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1. Introduction
Let da(x) be a non-negative measure on ( — o0, c0) for which all moments

pn(dar) = r emda(z) (m=0,1,...)

exist and are all finite. We consider the orthonormal polynomials

(1.1) pa(de, @) = yn(da)kf__il [ — Zyn(dr)]

which satisfy y,(dx) > 0 and [ p,(da)p,,(dx) dx(z) = 8,,,, Where §,,, is the
Kronecker symbol. The zeros a;,(d«) of p,(da,z) are real and simple.
We assume that they are ordered increasingly. If no misunderstanding
can avise, we write xy, for o, (du) (resp. x,,(w), see below). Let us denote
by N,(dx,t) the number of integers k for which

xln(d“) - xnn(da) 2 1"‘[ﬁ:l:'m(dg‘) _xrm(d‘:"'}]
holds. The distribution function of the zeros is defined, when it exists, as

(1.2) B(t) = lim nIN,(d,t) (0<t< 1)

Ti—o0

We are here concerned with the case when the distribution function
is given by

(1.8) Buft) = %-—}rarcsm(m-l).

In this case the points 6, = arcsinz,, are equidistributed in Weyl’s
sense.

A non-negative measure do for which the array z,,(d«) has the distribu-
tion function B,(¢) will be called an arc-sine measure. If da(z) = w(x)dx
is absolutely continuous, we apply, replacing da by w, the notations
Pa(w,2), v, (), 2p,(w) and call a non-negative w(x) an arc-sine weight
if da(z) = w(z)dx is an arc-sine measure. A fairly complete treatise of
arc-sine weights with compact support is given in {9] by Ullman.

The reséricted support of a weight w(z) is defined as the set {z: w(zx) > 0}.
The support of w(z) can be characterized as the set of points ¢ for which
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every interval containing £ contains a subset with positive measure of
the restricted support of w. It was proved by Erdés and Turdn ([3])
that a w(x) having support [ -1, 1] is arc-sine provided that its restricted
support has Lebesgue measure equal to 2. This, as well as another
criterion for arc-sine weights, established by Geronimus ([7]), is treated
also in [9].

Arc-sine weights with non-compact support were introduced by Erdés
in [2].

The case when the support of the measure do is contained in [—1,1]
and the two points — 1,1 belong to this support is of particular interest.
We have then x,,(dx) - 1, 2,,(dx) - — 1 and (1.2) can be rewritten as

. 1
(1.4) limn?t ¥ 1=-arccosT (—-1<T<1).
B kiin(da)=T T

For the measures do, resp. weights w, whose support is contained in
[-1,1], we apply the term arc-sine on [—1,1] if the array {z,,(d«)},
resp. {x;,(w)}, satisfies (1.4).

Our results are as follows.

THEOREM 1.1. (a) T'he condition
(1.5) E nhl\/ (?’n—l(da} )[‘t‘lﬂ(da) —Zpu(da)] < 4

tmplies that da is arc-sine.
(b) It follows from (1.5) that
(1.6) lim 7 1(y,,_(dx))[#yn(d) — 20 (do)] = 4.

noT
See also Theorem 4.2 for a more general result.

We show that the arc-sine weights with infinite support studied by the
first of us in [2] satisfy (1.6), but the weights w,(z) = exp{—|2|*}, « > 0,
are not arc-sine. It is further proved by a counter-example that even
the stronger sufficient condition (1.6) is not necessary in general. The case
is different if w(x) has compact support.

TueorREM 1.2. A weight w, the support of which is contained in [—1,1],
is arc-sine on [ —1,1] if and only if

(1.7) Bm " (ya(w)) < 2.

‘We note that by Ullman’s Lemma 1.2 in [9], the support of w is
precisely [—1,1]. We do not make use of this observation. Also,
Theorem 1.2 was conjectured by Ullman in [9], part 7. He proved the
weaker statement that if the restricted support of w is a determining set
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(see Definition 1.1) then condition (1.7) is sufficient ([9], Theorem 1.6(b)).
The sufficiency part of Theorem 1.2 can be generalized to measures d«
which are not necessarily absolutely continuous (see Theorem 3.1 below).

