ERDÖS, P. (Budapest, Hungary)

REMARKS ON SOME PROBLEMS IN NUMBER THEORY*

I discuss in this note several disconnected problems in number theory. I have written several such papers but here I will give details (or at least outlines) of the proofs and will not concentrate on stating unsolved problems (except in III). Several of the problems which I discuss were suggested by questions in other branches of mathematics.

I. Denote by S(x) the number of integers n < x for which there is a non-cyclic simple group of order n. The well known classical result of Ferr and Thomson states that every such number must be even. Dornhoff proved that S(x) = o(x) and Dornhoff and Spitznagel proved $S(x) < c_1 x \left(\frac{\log \log \log x}{\log \log x}\right)^{1/2}$. (c_1, c_2, \ldots) denote absolute constants.)

I proved in a paper dedicated to the memory of the well known Indian mathematician D. D. Kosambi that

(1)
$$S(x) < x \exp\left(-\left(\frac{1}{2} + o(1)\right) - (\log x \log \log x)^{1/2}\right)$$
.

dince the paper where I proved (1) is not easily available, I will outline the groof of (1) and discuss a few related results and conjectures.

Let V be the sequence of integers $v_1 < v_2 < \cdots$ having the property that for every $p \mid v_i \mid v_i$ has a divisor $t_i \equiv 1 \pmod{p}$, $t_i > 1$. U is the sequence of integers $u_1 < u_2 < \cdots$ where the above property only has to hold for the largest prime factor $p_i = P(u_i)$ of u_i . Clearly $U \supset V$.

It follows from the classical results on non-cyclic simple groups that if there is a non-cyclic group of order s then $s \in V$. For if $p^a \mid s$, $p^{a+1} \mid s$ then the number of Sylow subgroups $t(\alpha, p)$ of order p^a is a divisor of s and further $t(\alpha, p) > 1$ and $t(\alpha, p) \equiv 1 \pmod{p}$. Thus clearly S(x) < V(x) < U(x) and (1) will follow from (A(x)) is the number of integers not exceeding x of the sequence A)

(2)
$$U(x) < x \exp\left(-\left(\frac{1}{2} + o(1)\right) - (\log x \log \log x)^{1/2}\right)$$

To prove (2) denote by $\psi(x, y)$ the number of integers not exceeding x all whose prime factors are $\leqslant y$. Put $y^z = x$ and assume $z < y^{1/2} \log y$ A theorem of DE BRUJN then states that

(3)
$$\psi(x, y) < c_2 x (\log x)^2 \exp(-z \log z - z \log\log z + c_3 z).$$

^{*} Presented at the 5th Balkan Mathematical Congress (Beograd, 24-30.06.1974)

(3) now easily implies (2) and (1). We split the integers $u_i < x$ into two classes. In the first class are the integers $u_i < x$ all whose prime factors are less than $\exp \frac{1}{2} (2 \log x \log \log x)^{1/2}$. In the second class are the other u's. $U_i(x)$, i = 1, 2 denotes the number of u's in the i-th class. From (3) we obtain by a simple computation that here $\left(z = \left(\frac{2 \log x}{\log \log x}\right)^{1/2}\right)$

(4)
$$U_1(x) < x \exp\left(-\left(\frac{1}{2} + o(1)\right) - (\log x \log\log x)^{1/2}\right).$$

For the u's of the second class we evidently have $\left(\ln \sum' \text{ the summation is extended over the primes } p > \exp\left(\frac{1}{2}\log x \log\log x\right)^{1/2}\right)$

(5)
$$U_2(x) < \sum_{p}' \sum_{t=1}^{\infty} \left[\frac{x}{p(tp+1)} \right] < \sum_{p}' \sum_{t=1}^{x} \frac{x}{p(tp+1)}$$

 $< \sum' \frac{x}{p^2} \sum_{t=1}^{x} \frac{1}{t} < 2 x \log x \sum' \frac{1}{p^2} < x \exp \left(-\left(\frac{1}{2} + o(1) \right) (\log x \log \log x)^{1/2} \right)$

(4) and (5) proves (2) and (1). With a little more trouble I could prove

(6)
$$S(x) \le U(x) = x \exp{-(1 + o(1))} (\log x \log\log x)^{1/2}$$

We suppress the details. The principal tool is again a result of DE BRUIJN, namely $\psi(x,y) > \frac{x}{(z\,!)^{1+\varepsilon}}$.

