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ERDOS, P. (Budapest, Hungary)
REMARKS ON SOME PROBLEMS IN NUMBER THEORY*

1 discuss in this note several disconnected problems in number theory. I have written
several such papers but here I will give details (or at least outlines) of the proofs and will
not concentrate on stating unsolved problems (except in III). Several of the problems which 1
discuss were suggested by questions in other branches of mathematics.

I. Denote by S(x) the number of integers n<x for which there is a
non-cyclic simple group of order n. The well known classical result of FeIT
and THOMSON states that every such number must be even. DORNHOFF proved that

logloglog x\1/2
S(x) =0(x) and DORNHOFF and SPITZNAGEL proved S(x)<cx|———M] .
log log x
(¢,, ¢;, ... denote absolute constants.)

I proved in a paper dedicated to the memory of the well known Indian
mathematician D. D. Kosame1 that

(0 S()<x exp(—(%-}—o(l)) (logxloglogx)l)’z).

dince the paper where I proved (1) is not easily available, I will outline the
groof of (1) and discuss a few related results and conjectures.

Let ¥ be the sequence of integers v, <v,<C .. having the property that
for every p|v, v, has a divisor #;=1 (modp), r,>1. U is the sequence of
integers u,<<u,< - .- where the above property only has to hold for the largest

prime factor p,=P(u;) of u,. Clearly U_V.

It follows from the classical results on non-cyclic simple groups that if
there is a non-cyclic group of order s then s&V. For if p¢|s, p**!|s then the
number of SyLow subgroups #(«, p) of order p* is a divisor of s and further
t(z, p)>1 and (2, p)=1 (modp). Thus clearly Sx)<V(x)=U(x) and (1)
will follow from (A(x) is the number of integers not exceeding x of the
sequence A)

(2) U(x)<xexp(—(%+o(1)) (log x log log x 1__*2)

To prove (2) denote by ¢ (x, ») the number of integers not exceeding x
all whose prime factors are <y. Put y*=x and assume z<p'/’logy A theo-
rem of DE BRUUN then states that

3) (x, y)<e,x(logx)?exp(—zlogz—zloglogz+e¢,2).
* Presented at the 5'h Balkan Mathematical Congress (Beograd, 24—30. 06, 1974)
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198 ERDOS P.

(3) now easily implies (2) and (1). We split the integers u,<<x into two
classes. In the first class are the integers #,<<x all whose prime factors are

1
less than exp ?(2 log x loglog x)!/2, In the second class are the other u’s. U, (x),

i=1, 2 denotes the number of #’s in the i-th class. From (3) we obtain by a

112
simple computation that here (z - (_2__12&) )

loglog x
4 U, )<x exp(—(%+o(l)) (iogxfoglogx)uz)‘

For the u's of the second class we evidently have (n " the summation is

1/2
extended over the primes p>exp (% log x loglog > \-) )

) U(»)<z§[-—--—-—] >3 -

-1 FEpp+ 1)
x 1 1
<S'= ——<2xlo xS —<xexp—|[—+o(1)] (logxloglog x)"/?
S 53 <axlogx 3 <xexp—( o (D) (ogxloglog
(4) and (5) proves (2) and (1). With a little more trouble 1 could prove
(©6) S(x)<U)=xexp—(1+0(1)) (logxloglogx)!/2.

We suppress the details. The principal tool is again a result of DE BRUDN,

namely ¢ (x, y)>

x
(z!)t+s ’

The true order of magnitude of S(x) is probably much smaller. It is
generally conjectured by group theorists that S(x)<x'"¢ and perhaps even
S(x)=o0(x'?), but our methods are far too crude to prove this. Using ¥V (x)
instead of U(x) it should be possible to improve (6) a little bit. Unfortunately
not very much since I can show that

@) V (x)>xexp—c, (log x)'/? loglog x.
I am sure that (7) gives the right order of magnitude for V' (x) and in
fact that there is a constant ¢, so that
V(x)=xexp—(1+0(1)) ¢, (logx)/2loglog x

but so far I have not been able to prove (7).