DeFmvrrion 1.1 (Ullman, [9], Definition 1.4). We say that A = [—1,1)
is a determining set if all weights w(x), the restricted support of which
contain A4, are arc-sine on [—1,1].

Let us denote by C(4) the capacity (that is, inner logarithmic capacity)
of the set 4 and by | 4 | its outer (linear) Lebesgue measure. Note that the
capacity of [ —1,1]is 1.

Derinrrion 1.2, We say that 4 = [~—1,1] has minimal capacity %

if for every ¢ > 0 there exists §(¢) > 0 such that for every B having
Lebesgue measure less than ¢ we have C(4\ B) > {1 —e.

THEOREM 1.3a. A measurable subset 4 of [—1,1] is a determining set if
and only if it has minimal capacity 3.

Theorem 1.3a was stated as a conjecture by Erdés in several lectures held
in the last thirty years; see [2].

TreoreM 1.3b. A measurable subset 4 of [—1,1] is a determining set if
and only if it is @ ‘good set’ (in the sense of Erdds, (2]).

2. Sufficiency of condition (1.5)

We denote by T,(X) = cos(narccosz) the nth Chebychev polynomial
of the first kind. The zeros of T,(x) are ¢, = cos[(2k —1)/2n]a.

Levma 2.1. We have for every da,

(2.1) 11_@, a-l\l(?’n—l (d“))[xln(da) - nn(d&)] 2 4.
Proof. Let
(2.2) Tpn, = $( @y +2p0) + %7kn{$1n_xnn):

then |, | < 1 (k=1,2,...,n).

By applying the Lagrange interpolation formula with nodes z,,,
we have

(23)  Toal2@1n = 2p,) Mz — @y, +2,,))] = élfm(z)Tn_lffm)-
By [4], formula ITI (6.3),

. Yn—a(dx) Pralde, 2y,)
(2-4) Ikn(z) “ ’}'n(dﬂﬂ) )‘:‘m Z—xm

Polda, z).
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The A;, are the Christoffel numbers with respect to da. Comparing
highest coefficients in (2.3) and applying (2.4), we obtain

n
(2.5) 22ﬂ_a(xm = xnn}_n-‘-l = 7%—1(d“);§1)‘knpn—-1(das xkn,)T 1{Then)-

Since |r,,| <1 implies [T, 4(7;,})| < 1, we have by the quadrature
formula

(2.6) [

22n—8 2
(T1n—Tun )n_lyn—l(dﬂ‘)]
T 2
< [ kzl)‘kn | Pn-—l(da, Tyen) |]

L n
< X Ain 2 Aen Por(dar, )
k=1 k=1

- J.m d“{m)fw Pn-?(de, 2) dafz) = po(de) < 0.
(2.1) is a consequence of (2.6).

Let 2 = }(Zy0+Zpn) + H@1a—Zna)l. By (2.3) and (2.4),

| Pal(da, 2) | .
iy "y, ,(d Ain | Pp_1(do, 2y, ) | max ———.
I n—l(C)l '}’n(da) Y a 1( a)k§1 kﬂlP 1( o kn)! kxlz_xknl
Let us observe that z—z,, = $(z,, — 2., )({ — 71,), the last factor does not
exceed 2(xy, —¥n,) TA()]™, where A({) denotes the euclidean distance
of { from the interval [—1,1]. From the second half of (2.6), we obtain

| Pa(des, 2) | 2 [pylde)]t
(2‘7} I Tﬂ—l(é’) I = yﬂ(da) yﬂ.—l(da) xln _ an. A(E} 4

In (2.7) we take logarithms on both sides and divide by n. After
rearranging terms, we get

