems to fall so far from the final truth .

It might be of interest to investigate the distribution function of the
functions H(n) and HI (n), but l. have no results in this direction at present .

References. C. MEIER, Decomposition of a cube into smaller cubes, Amer. Math. Monthly
81 (1974), 630-631 .

K. PRACHAR, Uber die Anzahl der Teiler einer natürlichen Zahl welche die Form p-1
haben, Monatshefte Für Math. 59 (1954), 91-97 .
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III. Denote by a (n) the sum of divisors of n and by 9 (n) EULER's ?
function . I state some solved and unsolved problems on these functions . Unless
stated otherwise the results are true for both a (n) and cp (n) . In some cases the
behavior of a (n) is more complicated. Denote by f(x) the number of integers
m < x for which 9(n)=m is solvable. R. R . HALL and I proved that for
every k and e>0 [1]

(1)	 X

x
(loglog x)k< f (x) < lox

	 e(1og' og x)' 12+E .
log

	

gx

Probably the upper bound in (1) is close to being best possible but we are
far from being able to prove this . Recently HALL proved

(2 )

	

.f (x) > x
(loglog x)C loglogiog x

log x

It is not immediately clear if there is an asymptotic formula for f(X) in
terms of elementary functions. I can not prove that lim f (2 x) ff (x) exists; if

x= o0

it exists it must be 2 .
I have no nontrivial estimation for the number A (x) of integers n<x

for which y(m)=n is solvable only in integers m > x. In particular, I do not
know if

(3)

	

1im A(x)/f(x)

exists, also I can not decide if the limit could be 0 or infinity .
Denote by g (n) the number of solutions of y(m)=n . SIVASANKARANARA-

YANA PILLAI proved that lim sup g (n) = oo and I proved that there is an abso-
lute constant c> O so that for infinitely many integers n, g(n)>c [2] . I am
certain that this holds for every c<1 i .e. infinitely often g(n)>n1- e . This
result would follow if one could prove that for every e>0 the number of
primes p<x for which all prime factors of p- 1 is less that p£ is greater than
ce x/logx, but this conjecture though no doubt true is certainly very deep .

I can not prove that the equation a(n)= y (m) has infinitely many solu-
tions, though this certainly must be true . I proved that there are infinitely
many even numbers not of the form a (n) - n [3] but can not prove that there
are infinitely many even numbers not of the form n-y(n) . I can not prove
that the density of integers of the form n + y (n) (and n + a (n)) is positive .
I can not prove that for every a > 1 there is a sequence of integers nk and Mk
satisfying nk f m k --> a, a (n k) = a(Mk) ( it is easy to prove the analogous result
for y(n)) . I can not prove that there is a (3> 1 for which

a(n)-k -> oe as n--> oc .

In a previous paper [4], I state the following questic,n: Denote by h (x)
the number of solutions of a (a) = a (b), (a, b) = 1, a < b < x .

Prove that h (x)lx-->- oc .
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Observe that if a and b are squarefree and G (a) = a (b), then there are
uniquely determined integers a,, b,, (a, , b l ) = 1, a = a I t, b = b t t and of course
G (a)= G (b) . Thus if h(y)<c for every y then the number R (x) of solutions
of the equation

(5)
is easily seen to be less than cx log x .

Now we outline the proof that this is not true . In fact we show that
for every k and x > x,, (k)
(6)

	

R (x) > x (log x)k.

The proof of (6) is fairly complicated thus we do not give many details .
I am sure that (6) is very far from the final truth and believe that for every
s>0 and x > xo (e), R (x) > x2-8 and also h (X) >X2-e .

Denote by v(n) the number of distinct prime factors of n . We first
observe that for almost all n

(7)

	

v(G(n))=(1/2+o (1)) (loglogn)2 .
The detailed proof of (7) is fairly complicated . Here is an outline of the

proof. By a theorem of mine [2]

(8)

G (a) = G (b), a <b < x, a, b squarefree

Y , 1 /P< .
where the summation is extended over the primes p for which v (p - 1) <
<(I - e) loglog p . Another theorem of mine states that if Pk is the k-th prime
factor of n then [5]
(9)

	

exp exp k (1 - s) <p k < exp exp k (1 = e)
holds for all k>kp (e, n) if we neglect ri x integers n < x . (7) follows from (8)
and (9) without much difficulty .

(7) easily implies (6) since by a theorem of HARDY and RAMANUJAN [6]

the number of integers n < x for which v (n) > e (loglog n)2 is o x
((jo g x)k

[1] P. ERDŐS and R. R. HALL, On the values of Euler's function Acta Arithmetica,
22 (1972), 201-206 .

[2] P .ERDŐS, On the nominal number of, prime factors of p-1 and some related problems
concerning Euler's c?function, Quarterly J Math 6 (1935), 205-213

[3] P. ERDŐS, Uber die Zahlen der Form s (n)-n and n-? (n), Elemente der Mathema-
tik 28 (1973), 83-86 .

[4] P . ERDŐs, Remarks on number theory 11 . Some problems on the a function, Acta Arith .
5 (1959), 171-177 .

[5] P. ERDŐs, On the distribution function of additive functions, Annals of Math. 47 (1946),
1-20, see p. 3-4 .

[6] HARDY and RAMANL.IAN, Quarterly J . Math . 48 (1917), 76-92, see also RAMANOJAN,
Collected papers .