References. N, G. pE BRUUN, On the number of uncanceled elements in the sieve of
Eratosthenes, Indag. Math. 12 (1950) 247—250, see also: Of the number of positive integers
< x and free of prime factors >y, ibid. 13) 1951), 50—60.

L. DoRNHOFF, Simple groups are scarce, Proc. Amer. Math. Soc. 19 (1968), 692—696.

L. DornaorF and E. E. SPITzNAGEL JR., Density of finite simple group orders, Math-
Zeitschrift, 106 (1968}, 175—177,
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II. The following problem is due to H. HADWIGER: Denote by D (n) the
set of integers with the property that if K& D (n) then the n-dimensional unit
cube can be decomposed into k& homothetic n-dimensional cubes. C. MEIER
denotes by c(n) the smallest integer so that every k= c(n) belongs to D (n).
He proves

(1) cm<(2=2)(2"—1)"—(2"=2"—1)+1.

Earlier W. PLUsS gave a somewhat greater upper bound. It is easy to see that
c(2)=6 and in fact A=D(2) except if k=2,3 or 5. MEIER conjectures
c(3)=48 and asks for an improvement of (1). He remarks that the problem
is attractive because of the interplay of geometric and number theoretic ideas.
I agree with him.

First of all I give an improvement due to BURGESS and myself of (1). We prove
2 cm=<(2"-2) ((n+1)"—2)) - 1.
To prove (2) we first show the following

Lemma. The set of integers k" —1, 2<k<n+ | is relatively prime.

Observe that if p|k"—1, 2<k<n+1 we clearly must have p>n+1.
Thus the congruence x"—1=0 (mod p) has the roots k=1,2, ..., n+1
which is a contradiction since it can have at most » roots. This contradiction
proves the Lemma.

To prove (2) observe that in the decomposition of the unit cube into
smaller cubes, a cube of the decomposition can always be replaced by k" smaller
cubes. Thus every integer of the form

n+1

> e (k"= 1), ¢ =1

k=2
belongs to D (n). A well known theorem of A. BRAUER states that if (a,, ..., a) =
=1, a,<---<qa then every integer greater than (4, —-1)(4,—1)—1 can be

k
expressed in the form Y ¢;a;, ¢;>0, which proves (2).
i=1

(2) can in fact be improved. Put d,=(a,, ..., a;). A. BRAUER proved

n
that if d,=1 then every integer > a., di/d;., is of the form D ¢, =0,
i k=1
and it is not hard to prove that this gives ¢(n)<<an™! for some absolute
constant «. I am ceriain that if n+1 is a prime ¢ (n)>n" but as far as I know
HADWIGER’S result ¢(n)=2"+2""! is the only lower bound for c¢(n).
Now we make a few purely number theoretic observations. Denote by
fi(n) the smallest integer for which the numbers

{2"_ I) 3 ]9 reg ’!?{n)”_ ]}

are relatively prime If n+1=p is a prime then #(n)=n+1, and it is easy
to see that converseiy if A(n)=n-1 then n+1=p. To see this observe that
if p|k"—1 for every l<k<n then ¥"—1=0 (mod p) can not have any other
roots, but this is possible only if p=n-+1 (for odd n (n+1)"=1 (mcd p) and
for even n (n+2)"=1 (mod p)).
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Denote by A(n) the greatest prime ¢, for which g¢,—1|n. Clearly
h(n)=g..,. But h(n) can be much larger e.g. £(15)=5 and A(15)=4(2n+
+1)=2. It is easy to see that for odd » h(n) is unbounded.

I proved (unpublished) that the density of integers # with A (n) =g, exists.

Denote this density by g, > ¢=1. I can not prove that the density 3, of
k=1

integers with % (n) =g, exists. 1 am sure that the density exists and 5 & =1.
k=1

It is possible that if A (n) is large (say>n*) then A (n)=h(n). I can not
prove that 4 (n) does not tend to infinity.

