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The main objective of this paper is to investigate the relation between the
number of integers in a given subset .a of the integers 1, 2, . . ., n and the number
of integers that can be chosen from 1, 2, . . ., n so that their pairwise products all
appear in a. Other related problems are also considered .

1. INTRODUCTION

The problems under investigation in the present paper are of the
following type : Given a set sI in [1, n], what is the relation between I a I
and the number of integers that can be chosen from [1, n] whose pairwise
products all appear in a? We prove the following theorems .

THEOREM 1 . There exists a > 0 and a set a in [1, n] where
I a I > n - n(log n) - 1 so that there cannot be three integers b, , bz , b 3
with products bib; (1 < i < j < 3) all in -.

THEOREM 2 . For each k > 3 there exists a positive Qk < 1 so that
if .21 is a set of integers in [1, n], where I d I > n - n(log n) -sz, then there
are integers b,_ , . . ., b, whose products b ib; (I < i < j < k) all appear in mil .

THEOREM 3 . Corresponding to S > 0 there exists an integer t = i(S),
where t - oo as rs -> 0, so that if v is a set of integers in [1, n], where

14 1 > (1 - á)n,

	

n > no(8),

then there are t integers b, , . . ., b t and some number µ so that b ib;µ
(1 < i < j < t) all appear itl s! .
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THEOREM 4. Corresponding to each 8 > 0 there exists C = C(8) and
a set

	

of integers in [1, n], where

Is/I >(1-8)n,

so that for every a = k/m, where m < n, there are at most t < (log n)c
integers bl , . . ., bt integers with bib ;a all appearing in cV .

THEOREM 5. Let p be a prime . Suppose al , . . ., at mod p are t distinct
congruence classes mod p, where t > (2 E)p . Then there are at least
s i log log p congruence classes mod p bl , . . ., b, so that bib ; are all in
a's mod p .

THEOREM 6. Suppose a,, . . ., at mod p are t distinct congruence classes
where t > (2 + E)p . Then there are k classes mod p ail , . . ., ark so that
aiiai are all in a's mod p .

THEOREM 7 . For every r there exists 8, > 0 so that if al , . . ., at mod p
are t distinct congruence classes, where t > (1 - 8,)p, then, provided
p > po(k, r), there are k classes bl , . . ., bk mod p so that rlkl bet (E ei < r,
Ei - 0, 1), are all in a's mod p .

2. PROOFS OF THEOREMS

Proof of Theorem 1 . We let / consist of the integers in (n/log n, n)
which have no divisors in (n112/log n, n112) . Then it follows from the
method of Erdös [l, 2] that

1 - I > n - n(log n)-1,

	

for some a > 0 .

It is clear that we cannot choose three integers bl , b2 , b3 with bib ; in V,
since at most one b can be > n112 and at most one can be less than
n1 2(log n)-1, and there can be none in (n1/2/log n, n112) .

An example giving a somewhat weaker result is as follows : Let
consist of those integers in [1, n] not of the form xy, where x < n1/2
and y < n1/2

Proof of Theorem 2 . Let J denote the set of integers in í2n1/2 n1 /2)
having [(log log n)/2] distinct prime factors. Then the number t of elements
in 9% is given by

n1/2 (log log n)(loglogn) ;2
t = (1 + 0(1)) 2 log n

	

[2 log log n]!
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We shall call an integer in .i good if it has at least e log log n prime
factors p l , . . ., p .r , r >-- e log log n, so that d/d' > 4 for any two distinct
divisors d, d', (d > d'), of pl	p,. . Let ./1 = {b l , . . ., b,j denote the
subset of good integers in % . By a simple computation" we have

k = (1 + o(1))t .

It is also clear that the equation m = blb; has at most 2c1-suoglogn solutions
in bi , b; , since if b ib; = bi'b;', then bi./b i ' cannot be equal to d/d' where
d and d' are distinct divisors of p l	p.r . Thus the total number of
distinct (pairwise) products determined by the integers of '% , is at least

k 2

	

>

	

.1(1 + o(1))n

	

(log log n)1og1ogn(2e)1og1ogn
2a-01oglogn - 2(1401ogiogn(log n) 2

	

(2or)(log log n)loglogn
n

(log n)1-E l '

where E l = e/2, say . Since I > n - n(log n)- sk, by choosing P, < I
sufficiently close to 1, we may assert that there is an integer b, say b il so
that bulb; belongs to s/ for at least zk integers b ; in 9-1 . We may now
repeat the argument with these integers b ; instead of %1 , and so on . This
completes the proof of the theorem .

It would be of interest to determine Pk exactly .

Proof of Theorem 3 . We may assume 8 small . It involves only a
straightforward computation to show that the number of integers < n
of the form tad, (d odd, Stn < d < n) is at most

n(l + o(l))(1 - 8, + (8, log 81)(2 log 2)-1) .