1 Yalde) 12 1
“lop YmiY 1
N - e P

2 n 1
= ].Ogm——_—x——'l“— Elogrgt——

1n nn

1 2 1 1 an—2
< =log————+"lo _A{da)+=log————
7 OB gy, T OB Yamalde) + o log oy

[pro(da) ]t
A 7

n—2 1
———n—log2+alog
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—lj < (1 “%)log{i(wm—xm) " (Yna(da))}

Foe=l |;_TI‘:
gn-s  lo(da)
ta 10gi TR 1"( AD) )

Levma 2.2. We have, for every da and every { ¢ [—1,1],

) 1 1 dx
@9 EmvBlos <2 [ e g

+log[g [N er (00}~ )]

Proof.
an-2 aq 71 1
1 log—
Ly (TR SOy

is a Riemann sum of the 1n1:egra1
1 dx
lo df = 1
I g|c —cos] BTl Y=
Applying this fact, we obtain (2.9) from (2.8).
Proof of Theorem 1.1. (a) Let P(x) =cI[(x—{;) be an arbitrary

polynomial whose zeros are situated outside [—1,1]. We insert { = {; in
(2.9) and add up:

dx
(2.10) ;En gllc'gmv(f,m f_l g[?(w JII—a?)

Now let f(x) be a bounded upper semicontinuous function in [—1,1].
Then there exists a sequence of polynomials {#} which satisfy, for
ze[—1,1],

(2.11) B.lz) >8> ... >8(2)>e>0
and

. 1
(2.12) 3:1:‘:3 log% = f(z).

By (2.10), we have
1 =n
hm E f (Tan) < 11111 % log Pl

dx

11 1
“;f_llog%wl——xz) (V=1,2,...).



526 P. ERDGS AND G. FREUD

Let v — oo, then it follows by dominated convergence from (2.11) and
(2.12) that

_—1n 11 da
(2.13) i}gakglf(fkn) < ;f_lf(“’):l‘(ﬁ&’ﬂ'

Let T'€ [—1,1]. Inserting in (2.17) for f the characteristic function of
the interval [T, 1] (resp. [—1,7]) we find that the sums

Eﬁ.}’=% Z 1 and Y& = 1 31

'n E:tpn<T
satisfy
1 dx T dx
2.14) TmX® < f and Fm 3@ < f _
) lmE 7 J(1—2%) :::22 1 J(1—2?)
Clearly 2P +X® > 1, thus
(2.15) lim £ > 1-Tim 3
n—on n=0
> 1—1 . ;d_x_ —lr —-@x—- la,rccosT
e Tl J(l—xz) T wlyp \f( —:t-‘a) ’

By (2.14) and (2.15),

1 1
(2.16) lim— ¥ 1=Z-arccosT;
n-0 M brgeT 7
hence du is arc-sine on [—1,1].
Assertion (b) follows from Lemma 2.1.

3. Conditions for arc-sine weights on [—1, 1]

By 7 we denote closed subintervals of [—-1,1] and by |f[l, the
supremum norm of f(x) on J . Let §,, be the set of all polynomials with
degree not exceeding n, P¥ = P, the set of monic polynomials of degree
n, that is, &, € P% if and only if Z (r)—a"e B, ;. We are going to
investigate the monic orthogonal polynomials

(3.1) wp(de, @) = [y,(do) 7 py(da, ).

In this as well as in the next section we consider only distributions do
(resp. weights w(x)) the support of which is contained in [—1,1].
The following two known inequalities will be applied.

CHEBYCHEV-BERNSTEIN INEQUALITY (Bernstein, [1]). We have, for
every Z, € B, and every z ¢ [—1,1],

(3.2) |Zo(@)] < | @) (12 lleae
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Remez inEQUALiTY (Remez, [8]; Freud, [4]), Lemma I11.7.3). We have,
for every 2, € B,

4
3.9 12, s < a3 -1):
where | M | is the Lebesgue measure of the sef
(3.4) M= {2:|P@)| < }n[-1,1].