The true order of magnitude of S(x) is probably much smaller. It is generally conjectured by group theorists that $S(x) < x^{1-\varepsilon}$ and perhaps even $S(x) = o(x^{1/3})$, but our methods are far too crude to prove this. Using V(x) instead of U(x) it should be possible to improve (6) a little bit. Unfortunately not very much since I can show that

(7)
$$V(x) > x \exp{-c_3 (\log x)^{1/2} \log \log x}$$
.

I am sure that (7) gives the right order of magnitude for V(x) and in fact that there is a constant c_5 so that

$$V(x) = x \exp -(1 + o(1)) c_5 (\log x)^{1/2} \log \log x$$

but so far I have not been able to prove (7).

References. N. G. DE BRUIIN, On the number of uncanceled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950) 247—250, see also: Of the number of positive integers $\leq x$ and free of prime factors > y, ibid. 13) 1951), 50—60.

L. DORNHOFF, Simple groups are scarce, Proc. Amer. Math. Soc. 19 (1968), 692-696.

L. DORNHOFF and E. E. SPITZNAGEL JR., Density of finite simple group orders, Math-Zeitschrift, 106 (1968), 175-177.

II. The following problem is due to H. HADWIGER: Denote by D(n) the set of integers with the property that if $k \in D(n)$ then the *n*-dimensional unit cube can be decomposed into k homothetic *n*-dimensional cubes. C. Meier denotes by c(n) the *smallest* integer so that every k > c(n) belongs to D(n). He proves

(1)
$$c(n) \leq (2^n - 2) \left((2^n - 1)^n - (2^n - 2)^n - 1 \right) + 1.$$

Earlier W. PLÜSS gave a somewhat greater upper bound. It is easy to see that c(2) = 6 and in fact $k \in D(2)$ except if k = 2, 3 or 5. MEIER conjectures c(3) = 48 and asks for an improvement of (1). He remarks that the problem is attractive because of the interplay of geometric and number theoretic ideas. I agree with him.

First of all I give an improvement due to BURGESS and myself of (1). We prove $c(n) \le (2^n - 2) \left((n+1)^n - 2 \right) - 1.$

To prove (2) we first show the following

Lemma. The set of integers k^n-1 , $2 \le k \le n+1$ is relatively prime.

Observe that if $p \mid k^n - 1$, $2 \le k \le n + 1$ we clearly must have p > n + 1. Thus the congruence $x^n - 1 \equiv 0 \pmod{p}$ has the roots $k = 1, 2, \ldots, n + 1$ which is a contradiction since it can have at most n roots. This contradiction proves the Lemma.

To prove (2) observe that in the decomposition of the unit cube into smaller cubes, a cube of the decomposition can always be replaced by k^n smaller cubes. Thus every integer of the form

$$\sum_{k=2}^{n+1} c_k (k^n - 1), \qquad c_k \geqslant 1$$

belongs to D(n). A well known theorem of A. Brauer states that if $(a_0, \ldots, a_l) = 1$, $a_1 < \cdots < a_l$ then every integer greater than $(a_1 - 1)(a_l - 1) - 1$ can be expressed in the form $\sum_{i=1}^k c_i a_i$, $c_i > 0$, which proves (2).

(2) can in fact be improved. Put $d_k = (a_1, \ldots, a_k)$. A. BRAUER proved that if $d_n = 1$ then every integer $> \sum a_{k+1} d_k / d_{k+1}$ is of the form $\sum_{k=1}^n c_k a_k$, $c_k > 0$, and it is not hard to prove that this gives $c(n) < \alpha n^{n+1}$ for some absolute constant α . I am certain that if n+1 is a prime $c(n) > n^n$ but as far as I know HADWIGER'S result $c(n) > 2^n + 2^{n-1}$ is the only lower bound for c(n).