We determine 8, by

8, - 8, log 8 1/2 log 2 = 28

so that in particular

8, < c8/log(1/8),

	

(1)

where c is an absolute constant . There are thus at least 8n integers in al
of the form 2ad, d odd and d < 8,n . Since there are n(1 + 0(1))(28) such
integers altogether, we conclude that .V contains at least i + 0(1) of such
integers . Therefore there exists in V a set of the form

2ald, 2a2d, . . ., 2akd,

	

d < S,n,

	

(2)

1 It is sufficient, for our present purposes, that k should be sufficiently numerous,
say k > ct, where c > 0 is an absolute constant .



are even integers . Then, in view of (3) and (4), the method of [3, in partic-
ular, Theorem 5 corollary] gives us at least t integers cl , . . ., ct , where
t i log log(log(n/a)/log 2) i log log log (1/8 1 ), so that c i + c; are among
(5) or (6) according as (5) or (6) contains > k/2 even integers . In the first
case we choose b i = 2ci and µ = d ; and in the second bi = 2ci, µ = 2d.
Clearly bl , . . ., b t and µ are such that bib;µ all appear in (2) and hence in V .
It is also clear from (1) that log log log(1/8 1) tends to 0o as 8 --> 0 .

Proof of Theorem 4. We shall choose our sequence V from the set Y
where consists of all integers of the form x2y in [0, n], where y is
square free and x = 1, 2, . . ., l. Clearly

a

I

	

, ( 2
+ o(l))

xY x2=1

and by choosing I = I(8) we have

= (1 - 8,)n,

	

(7)
where

81 < 8/2

	

(8)

For a given rational k/m, (k, m) = 1, and a given sequence b l < . . . < b t ,
where

t = 3(log n)i,

	

(9)

we shall estimate the number of sequences V, I V I = (1 - 8)n, con-
taining bib,(k/m) (1 < i < j < t) . Let pl , . . ., p; be the distinct primes
dividing m . Clearly

j < log n .

Let pii be the largest power of p i dividing m. For each i = 1, . . ., j, p i must
divide all the b's, with at most one exception, to the same power, pii,
say. Let

Q = pi . . . pu'.
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where
k > (2 + 0(1)) (log(nla)Jlog 2) (3)

and
al < . . . < ak < log(n/a)/log 2. (4)

Now at least k/2 integers of one of the sequences

(5 )al < . . . < ak
al - 1 < . . . < ak - 1 (6)



420

	

CHOI AND ERDŐS

Then, provided we exclude < log n of the b's, each b is divisible by Q and
not divisible by p2i+1 for any i = 1, . . .,j. Thus the number of these b's
with no prime factor > 1 other than p, , . . ., p; is at most (log n) 1 , since
there are < (log n)t integers in [l, n] whose prime factors are all < l.
Therefore in view of (9), there exist

integers among the b's, say

so that each is divisible by at least one prime > 1 other than p, , . . ., p; .
Since b ib;(klm) (1 < i < j < t1) belong to and hence to Y, each
p > I other than p, , . . ., p; can divide at most one of the integers (11) .
This enables us to conclude that b ib; (1 < i <j < t1) and hence also
b ib;(k/m), are all distinct . Thus at least l t,(t, - 1) numbers of are
fixed by the sequence b, , . . ., b t and the rational k/m . The number of
sequences ) containing all bt b;(klm) is then at most

on recalling (7) . The number of k/ m is at most n3 and the number of
sequences b, i . . ., b t is (; ) . Without any restriction there are

choices for -d. We need therefore only show

We have

t, >- t/2

	

(10)

E1 =
((1 - 8 1)n - 2t,(tl -

1) )(1 - 8)n - 2t 1 (t, - 1)

E2-«(1-8)n)

E2 >n2 (t)E, .

	

(12)

E,/EL > e =tl 2 log((i-sl)/(1-s z)) > e at 2log((1-sl) (1-s))

in view of (10), whereas

n2 ( n ) < n tn 3 < etlogn+3logn ,
t .

Since r > (log n)t, gt2 log((1 - 81)/(1 - 8)) is much larger than
t log n =, 3 log n . This proves (12) and completes the proof of the theorem .



Proof of Theorem 5 . Let g be a primitive root mod p so that for each
t

We obtain a set of t exponents
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ai - ga ` (mod p),

	

az < P - 1 .

a l , . . ., at .

	

( 13)

Now the method of [3, Theorem 5 corollary] gives s i log log p integers

9 1 , . . ., Ns

so that 1'i + 9; all appear in (13). Let b i be defined by

bi =- go ' (mod p) .

Then b ib; are all in the a's mod p as asserted .
The proofs of Theorems 6 and 7 are effected by similar straightforward

adaptíon of Theorems 7 and 9 of [3] .
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