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ON ABUNDANT-LIKE NUMBERS

BY
PAUL ERDOS

Problem 188, [3], stated: Apart from finitely many primes p show that if », is
the smallest abundant number for which p is the smallest prime divisor of 7, then
n, is not squarefree.

Let 2=p,<p,<- - - be the sequence of consecutive primes. Denote by ny the
smallest integer for which p, is the smallest prime divisor of n? and o(n\”) >enl”
where ¢ (n) denotes the sum of divisors of #. Van Lint’s proof, [3], gives without any
essential change that there are only a finite number of squarefree integers which are
n{*"s for some ¢>2. In fact perhaps 6 is the only such integer. This could no doubt
be decided without too much difficulty with a little computation.

Note that ni)=945=3%- 5 - 7. I will prove that n, is cubefree for all k>k,, the
exceptional cases could easily be enumerated. The cases 1 <c<2 causes unexpected
difficulties which I have not been able to clear up completely. I will use the methods
developed in the paper of Ramunujan on highly composite numbers [1]. A well
known result on primes states that for every s, [2],

(6] > i_ log log x+B+O( . )
p<ep (log x)°
(1) implies
() 2 1o log(1+a)+o( 1 )
e<p<z’p (log x)’
It would be interesting to decide whether
: 1
3 2 e — log(l+a)
z<p<ewx D

changes sign infinitely often. I do not know if this question has been investigated.

THEOREM 1. n}f’ is cubefree for all k>k,.
Clearly (see [1])

14
(2) g

4) ky = ! DPr+is ty > %y >

It is easy to see that

1 1 o n(.c)) 15 1 1 1
exp(Z )> ((’;, ZCXP(E_—ET )
=1 Pryi—1 n ; i ;
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(c)

This, together with the definition of »;”, and a simple computation imply

Z-—— = log c+0( )
=1 Pry s

and hence by (2) we have

() lim 22t — 1.

k— o p;

Let ¢=2. We show that if ¢>0 is small enough then for every u such that p,,,, <
(1+¢)p,. We have

(6) O = 2.
If (6) would be false put

_ (2 —1 -1 (2)
@) N = 0" DruPrrus1PrrutolPeriPerio1 < Wy

by (5)and py,,2<2p;. Further for k> kg, pry,2<(142€)p; by the prime number
theorem. Thus for sufficiently small ¢ we have by a simple computation

N (2)
® e

(7) and (8) contradict the definition of #\” and thus (6) is proved.
Now we prove Theorem 1. Let p,.,, be the greatest prime not exceeding (1 +€)p;.
By the prime number theorem

Prtu > (1+£) Pr

Assume ¢«;,>3. Put Ny=n® pk+,+1pk pk +ue By (5), N1<n(2) and by a simple
computation o(N;)/N;> o(n®)/n'?, which again contradicts the definition of n?,

This proves Theorem 1.

(2) U 2 1
THEOREM 2. 1, =] [i_o Prvil Licusa Prrs where

© im 22 =g, fim 2 = 0,
k=o Dy k=x Dp

The first equation of (9) is (5), the proof of the second is similar to the proof of
Theorem 1 and we leave it to the reader.

Henceforth we assume 1< ¢<2. It seems likely that for every c there are infinitely
many values of k for which n{’ is squarefree and also there are infinitely many
values of k for which #” is not squarefree. I can not prove this. Denote by 4
the set of those values ¢ for which »\” is infinitely often not squarefree and B
denotes the set of those ¢’s for which n(°’ is infinitely often squarefree.

THEOREM 3. A, B and A N B are everywhere dense in (1, 2).
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We only give the proof for the set 4, for the other two sets the proof is similar.
Let 1<u;<v,<2. It suffices to show that there is a ¢ in 4 with u; <c<v;. Let &,
be sufficiently large and let /; be the smallest integer for which

i 1 11 i1
(10) II (1+ ) = U(H pk1+i) I Prss >t
i=0 DPrrti i=0 =0
Put x, =], P +i- We show that for every « satisfying
o(x a(pyx
(11) ul<.__(_1)<o!'<_(‘m°—1)<v1
X D11
we have
(12) (@)

Npy = Pri¥1-

To prove (12) write

J
a) % “ s
Ny = H Pri+is oy > O > > ;.
i=1

We show ag=2, a;=1, j=/; which implies (12). Assume first «; >2. For suffi-
ciently large &k, we have from (5)

o(T) _ om?)

(a)
T = 1 Pyr 1P Ponts < My and @
T nkx

which contradicts the definition of n{*. Thus «,=1, j<I; follows from (5) and (11)
and «,<3 follows like «;=1. Thus by (10) j=/ and (12) is proved. Thus for the
interval (11) # is not squarefree. Now put

G(i} G(pklxl)
Uy = , D= «
X1 Pri*1

Let p;, be sufficiently large and repeat the same argument for (u,, v;) which we
just need for (u;,v;). We then obtam si=T ik Pr+i SO that for every « in
1y < 0(%Xp) [ X2 << O (P, X2) [P, X2 < V2 nk —pk x, and is thus not squarefree. This
construction can be repeated mdeﬁmtely and let ¢ be the unique common point of
the intervals (u;, v,), i=1, 2, .. .. Clearly n}fl’ =py,X; is not squarefree for infinitely
many integers k; or ¢ is in A which completes the proof of Theorem 3.

I can prove that B has measure 1 and that for a certain « every 1<c<l1+a isin
B.1can not prove the same for 4. I do not give these proofs since it seems very
likely that every ¢, 1<c<2isin 4 N B.

Letr>2be an mteger It is not difficult to prove by the method used in the proof
of Theorem 1 that pf, | ni” for all k>kq(r), but for k>ko(r), pr'" | " ie n is

divisible by an rth power but not an (r-1)st power.
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