Now we make a few purely number theoretic observations. Denote by h(n) the smallest integer for which the numbers

$$\{2^n-1, 3^n-1, \ldots, h(n)^n-1\}$$

are relatively prime If n+1=p is a prime then h(n)=n+1, and it is easy to see that conversely if h(n)=n+1 then n+1=p. To see this observe that if $p \mid k^n-1$ for every $1 \le k \le n$ then $x^n-1\equiv 0 \pmod{p}$ can not have any other roots, but this is possible only if p=n+1 (for odd $n \pmod{p}$) and for even $n \pmod{p} \equiv 1 \pmod{p}$).

Denote by A(n) the greatest prime q_k for which $q_k - 1 \mid n$. Clearly $h(n) > q_{k+1}$. But h(n) can be much larger e.g. h(15) = 5 and A(15) = A(2n + 1) = 2. It is easy to see that for odd n(n) is unbounded.

I proved (unpublished) that the density of integers n with $A(n) = q_k$ exists. Denote this density by ε_k , $\sum_{k=1}^{\infty} \varepsilon_k = 1$. I can not prove that the density δ_k of

integers with $h(n) = q_k$ exists. I am sure that the density exists and $\sum_{k=1}^{\infty} \delta_k = 1$.

It is possible that if A(n) is large $(say > n^e)$ then A(n) = h(n). I can not prove that h(n) does not tend to infinity.

Define now H(n) = l as the least integer so that there is a k < l with $(k^n - 1, l^n - 1) = 1$. Clearly H(n) > h(n). Probably $(2^n - 1, 3^n - 1) = 1$ holds for infinitely many n or H(n) = h(n) = 3 infinitely often, but I can not prove that H(n) = h(n) holds for infinitely many n. On the other hand I prove that H(n) can be unexpectedly large for suitable values of n. In fact I prove that for infinitely many n (exp $x = e^x$)

$$(3) H(n) > \exp n^{c_1/(\log\log n)^2}.$$

To prove (3) we use the following theorem of PRACHAR. For infinitely many n, n has more than $\exp n^{c_2/(\log\log n)^2}$ divisors of the form p-1. Let $p_1^{(n)}, \ldots, p_s^{(n)}, s > \exp n^{c_2/(\log\log n)^2}$ be the primes p with $p-1 \mid n$. Clearly if $(k^n-1, l^n-1)=1$ we must have $k l \equiv 0 \mod \prod_{i=1}^s p_i^{(n)}$ or by the prime number

theorem
$$kl \ge \prod_{i=1}^{s} p_i^{(n)} \ge \exp(1 + o(1)) s \log s$$
 which proves (3).

I have no good upper bound for H(n). It seems likely that there is an absolute constant c so that for every $\varepsilon > 0$

(4)
$$H(n) > \exp(n^{(c-\varepsilon)/\log\log n})$$

holds for infinitely many values of n but for all $n > n_0(\varepsilon)$

(5)
$$H(n) < \exp(n^{(c+\varepsilon)/\log\log n}),$$

but I am very far from being able to prove (4) or (5).

Denote by $H_1(n)$ the smallest integer k for which $(k^n - 1, 2^n - 1) = 1$.

Clearly $H_1(n) > H(n)$, nevertheless it seems likely that (5) holds for $H_1(n)$ too. I can prove that there is a c>0 so that for $n>n_0(c)$

$$(6) H_1(n) < \exp n^{1-c}.$$

The proof of (6) uses Brun's method and is somewhat complicated. I do not give it since it seems to fall so far from the final truth.

It might be of interest to investigate the distribution function of the functions H(n) and $H_1(n)$, but I have no results in this direction at present.

References. C. Meier, Decomposition of a cube into smaller cubes, Amer. Math. Monthly 81 (1974), 630-631.