Lemma 3.1, If the array {rj, € [- 1,1,k =1,2,...,n;n=1,2,...} has
arc-sine distribution, that is, satisfies (2.16), then

wn(z) = (z - Tl'n)(z - T2n)' Lt (z = Tﬂ‘n)
salisfies

(3.5) lim (e ) = }
for every 7 = [—1,1].
Proof. By (2.16), the equation
. A3 _1 fz)dw
£_?;ﬂ kglf(rkn) @ 1 J(l — x?)

is valid if f is the characteristic function of an interval. Consequently
it holds for every f continuous in [—1,1]. By putting f(f) = log|z—1]|,
which is continuous for every z ¢ [—1, 1], we get

08 lim(laye)) = 1 [ loglz—al 57
= lim (@ T (2)]) = -+ - 1)

= ¢(z), by definition.

The second part we obtained from the fact that the roots of 7,(z) are
arc-sine-distributed. The curve C;: ¢(z) = 148 surrounds [—1,1] for
every 8 > 0; from the maximum principle as applied to w,(z) inside C;
and by letting 8 tend to zero, we obtain

(3.7) E”\j( len l-1,) < 3-

Now let 7 = [a,b] = [—1,1]. Applying (3.2) to

P (2) = w,(3(@a+d)+1(b—a))
and z = i, we get

b (@-+b) +ie) = lim (| Z,(ie)|) < im "(| Ty )| lim ™1 2, 10

= ?(ie)%“\/( lewnlls)-
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Thus, since ¢ is continuous and ¢({) =1 for { € [—1,1],

. . p(}a+b)+ie)
(38) lim (o ) > }lim FEETAETE — 3.

Now (3.4) follows from (3.7), from the relation ||w, s < || @,/ and
from (3.8). '

LemMa 3.2. For every p, € B, every real interval T, and every 0 < e < 1,
there exists a measurable subset 7, of F of measure not less than ()| T |,
where (e} = L& — Jret, such that, for every x € T, we have
(3.9) 12(2)| > (1=2)"]| Pyl 5

Proof. By a linear transformation, we can take J =[—1,1], |7 | = 2.
The Remez inequality, as applied to Z,(z) = (1—¢&)™"p,(2)/ | pnlls» gives
(3.10) (I—&)™ < Tol2ay) < Ry +(@a 1)),
where @y, = (4/| M|} —1 and M is defined by (3.4).

A direct calculation shows that
(3.11) E+J(2—-1) < (1—g)t (L €< 143

By (3.10) and (3.11), we have (4/|M|)—1 = zy; > 1+ {&?; hence

2| M| > Fe(1+1e?)7t > §(eP—1e) = Y(e) [T,
and on the set [—1,1]\ M, of measure 2—|M|> J(e)|T |, we have
|Z(@)| > 1, that is, |p,(2)| > (1—&)"|[p, 5

Proof of Theorem 1.2. The condition suppw < [—1,1] implies
Typ(w) — Tpn(w) < 2, 50 (1.8) implies (1.5). By (1.8) and (2.1), we have
2y, (w)— 2, (w) > 2, that is, «,,(w) - 1 and =z, ,(w) - — 1. This, together
with Theorem 1.1, shows that w is arc-sine on [—1,1].

We turn to the proof that if w is arc-sine on [ —1, 1] then (1.7) holds.

We choose a sufficiently small A for which the set

Myw) = (£ € [~ 1,1]: wlz) > A}
has positive measure. Then, for every 0 < 8 < 1, there exists an interval
Ts < [—1,1] for which | Z;n M, (w)| > (1-8)|.7;]. We choose any & such
that 0 < ¢ < 1 and choose .7; with 6 < 4ii(¢). We assume that w is arc-sine
on [—1,1]. Then by Lemma 3.1, we have lim (|| w,(w,)|5,) = %, that
is, for sufficiently large =, i
"wu(w: z) “3“3 2 (1—¢g)2™.