(Dodo 04. 10. 1974)
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f sketch a proof of
h (x)

	

00,lim(4) sup

	

-
X= . X

The proof of h (x)
-3 oc can be produced with a little more trouble .

X
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PROBLEMS*

4.33.1 . Problem of S. J. BENKOSKI and P . ERDŐS.

Put a (n) _ Y_ d. Is there an absolute constant C so that every integer n
d/n

satisfying u(n)>Cn is the distinct sum of proper divisors of n?

Remarks. a (70) = 144 > 2.70 but 70 is not the distinct sum of proper
divisors of 70, but as far as we know C could be three :

S. J . BENKOSKI and ERDŐS, On weid and pseudoperfect numbers, Mathe-
matics of computation, 28 (1974), 617-623 .

4.33.2. Problem of P . ERDŐS and STRAUS .

I. Are there infinitely many primes p k so that, for every i<k, pk>pk+i Pk-i
(p k is the k-th prime) .

II. Denote by v (n) the number of distinct prime factors of n and by d (n)
the number of divisors of n . Is it true that there is an infinite sequence
n, < n 2< • • • of integers satisfying

(1)

	

v (nk+ i) < cl i

	

for every i> 0 and cl is an absolute constant?

If the answer is affirmative is there an infinite sequence ml <m 2< •

	

so that

(2)

	

d (mk+ 0<02 i?

(1) can perhaps be proved by an improvement of BRUNS method ; (2), if
true, is certainly very deep .

4 .33.3 . Denote by f (n) the smallest integer so that every 1 < m < n! is the sum
of f (n) or fewer distinct divisors of n . I proved f(n)<n. The proof is by
induction and is simple . Prove or disprove : f (n) < (log n)c for an absolute con-
stant c and n > n o (c) . I could not even prove f(n) = o (n) .

4.33.4 . Prove that to every constant C there is an integer n for which a (n)/n>C
and whose divisors do not give the moduli of a system of covering congru-
ences. In other word s if 1 <d, < d2 < • • • < dk = n is the set of all divisors
greater than 1 of n and a,, 1 < i < k are arbitrary integers, there always is an
integer m so that for every i, 1 < i < k m a ; (mod di ) .

4.33.5 . Denote by f (n ; t) the smallest integer wah the property that if we
split the integers 1 < m < n into two classes there always is an arithmetic pro-
gression of n terms at least t of which belongs to the same class ; f(n ; n) = f (n)
is the well known VAN DER WAERDEN function the finiteness of which is
guaranteed by VAN DER WAERDEN's theorem. No satisfactory upper bound is
known for f (n); f(n) > 2n1 2 was proved by RADO and myself; W . SCHMIDT

proved J '(n) > 2n-c I/nlogn and BERLEKAMP proved f (p) > p 2p for primes p . Perh-

aps f (n)l/n tends to infinity . f(n ; t) is interesting only for t>
2

. Clearly, for

* Presented the 28 .06 . 1974 at the problem session of the 5th Balkan Mathematical
Congress (Beograd, 24-30. 06. 1974)
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t <
2

, f (n ; t) = n . I proved that f (n; t) > ( 1 + c,)" for t > (, + s) 2 . Perhaps

f (n;
C
n (1 + s) ) <C£ holds for sufficiently large CE if s is sufficiently small,
2

but I was not able to prove anything in this direction. In fact I can get no

usable upper bound for f (n; t) for t = n + o (n) . J . SPENCER proved that if
2

n = 2 1 m then

f(n;Cnl+1)=2 1 (n-1)+1
J2

but we do not know the value of f (n;
C
nl

+ 2) and in fact have no satisfac-
J
I2

tort' upper bound for it .

P. ERDős and R . RADo, Combinatorial theorems on classifications of subsets of a given
set, Proc. London Math. Soc . 2(1952), 417-439 .

W. ScHMmT, Two combinatiorial theorems on arithmetic progressions, Duke Math. J .
29 (1962), 129-140 .

E. R. BERLEKAMP, A construction for partitions which avoid long arithmetic progressions,
Bull. Canad. Math . Soc. it (1968), 409-414.

J . SPENCER, Problems 185 Bull. Canad. Math. Soc. 16 (1973), 185 .

4.33.6*. Let a, <a 2 < . . . be an infinite sequence of integers for which

1 = oo . Then our sequence contains arbitrarily long arithmetical progressions .
=1 a,

I offer 2 500 dollars for a proof or disproof of this conjecture. The conjecture
would imply that for every k there are k primes in an arithmetic progression .

SZEMERÉDI recently proved an old conjecture of TuRÁN and myself: If
al < a2< . . . has positive upper density, then it contains arbitrarily arithmetic
progressions . SZEMERÉDI's ingenious proof will soon appear in Acta Arithmetica .

4.33. 7*. Let E be an infinite set of real numbers . Prove that there is a set
of real numbers S of positive measure which does not contain a set E' similar
(in the sense of elementary geometry) to E .

We can of course assume that E is denumerable, its only limit point is 0
which is not in E.

4.33.8* . Put n = an . 8.1 Is it true that every an is the finite sum of other a' s?
2n

00

8.2. Is it true that I a is irrational if nk/k-> oo?
k=1

8.3. Is there a rational number x for which x =

	

a
1=1

has 2Xt solutions.

(Do"slo 04. 10. 1974) .

MATHEMATICA BALKANICA, 4 : Beograd 1974)

P . Erdős
Mathematical institute
Budapest, Hungary


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