K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl welche die Form p-1 haben, Monatshefte für Math. 59 (1954), 91-97.

III. Denote by $\sigma(n)$ the sum of divisors of n and by $\varphi(n)$ EULER's φ function. I state some solved and unsolved problems on these functions. Unless stated otherwise the results are true for both $\sigma(n)$ and $\varphi(n)$. In some cases the behavior of $\sigma(n)$ is more complicated. Denote by f(x) the number of integers m < x for which $\varphi(n) = m$ is solvable. R. HALL and I proved that for every k and $\varepsilon > 0$ [1]

(1)
$$\frac{x}{\log x} (\log\log x)^k < f(x) < \frac{x}{\log x} e^{(\log\log x)^{1/2+\varepsilon}}.$$

Probably the upper bound in (1) is close to being best possible but we are far from being able to prove this. Recently HALL proved

(2)
$$f(x) > \frac{x}{\log x} (\log \log x)^{c \log \log \log x}.$$

It is not immediately clear if there is an asymptotic formula for f(x) in terms of elementary functions. I can not prove that $\lim_{x=\infty} f(2x)/f(x)$ exists; if it exists it must be 2.

I have no nontrivial estimation for the number A(x) of integers n < x for which $\varphi(m) = n$ is solvable only in integers m > x. In particular, I do not know if

$$\lim_{x \to \infty} A(x)/f(x)$$

exists, also I can not decide if the limit could be 0 or infinity.

Denote by g(n) the number of solutions of $\varphi(m) = n$. SIVASANKARANARAYANA PILLAI proved that $\limsup g(n) = \infty$ and I proved that there is an absolute constant c > 0 so that for infinitely many integers n, g(n) > c [2]. I am certain that this holds for every c < 1 i.e. infinitely often $g(n) > n^{1-\varepsilon}$. This result would follow if one could prove that for every $\varepsilon > 0$ the number of primes p < x for which all prime factors of p - 1 is less that p^{ε} is greater than $c_{\varepsilon} x/\log x$, but this conjecture though no doubt true is certainly very deep.

I can not prove that the equation $\sigma(n) = \varphi(m)$ has infinitely many solutions, though this certainly must be true. I proved that there are infinitely many even numbers not of the form $\sigma(n) - n$ [3] but can not prove that there are infinitely many even numbers not of the form $n - \varphi(n)$. I can not prove that the density of integers of the form $n + \varphi(n)$ (and $n + \sigma(n)$) is positive. I can not prove that for every $\alpha > 1$ there is a sequence of integers n_k and m_k satisfying $n_k/m_k \rightarrow \alpha$, $\sigma(n_k) = \sigma(m_k)$ (it is easy to prove the analogous result for $\varphi(n)$). I can not prove that there is a $\beta > 1$ for which

$$|\sigma(n)-\beta_n|\to\infty$$
 as $n\to\infty$.

In a previous paper [4], I state the following question: Denote by h(x) the number of solutions of $\sigma(a) = \sigma(b)$, (a, b) = 1, a < b < x.

Prove that $h(x)/x \rightarrow \infty$.

I sketch a proof of

(4)
$$\lim \sup_{x=\infty} \frac{h(x)}{x} = \infty.$$

The proof of $\frac{h(x)}{x} \to \infty$ can be produced with a little more trouble.

Observe that if a and b are squarefree and $\sigma(a) = \sigma(b)$, then there are uniquely determined integers a_1 , b_1 , $(a_1, b_1) = 1$, $a = a_1 t$, $b = b_1 t$ and of course $\sigma(a_1) = \sigma(b_1)$. Thus if h(y) < c for every y then the number R(x) of solutions of the equation

(5)
$$\sigma(a) = \sigma(b), \quad a < b < x, \quad a, \quad b \text{ squarefree}$$

is easily seen to be less than $cx \log x$.