By Lemma 3.2, 7; has a subset _#; of measure greater than i(¢)| .7} |, where
(3.12) |, (w0, 7)) > (1 —e)2m2n,
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By construction, Z;nM,(w) has a common subset M, of measure
|M, | > Fple), so (3.12) is valid for € M,. For the points
z e M, = My(w)
we have also w(z) > A. From these and (3.1) we infer that, for sufficiently
large =,
1 _ 1 2o 2 x
sy = |t a @) de > [ o 2 de
= M, | AL —g)tn2-2n
=

h(e)A(1 —g)in2-2m,
that is,
Em " (ya(w)) < 2(1—¢)2.

Letting £ tend to zero, we see that (1.7) holds.

TaEOREM 3.1. Let w be arc-sine on [—1, 1]; further let suppda = [—1,1]
and let o' (z) > Kw(x) hold for a constant K > 0 and almost every x € [—1,1];
then also da is arc-sine on [—1,1].

Proof. Since p,(w) and p,(Kw) have the same zeros, we can take K = 1.
We have

1 1
inf | @*x)w(x)dx

B T Rl

< [ {raldapofde )i de

b [ et -
¥n2(da) J Yn2(de)

Since w is arc-sine on [—1,1],

(3.14) i (yada) < 2.

Since suppde < [—1,1], we have —1 < x,,(dx) < @y,(de) < 1, so that
by Lemma 2.1 and (3.14) &,,,(da) - 1, ,,,(da) = — 1. Thus the conditions
of Theorem 1.1 are satisfied and consequently d« is arc-sine on [—1,1].

4. Investigation of certain weights with infinite support

We denote by ¢, ¢,, ... positive numbers independent of #» but possibly
dependent on the choice of the weight.

In [5], Freud introduced the weights

wo(x) = exp{—2Q(|z|)} (-0 <z < ),
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where Q) (0 € * < o) is a positive increasing differentiable function
and x°Q)’(x) (x > 0) is increasing for some p < 1. By our condition,

(4.1) Q@) =00+ [[Q ) < Q)+ @) (e
= Q(0)+ (1~ p)2Q' (),

so the moments p, (wy) are finite because
Q) > Q1)+ (1~ p) Q' (1)~

We denote by ¢, (s = 0) the solution of the equation ¢,Q'(g,) = s.
It is proved in [5] that

(4.2) €19n < Zya(Wg) < Cog,,-
Since wy, is even, we have
(4-3) xm(wq) = _xln(wa)-

TaroreM 4.1. If w,, is arc-sine then (1.5) and (1.6) are satisfied.

Note that Theorem 4.1 and Theorem 1.5 together show that (1.5) as
well as (1.6) are necessary and sufficient conditions for wg to be arc-sine.

P‘J"OOf. By a.ssumption ([xln(we)]%[yn(wQ}]‘-lpn(wQ: xl-nw)) = (wn(wQ: Qﬂ))
is a sequence of monic polynomials which is arc-sine on [—1,1]. Let
T () =[—n7m]. By Lemma 3.1, we have, for every 0 < <1 and
every € > 0,

(4.4) | wnlwo) gy = 2M(1—e)® (1 > cyle)).
By Lemma 3.2, 7 () has a measurable subset Z(5) of measure at least
2mi(e), s0
(4.5) lwp(wg, )| = 271 —e)*™ (z € T (), n = cyle)).
If t e 7 (n) € T (n), we have by (4.2) and (4.3), provided that e, < 1,
(4.6) —logwy(tzy,) < 2Q(n2y1,) < 2Q(0) + (1= p) T2y, @' (92y,,)
< 2Q(0) + (1— p)~ e, @ (1csg.,)
< 2Q(0)+ (1 — p)Tegnlean) Q' (g,) = 2Q(0) +cyn#n.
By the transformation z = 2,,t,

) 1= [ pa2(wg.ahog(@)ds = [y 10g) 1y, o)

X J‘ w,Hwo, thwg(y,t) dt
Teln)

> J,(n)272(1 - &) exp{ — 2Q(0) — o' ~Pn}
> coi(e)272(1 — e} exp{ — ¢y’ ~#n},
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the second half by (4.5) and (4.6). Since (4.7) must hold for arbitrary
small 5 and ¢, we infer that

(4.8) E{[ﬂa,n—x(%)]”’" " (yn-1(wo))} < 2.