Define now H(n)=! as the least integer so that there is a k<! with
(k*—1, I"—1)=1. Clearly H(n)=h(n). Probably (2"—1,3"—1)=1 holds for
infinitely many n or H(n)=h(n)=3 infinitely often. but I can not prove that
H(n)=h(n) holds for infinitely many »n. On the other hand I prove that H (n)
can be unexpectedly large for suitable values of n. In fact I prove that for
infinitely many n (exp x = e%)

3) H (n)>exp ner/Coglog n)*,

To prove (3) we use the folloving theorem of PRACHAR. For infinitely
many n, n has more than exp ne/(oBloen? diyisors of the form p—1. Let

2" .., P, s>expn@¥8™ be the primes p with p—1/n. Clearly if

(k"—1, I"—1)=1 we must have k/=0 mod Hp}”’ or by the prime number
i=1
theorem kl> np,g"’,;aexp(l ~o0(1))slogs which proves (3).
i=1
I have no good upper bound for H(n). It seems likely that there is an
absolute constant ¢ so that for every >0

(4) H (n) > exp (nc—¢)loglog n)
holds for infinitely many values of n but for all n>n,(c)
(5) H(ﬂ)(exp (n{f—‘—.t)f]oglog n)’

but I am very far from being able to prove (4) or (5).
Denote by H, (n) the smallest integer & for which (k"—1,2"—1)=1.

Clearly H, (n)= H (n), nevertheless it seems likely that (5) holds for H, (n)
too. I can prove that there is a ¢>0 so that for n>n,(c)

(6) H, (n)<<expn'~c.
The proof of (6) uses BRUN'S method and is somewhat complicated. I do

not give it since it seems to fall so far from the final truth.

It might be of interest to investigate the distribution function of the
functions H(n) and H, (n), but 1 have no results in this direction at present.

References. C. MEIER, Decomposition of a cube into smaller cubes, Amer. Math. Monthly
81(1974), 630—631.

K. PracHAR, Uber die Anzahl der Teiler einer natiirlichen Zahl welche die Form p—1
haben, Monatshefte fiir Math. 59 (1954), 91—97.
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III. Denote by o(n) the sum of divisors of n and by ¢(n) EULER’s ¢
function. I state some solved and unsolved problems on these functions. Unless
stated otherwise the results are true for both o (#) and ¢(n). In some cases the
behavior of o (n) is more complicated. Denote by f(x) the number of integers
m<x for which @(n)=m is solvable. R. R. HaLL and 1 proved that for
every k and >0 [1]

Y (loglog x)* < f (x) < —— elloglon ! +2,

ogx log x

(1

Probably the upper bound in (1) is close to being best possible but we are
far from being able to prove this. Recently HALL proved

@) f(x)>—"— (loglog x)c losloslog x
log x

It is not immediately clear if there is an asymptotic formula for f(x) in
terms of elementary functions. 1 can not prove that lim f(2x)/f(x) exists; if
X=uo0

it exists it must be 2,

I have no nontrivial estimation for the number A(x) of integers n<x
for which @ (m)=n is solvable only in integers m>x. In particular, I do not
know if

© lim A()//(x)

exists, also I can not decide if the limit could be 0 or infinity.

Denote by g(n) the number of solutions of ©(m)=n. SIVASANKARANARA-
YANA PILLAI proved that limsupg(n)=w and I proved that there is an abso-
lute constant ¢>>0 so that for infinitely many integers n, g(n)>c¢ [2]. T am
certain that this holds for every c¢<<1 i.e. infinitely often g(n)>n'"%. This
result would follow if one could prove that for every >0 the number of
primes p<x for which all prime factors of p—1 is less that p® is greater than
¢, x/logx, but this conjecture though no doubt true is certainly very deep.

I can not prove that the equation & (n)=¢ (m) has infinitely many solu-
tions, though this certainly must be true. I proved that there are infinitely
many even numbers not of the form o(n)—n [3] but can not prove that there
are infinitely many even numbers not of the form n—q(n). I can not prove

that the density of integers of the form n+¢(n) (and n+o(n)) is positive.
I can not prove that for every «>1 there is a sequence of integers n, and m,
satisfying n,/m,—o, o(n)=0c(m,) (it is easy to prove the analogous result

for (n)). I can not prove that there is a 8>1 for which
lo(n)—B,|—+= as n—>oo.