Now we outline the proof that this is not true. In fact we show that for every k and $x>x_0(k)$

$$(6) R(x) > x (\log x)^k.$$

The proof of (6) is fairly complicated thus we do not give many details. I am sure that (6) is very far from the final truth and believe that for every $\varepsilon > 0$ and $x > x_0(\varepsilon)$, $R(x) > x^{2-\varepsilon}$ and also $h(x) > x^{2-\varepsilon}$.

Denote by v(n) the number of distinct prime factors of n. We first observe that for almost all n

(7)
$$v\left(\sigma(n)\right) = \left(1/2 + o(1)\right) \quad (\log\log n)^2.$$

The detailed proof of (7) is fairly complicated. Here is an outline of the proof. By a theorem of mine [2]

$$\sum' 1/p < \infty$$

where the summation is extended over the primes p for which $v(p-1) < (1-\varepsilon) \log \log p$. Another theorem of mine states that if p_k is the k-th prime factor of n then [5]

(9)
$$\exp \exp k (1-\varepsilon) < p_k < \exp \exp k (1+\varepsilon)$$

holds for all $k > k_0(\varepsilon, n)$ if we neglect ηx integers n < x. (7) follows from (8) and (9) without much difficulty.

- (7) easily implies (6) since by a theorem of Hardy and Ramanujan [6] the number of integers n < x for which $v(n) > \varepsilon (\log \log n)^2$ is $o\left(\frac{x}{(\log x)^k}\right)$.
- [1] P. Erdös and R. R. Hall, On the values of Euler's φ-function Acta Arithmetica, 22 (1972), 201-206.

[2] P.Erdös, On the nominal number of, prime factors of p-1 and some related problems concerning Euler's φ-function, Quarterly J Math 6 (1935), 205—213

[3] P. Erdős, Über die Zahlen der Form $\sigma(n)-n$ und $n-\varphi(n)$, Elemente der Mathematik 28 (1973), 83-86.

[4] P. Erdős, Remarks on number theory II. Some problems on the \u03c4 function, Acta Arith. 5 (1959), 171-177.

[5] P. Erdős, On the distribution function of additive functions, Annals of Math. 47 (1946), 1—20, see p. 3—4.

[6] HARDY and RAMANUJAN, Quarterly J. Math. 48 (1917), 76—92, see also RAMANUJAN, Collected papers.

(Došlo 04. 10. 1974)

4.33. (1974) 203-204

PROBLEMS*

4.33.1. Problem of S. J. BENKOSKI and P. ERDÖS.

Put $\sigma(n) = \sum_{d \mid n} d$. Is there an absolute constant C so that every integer n satisfying $\sigma(n) > Cn$ is the distinct sum of proper divisors of n?

Remarks. $\sigma(70) = 144 > 2.70$ but 70 is not the distinct sum of proper divisors of 70, but as far as we know C could be three:

- S. J. BENKOSKI and ERDÖS, On weid and pseudoperfect numbers, Mathematics of computation, 28 (1974), 617-623.
- 4.33.2. Problem of P. ERDÖS and STRAUS.
- I. Are there infinitely many primes p_k so that, for every i < k, $p_k^2 > p_{k+i} p_{k-i}$ (p_k is the k-th prime).
- II. Denote by v(n) the number of distinct prime factors of n and by d(n) the number of divisors of n. Is it true that there is an infinite sequence $n_1 < n_2 < \cdots$ of integers satisfying
- (1) $v(n_k+i) < c_1 i$ for every i > 0 and c_1 is an absolute constant? If the answer is affirmative is there an infinite sequence $m_1 < m_2 < \cdots$ so that