The zeros of p,(wg) and p, ;(wy) separate each other, so

Tan(Wo) < @1y 1(Wo) < Ty,(we).

Since wg is arc-sine by assumption, we have ,,(wg)/2;,(wg) = 1;
consequently x, ,_;(wg)/®;,(wg) = 1. Combining this with (4.8) and (4.3),
we see that (1.5) is valid. By Theorem 1.1, this implies that (1.8) also
is satisfied.

ReMARK. Erdds investigatedf in [2] the weights wy(z) = exp{— 2R(x)}
where the (not necessarily differentiable) function R(x) satisfies, for every
>0,

(4.9) R(y) > 2R(z) (ly| > (L+e)|w| > cg(e)).

It is proved in [2] that wpy is arc-sine and the proof implies that (1.6) is
valid in this case.

TreorEM 4.2. If, for an increasing subsequence (n;) of the natural
numbers, we have

(4.10) Tm {1 (y, -1 (de) ) (@15 (d ) — 2, (dx)) < 4
joo
then, putling T, = (X1, +2pp) + 3(T1 — Ty )Tins we have

. 1
(4.11) limn;,7t ¥ 1=—arccos?.
Joo k:ren=T m™

Proof. If m; = j, this is just Theorem 1.1. The proof of Theorem 4.2
follows by replacing n by =, in the proof of Theorem 1.1. Details are left
to the reader.

TraroreM 4.3. If Q*(z) satisfies, besides the conditions indicated for Q(x),
the inequality

(4.12) Q*(22) < ¢,@Q¥(2)
then
(4.13) }:Tn; Ly (Woe) "W (yn—1(0gs)) > 2.

t We have made an obvious change of notation.
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Proof. Let (n;) be an increasing subsequence of the natural numbers
for which

(4.14) iﬂwm(ww)"”hle('}"n,—ﬂwq-) = f_ﬁxm(wm) P (Ya1(wgs))

If (4.11) is not satisfied for the sequence (n;) then (4.13) is a consequence
of Theorem 4.2. Thus we can assume in what follows that (4.11) holds.
We consider the monic polynomials of degree n;—1

(4.15) "-’:;-1(37) = 2_"’m'l'g(wl,m)n’_m'lzan,—mq(33/ xl,n,)-
Here y,, = @,,(wq.). Then by the minimum property (3.13),
(4.16)

o0

Vg1 2(Wg) < J_m[w:,__l{x)]huw(x)dm

= Q-tmptimid(, ng—2m—2 f el L Y/ VIR CoT: 2
—0

We apply the Gauss—Jacobi quadrature formula to the integral (4.16)
and take |7 (x)| < 1 for || < 1 into consideration; then

(4.17) x?mT,’;j_m_l (/@1 )0 gu(x) dx

ny

= kE:l)‘kn,('“'Q*)xing—m-lz(xkn/ "rhy)
Ty

S kEIAkW(wQ‘)wiT?M

< (/4" Eden00) 4y B Mialoge)
>y

By the quadrature formula,

(4.18) gﬁmw(w@} = poltge)-

It follows from (4.11) that, for sufficiently great n;, there exist roots
2y, of p, (we.) situated in [2y,/5,2,,,/4]. Thus by the Markov—Stieltjes
inequality ([4], §1.5) and by symmetry,

(419) B Nawel= T Malwed <[ wetd
:rk_.,,<—a:1,,.,.fé m‘..j)au_.gs .'L‘:ﬂ.m

Since xQ)’(x) is increasing, we have

@@ > [ Q0 > Q) ay [ et > 6aQ* @)
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Denoting by ¢* the solution of the equation ¢*@’(¢¥) = s, we obtain, by
{4.2) and (4.12),