In a previous paper [4], I state the following questicn: Denote by /4 (x)
the number of solutions of o(a)=c(b), (a, b)=1, a<b<x.

Prove that h(x)/x— 0.
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I sketch a proof of
(4) lim sup b ©
X == 00 b
h(x) , :
The proof of —> o0 can be produced with a little more trouble.

X
Observe that if @ and b are squarefree and &(a)=o(b), then there are
uniquely determined integers a,, b,, (a,, b,)=1, a=a,t, b=>b,t and of course
o(a)=o(b,). Thus if h(y)<c for every y then the number R(x) of solutions
of the equation

(5 c(@)=0c(b), a<b<x. a, b squarefree

is easily seen to be less than cx logx.

Now we outline the proof that this is not true. In fact we show that
for every k and x>x, (k)
(6 R (x)>x (log x)*.

The proof of (6) is fairly complicated thus we do not give many details.
I am sure that (6) is very far from the final truth and believe that for every
e>0 and x>x,(s), R(x)>x2"* and also h(x)>x>""

Denote by v(n) the number of distinct prime factors of n. We first
observe that for almost all »

(7N v(c(n))=(l/2+a(l)) (loglog n)>.
The detailed proof of (7) is fairly complicated. Here is an outline of the
proof. By a theorem of mine [2]

(8) Sfp< o
where the summation is extended over the primes p for which »(p—1)<

<(1—¢)loglogp. Another theorem of mine states that if p, is the k-th prime
factor of n then [5]

(9 expexpk (1 —g)<p,<expexpk(l+¢)
holds for all K>k, (e, n) if we neglect nx integers n<x. (7) follows from (8)
and (9) without much difficulty.

(7) easily implies (6) since by a theorem of HARDY and RAMANUJIAN [6]

the number of integers n<x for which v(n)>z(loglogn)? is o( £ )
(log x)*

[1] P. Erpos and R. R. HALL, On the values of Euler’s o-function Acta Arithmetica,
22 (1972), 201—206.

[2] P.ErDOs, On the nominal number of, prime factors of p-1 and some related problems
concerning Euler's o-function, Quarterly J Math 6 (1935), 205—213

[3] P. ErpGs, Uber die Zahlen der Form o (n)—n und n—g (n), Elemente der Mathema-
tik 28 (1973), 83—86.

[4] P. ErpoS, Remarks on number theory I1. Some problems on the o function, Acta Arith.
5 (1959), 171—177.

[5] P. ErnoS, On the distribution function of additive functions, Annals of Math. 47 (1946),
1—20, see p. 3—4.

[6] HARDY and RamaNUIAN, Quarterly J. Math. 48 (1917), 76—092, see also RAMANUJAN,
Collected papers.

(Doslo 04. 10. 1974)
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4.33. (1974) 203—204 PROBLEMS*
4.33.1. Problem of S. J. BENKOSKI and P. ERDOS.

Put o(n)= E d. Is there an absolute constant C so that every integer n
satisfying s(n)>Cn 1s the distinct sum of proper divisors of n?

Remarks. o (70)=144>2.70 but 70 is not the distinct sum of proper
divisors of 70, but as far as we know C could be three:

S. J. Benkoskl and ERDOS, On weid and pseudoperfect numbers, Mathe-
matics of computation, 28 (1974), 617-623.

4.33.2. Problem of P. ERDOS and STRAUS.

L. Are there infinitely many primes p, so that, for every i<k, p2>p, ., pi_;
(D) is the k-th prime).

II. Denote by v (n) the number of distinct prime factors of n and by d(n)
the number of divisors of n. Is it true that there is an infinite sequence
n <n,< --- of integers satisfying

(1) v(m+i)y<c,i for every i>=0 and ¢; is an absolute constant?
If the answer is affirmative is there an infinite sequence m, <m,< - - - so that

(2) d(m,+i)<c,i?