$$(2) d(m_k+i) < c_2 i?$$

- (1) can perhaps be proved by an improvement of BRUNS method; (2), if true, is certainly very deep.
- **4.33.3.** Denote by f(n) the smallest integer so that every 1 < m < n! is the sum of f(n) or fewer distinct divisors of n. I proved f(n) < n. The proof is by induction and is simple. Prove or disprove: $f(n) < (\log n)^c$ for an absolute constant c and $n > n_0(c)$. I could not even prove f(n) = o(n).
- **4.33.4.** Prove that to every constant C there is an integer n for which $\sigma(n)/n > C$ and whose divisors do not give the moduli of a system of covering congruences. In other words if $1 < d_1 < d_2 < \cdots < d_k = n$ is the set of all divisors greater than 1 of n and a_i , 1 < i < k are arbitrary integers, there always is an integer m so that for every i, 1 < i < k $m \not\equiv a_i \pmod{d_i}$.
- **4.33.5.** Denote by f(n;t) the smallest integer with the property that if we split the integers 1 < m < n into two classes there always is an arithmetic progression of n terms at least t of which belongs to the same class; f(n;n) = f(n) is the well known Van der Waerden function the finiteness of which is guaranteed by van der Waerden's theorem. No satisfactory upper bound is known for f(n); $f(n) > 2^{n/2}$ was proved by Rado and myself; W. Schmidt proved $f(n) > 2^{n-c\sqrt{n\log n}}$ and Berlekamp proved $f(p) > p 2^p$ for primes p. Perhaps $f(n)^{1/n}$ tends to infinity. f(n;t) is interesting only for $t > \frac{n}{2}$. Clearly, for

^{*} Presented the 28.06.1974 at the problem session of the 5th Balkan Mathematical Congress (Beograd, 24-30.06.1974)

 $t < \frac{n}{2}$, f(n;t) = n. I proved that $f(n;t) > (1+c_{\varepsilon})^n$ for $t > (1+\varepsilon)$ $\frac{n}{2}$. Perhaps $f\left(n;\left[\frac{n}{2}\left(1+\varepsilon\right)\right]\right) < C_{\varepsilon}^n$ holds for sufficiently large C_{ε} if ε is sufficiently small, but I was not able to prove anything in this direction. In fact I can get no usable upper bound for f(n;t) for $t = \frac{n}{2} + o(n)$. J. Spencer proved that if $n = 2^l m$ then

$$f\left(n; \left\lceil \frac{n}{2} \right\rceil + 1\right) = 2^{t} (n-1) + 1$$

but we do not know the value of $f(n; \left[\frac{n}{2}\right] + 2)$ and in fact have no satisfactory upper bound for it.

P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 2 (1952), 417-439.

W. Schmidt, Two combinational theorems on arithmetic progressions, Duke Math. J. 29 (1962), 129-140.

E. R. Berlekamp, A construction for partitions which avoid long arithmetic progressions, Bull. Canad. Math. Soc. 11 (1968), 409—414.

J. SPENCER, Problems 185 Bull. Canad. Math. Soc. 16 (1973), 185.

4.33.6*. Let $a_1 < a_2 < \cdots$ be an infinite sequence of integers for which $\sum_{i=1}^{\infty} \frac{1}{a_i} = \infty$. Then our sequence contains arbitrarily long arithmetical progressions.

I offer 2500 dollars for a proof or disproof of this conjecture. The conjecture would imply that for every k there are k primes in an arithmetic progression.

SZEMERÉDI recently proved an old conjecture of Turán and myself: If $a_1 < a_2 < \cdots$ has positive upper density, then it contains arbitrarily arithmetic progressions. SZEMERÉDI's ingenious proof will soon appear in Acta Arithmetica.

4.33. 7^* . Let E be an infinite set of real numbers. Prove that there is a set of real numbers S of positive measure which does not contain a set E' similar (in the sense of elementary geometry) to E.

We can of course assume that E is denumerable, its only limit point is 0 which is not in E.

4.33.8*. Put $\frac{n}{2^n} = \alpha_n$. **8.1** Is it true that every α_n is the finite sum of other α' s?

8.2. Is it true that $\sum_{k=1}^{\infty} \alpha_{n_k}$ is irrational if $n_k/k \rightarrow \infty$?

8.3. Is there a rational number x for which $x = \sum_{l=1}^{\infty} \alpha_{n_l}$ has $2\aleph_0$ solutions.

(Došlo 04, 10, 1974).

P. Erdös Mathematical institute Budapest, Hungary