(4.20) { Q*(3e1n) > @*(Fougy) = $o10qn,

@F(75019%) > co@h@*(qn) = con.
By (4.19) and (4.20),
Akn,- < 2.[:1 e—th{z}dx

|zEny|>T1n, /2 3
==
< 2exp{—@*(z,,,,/5} L e~ Q@) da < gppe,

By formulae (4.17)-(4.20),
e T et

hence, by (4.16),
(4.21)  ypa MW )@y ) 22222 < 4 uo(wh)27™ + 0qg2me o).

Up to now we have not disposed of the integer m. Let us put
m = [cgn;/21log 2], that is, 2™ ~ exp{icyn;}. Inserting this (4.21), we see
that the limit (4.14) is greater than 2et» > 2.

CoroLLARY. Let wg(x) = exp{~2Q(|x|)}, where Q(x) is differentiable,
2°Q'(x) (x > 0) is increasing for some p < 1, and 0 < @'(22z) < ¢,Q'(x) for
z > 0; then wy is not arc-sine.

This corollary is a consequence of Theorem 4.1 and Theorem 4.3 since
Tonlwg) = —%1,(wg). We observe that our corollary implies that
w,(x) = exp(—|x|*) is not arc-sine for any « > 0. This was stated without
proof by Erdés in [2].

As a last item of our paper, we show that the sufficient condition (4.10)
18 not necessary for (4.11).

Lemma 4.1. If the weight W(x) is even and decreasing for x > 0, we have,
for every £ > 0 and 5 > 0,

(4.22)  Hewn™ W (m]VE2D) < @y, (W)
< Etey(2/6) 1 L "2 1T () da.
Lemma 4.1 is proved in [5].
Letng=0,m, =1, ...,y =€ (k=1,2,...) and

(4.23) WE)=em (m_;<|z|<n;k=12..).
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Then

(4.24) "W (@) de < 26 (k3 o).

nE
Inserting £ =y = n;, in (4.22), we get
(4.25) Caa € Tyn (W) € Mg+ Oy

We put v=mny, vy=mn_y=Ilogy, p= [v/logr]+1, and 2, = 2,,( w).
The polynomial z#7,_,(x/x,) has leading coefficient 2"—#~1z,~*#; thus, by
the extremum property of (W),

(4.26) [ e ]2 < J.m 2T, (x/2,)*W(z)de

‘yv( W):E,,v"d” —C

<2 r w2 da: +2e* f xv:cﬂf* dr
0

r1
+ 2%z w2 waz"W(x) dx
Ly

< 2‘,12#—4—1 + 28—»mv2ﬁ+l + 23»;1;”2,u+l exp{ — / 2]_

£ 6%, W Tle P exp G“v_l_%__:;g_v}.
In consequence of (4.26) and a, =z, = —z,,, the left-hand side of

(4.10) is greater than 4e > 4, that is, (4.10) is not valid for the choice
of da = Wdx. In spite of that, we show that W is arc-sine.

Let us suppose the contrary. Then there exists 8§ > 0 such that the
maximum modulus of the monic polynomial of degree » in ¢,
v, U W)z, p,(W,z,t) (¢ € [—1,1]), exceeds 27(1+8)* and consequently,
by Lemma 3.2,

(4.27) 1BW; )| =y (Wa 2148y (2 € M),

where M, < [—x,,2,] and | M,| > 2z(3). Since z, < v+0(1), (4.27) is
valid for a subset M* of [ —v,»] satisfying | M* | > x,(8) if » is sufficiently
great. We infer that

w28  1=[ W@ W@de> [ pAW0W(e)de

> 2(B)y, (W), P272(1 +8)e™;

but (4.28) contradicts (4.26), which means that our assumption that W is
not arc-sine was false. Thus W furnishes the example indicated.
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5. On determining sets
The lower capacity #(A4) of a set 4 < [—1, 1] is defined by
(5.1) P(A)= inf C(B).
B= A4
|A\B=0
Lemma 5.1 (Ullman). A measurable subset A of [—1,1] is a determining
set if and only of

(5.2) L(A)=1}.