(1) can perhaps be proved by an improvement of BRUNS method; (2), if
true, is certainly very deep.

4.33.3. Denote by f(n) the smallest integer so that every 1<m=<n! is the sum
of f(n) or fewer distinct divisors of n. I proved f(n)<<n. The proof is by
induction and is simple. Prove or disprove: f(n)<<(logr)° for an absolute con-
stant ¢ and r>n,(c). I could not even prove f(n)=o(n).

4.33.4. Prove that to every constant C there is an integer # for which ¢ (#)fn>>C
and whose divisors do not give the moduli of a system of covering congru-
ences. In other words if 1<d <d,<::-<d,=n is the set of all divisors
greater than 1 of n and @;, 1 <i<k are arbitrary integers, there always is an
integer m so that for every i, l<i<k mz=aq;(modd,).

4.33.5. Denote by f(n;t) the smallest integer with the property that if we
split the integers 1 <m<r into two classes there always is an arithmetic pro-
gression of n terms at least ¢ of which belongs to the same class; f(n;n)=f(n)
is the well known VaN DER WAERDEN function the finiteness of which is
guaranteed by VAN DER WAERDEN’s theorem. No satisfactory upper bound is
known for f(n); f(n)=2"* was proved by Rapo and myself; W. ScuMIDT

proved f{n)>2"cVnloen and BERLEKAMP proved f(p)=p2? for primes p. Perh-
aps f(m)'/" tends to infinity. f(m;t) is interesting only for t>%. Clearly, for

* Presénted the 28.06.1974 at the problem session of the 5th Balkan Mathematical
Congress (Beograd, 24—30. 06. 1974)
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:g%, f(n;t)=n. I proved that f(mt) > (1 +c.)" for t=(l+¢g) % Perhaps

f(n; [—;— (1 +s)])<C§ holds for sufficiently large C. if e is sufficiently small,

but I was not able to prove anything in this direction. In fact I can get no

usable upper bound for f(n;¢) for t=%+o(n). J. SpeNCER proved that if

f(n; [‘;']} 1)=2f (r—T1)41

but we do not know the value of f(n; [%]+ 2) and in fact have no satisfac-

n=2'm then

tory upper bound for it.

P. Erps and R. Rapo, Combinatorial theorems on classifications of subsets of a given
set, Proc. London Math. Soc. 2 (1952), 417—439.

W. ScHMIDT, Two combinatiorial theorems on arithmetic progressions, Duke Math. J,
29 (1962), 129—140.

E. R. BERLEKAMP, A construction for partitions which avoid long arithmetic progressions,
Bull. Canad. Math. Soc. 11 (1968), 409—414.

J. SPENCER, Problems 185 Bull, Canad, Math. Soc. 16 (1973), 185.

4.33.6%. Let g,<<a,<<-.- be an infinite sequence of integers for which
= . . .

— = oo, Then our sequence contains arbitrarily long arithmetical progressions.
jml a,-

I offer 2500 dollars for a proof or disproof of this conjecture. The conjecture
would imply that for every k there are k& primes in an arithmetic progression.
SZeEMEREDI recently proved an old conjecture of TURAN and myself: If
a,<<a,<< - .. has positive upper density, then it contains arbitrarily arithmetic
progressions. SZEMEREDI's ingenious proof will soon appear in Acta Arithmetica.

4.33. 7*. Let E be an infinite set of real numbers. Prove that there is a set
of real numbers S of positive measure which does not contain a set £’ similar
(in the sense of elementary geometry) to F£.

We can of course assume that £ is denumerable, its only limit point is O
which is not in E.

4.33.8% Put %=mn. 8.1 Is it true that every o, is the finite sum of other o' s?

-]
8.2. Is it true that 3 o, is irrational if m/k— oo?
k=1

8.3. Is there a rational number x for which x =73 a,
el
has 2%, solutions.

P. Erdos

(Doslo 04. 10. 1974). Mathematical institute
Budapest, Hungary
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