Proof. (5.2) is necessary by [9], Theorem 1.2, and [9], Lemma 1.2. In
order to prove that (5.2) is sufficient, it is enough to show that the
following additional hypothesis, assumed in [9], Theorem 1.2, is satisfied:
for every interval 4 < [—1,1] we have |4AnJ | > 0. In fact, supposing
the contrary, we would have } = Z(4) < C([—1,1]\9 ) < } (the last
part: for example, [9], Lemma 5.4). Thus |AnJ | > 0.

In order to prove Theorem 1.3, we prove a more general result
concerning stability of capacities.t

Let v be a o-additive Borel measure on the plane and A a v-measurable
point set of the plane; we denote the outer measure of B by v(B). We
define the lower v-capacity C,(4) of A as follows: for £ > 0, let ¢ (¢)
denote the set of compact subsets K of 4 satisfying v(4\ K) < . Let

(5.3) Cv,4)= inf C(K);
KeX(e)

clearly ' (v, 4) is an increasing function of &. We define
(5.4) C(v, A) = im O (v, 4).
-0
Lemma 4.2. For every v-measurable plane set A, there exists a subset
AY < A for which v(A\ A4”) = 0 and
(5.5) C(4”) = O(v, 4).

Proof. Let e, =2"(n=12..). By our definitions, there exist
compact sets K < 4 (n = 1,2, ...) such that

(5.6) ”(A\Kn} S g,
and
(5.7) C,r,A4)<CK,) <C, (v,4)+e,.

We apply the same notations as in Tsuji’s book [11] and let y, be the
equilibrium distribution on K, and %(u,,z) the conductor potential of

t A detailed proof of the following Lemma 5.2 was published by Freud in [6].
Here we repeat the proof briefly.



536 P. ERDOS AND G. FREUD

K,. By [11], §11.2, there exists a sequence (#;) such that 1, converges to
a Borel measure u. 'We define

4 =lmK, = U NK,<s4.
J-200 =l fe=iti

It follows that

HANL) < ZHANK,) < S 6, <2,

that is v(A\ 4%) = 0, as required.

We say that a property is satisfied almost everywhere (in short, a.e.)
if the exceptional set is a Borel set of zero capacity. By the definition
of Py WE have, for every z,

and
(5.9) U(pnpz) = logﬁ ae. z e K,.

By the lower-envelope principle (de la Vallée-Poussin, [10], I1.69, or
[9], Lemma 5.3) we infer from (5.10) (5.7), (4.8), and (5.9) that

1
(5.10) #(p,z) = ]Jm@/(pm,z) < hmlogo( A} Og()(v ) a.e. z

and that the sign of equality holds in (5.10) a.e. z € 4*. In consequence
of these properties, p is the equilibrium distribution of a set covering 4*
and C(4*) < O(v, 4).

Since 4” < 4 and »(4\ 4%), we have C (v, 4) < C(4) for every ¢ > 0;
when & - 0, we get C(4*) = C(v, 4).

Proof of Theorem 1.3. Let A denote the linear Lebesgue measure on
[—-1,1]. By Lemma 5.2 we have, for every measurable 4 < [—-1,1],
L(4) < 04 = C(A, A). By [9] (see Lemma 3.3), there exists a subset
Ay < A satisfying C(4,) = £(4) and |4\ 44| = 0. By (4.3)

0,2, 4) < C(4,) = Z£(4)

for every ¢ > 0. This implies (A, 4) < F(4), so L(4) = C(A, 4). For a
‘good set’ 4, we have, by Definition 1.2, C(A, 4) = }, that is, £(4) = }.
Now Theorem 1.3 follows from Lemma 5.1.
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