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1. Introduction

A system or family (A4,: y € N) of sets A, indexed by the elementsof a set N,
is called an (a, b)-system if [N| = g and |A,[ = h for y= N. Expressions such
as “‘(a, < b)system"" are self-explanatory. The system (A,:yeN) is called a
A-system [1] il A, A, = A, N A, whenever 1,7, p,6e N; p+ 3; p# o. If we
want to indicate the cardinality | N| of the index set N then we speak of a A( |.!"-’ |}—
system. In [1] conditions on cardinals a, b, ¢ were obtained which imply that
every (a, b)-system contains a A(c)-subsystem. In [2], for every choice of cardinals
b, ¢ such that

b22ez3: b+ez Wy
the least cardinal a = f,(b, ¢} was determined which has the property that
every (a, < b)-system contains a Alc)-subsystem.
Let b* be the least cardinal greater than b. It is easy to see that the following
two statements are equivalent:
every (a, < b*}-system contains a Alc)-subsystem,
every (a, b)-system contains a Afc)-subsystem,

In the present note we prove a best possible theorem (Theorem 1} on the
size of the largest A-subsystem that can be found in every (m*, m}system (4.
¥ €N) which satisfies JAFHA‘.-'| < for poyEN; p # 7. Herem = Wy, and n is
a given cardinal, n < m. In proving this theorem the authors have received valu-
able help from A. Hajnal.

We now intreduce a condition on systems of sets which is less exacting than
that of being a A-system. The sysiem (A,: 7€ N) is called a weak A-system (wk
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A-system) if
|4, 04| =|4,n4,]

whenever i, p,0eN; ps2 1 p# 0.

To avoid misunderstandings we shall henceforth replace the term **A-system™
by “‘strong A-system (st A-system). Clearly, every st A-system is also a wk A-sys-
tem, and the system ({1,2}, {1,3}, {2, 3}) is weak but not strong. In Theorem 2
we give an implication in the opposite direction. For ¢cardinals a, b, ¢, let the relation

(1) (a, b) — wk A(c)

mean that cvery (a, b}-system contains a wk A(e)-subsystem, and similarly for the
relation

(2) (a, b) — st Alc).

The negation of a relation involving an arrow — is obtained by writing -+ instead
of —. The symbal wkA by itsell denotes the class of all wk A-systems, and
similarly in other cases, such as st Ale).

In Section 5 we prove 4 number of results on A-systems. In Section 7 we
give a complete discussion of the relation (1) for a, b = ¥, . In this discussion, as
well as in some of our theorems, we shall assume the generalised continuum
hypothesis (GCH).

2. Termirology and notation

Roman capitals denote sets, and A = B denotes inclusion in the wide sense,
For every system (A:yeN)and M = N, we put 4y, = L) (y= M)4,. The system
(4,: 7 N) is called an (a, b)-system if | N| = a and | 4,| = b for all ye N.. The
class of all (a4, b)-systems is denoted by fd(a, ). For every set 4 and cvery cardinal
r we put

[A= {X = A:

X|=r}.
For cardinals a,¢,d, r the parrition relation
a— (el

means that whenever 4 and D are seis; A| =4 |D| =d;[4]" = u (LeD)];
then there is a set A"=[A] and an element A of D such that[4]"=1I,. For
every cardinal m we put m* = min{m: n > m}]. If m has the form p* then we
put m~ = p, and in all other cases m~ = m. By w(m) we denote the least ordinal
A suchthat|A| = m. For every ordinal o, put & = {i: A <a}, and for every
cardinal m put m = w(m). If m = ¥, then the symbol cf(m) denotes the least
cardinal ¢ such that m = Z(ye c)m, for some cardinals m, < m, The function
cf is the cofinality function. Instead of (cf{m)}* we write c¢f*(m), and similarly
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in other cases. For objects x, y the symbol {x, ¥}, denotes the set {x, v} and at
the same time expresses the condition that x # y. If d is a cardinal then the
symbol (A,:y=N), denotes the system (A,:y=N) and expresses the condition
that | 4, ﬁAv| = d for {p,y} . = N. Symbols like (4,: y & N) ., have the obvious
meaning.

We use the obliterator * ; its effect consists in deleting [rom a well-ordered
sequence the element above which it is placed. Other uses of * will be self-explan-
atory. If x = (xg, -+, %) and y={(yq, -, ) are sequences of the same length k,
and x#y, then there is an ordinal i<k, denoted by xo y, such that x;=y,
(f=i): 2, # ;. We shall occasionally use that

U<ki(xg- %) = (o )} = ¥oy+1,
{j{ ke {Xﬂ,, !x_f} v {.}rﬂ!"“-}j}} = ﬂ

If (S5, —=) is an ordered set and » is an ordinal; xg, -, &, S, then the sym-
bel {xg,-+,%,}. denotes the set {x,,---,%,} and expresses the condition that
X, —4x, for p<y<n.A set A< is said to be cofinal in (S, <) if U (xeA)
(ye8:y =< x} = S. It is well known that if @ = ¥, and tp(S, <) = w(a), then
cf(a) is the minimum of the cardinals of the sets A which are cofinal in (5, <).
Finally, a symbol such as ((A4,),.x,B) denotes the family (D;: 1€ L), where
L=Nu{p}; p¢N; D, =4, for icN, and D, = B,

3.

THEOREM 1. Let m,n be cardinals; m Z¥g;n<m. Let F=(4,:yeN).,e
Q(m*,m).

(i) If m" = m then the system F has a st Alm™ Fsubsysiem;

(ii) If m" = m and GCH holds, then & has a st Alp)-subsystem for every
p<m;

(iii) the proposition (i) becomes false if the hypothesis p<m is replaced
by p=m.

Remarks. (a) A. Hajnal made wvaluable contributions towards proving
Theorem 1.

(k) It is well known that, for every m = ¥, the relation m" = m holds if
and only if 1 = n < ef(m) (assuming GCH).

4., Discrefization sequences

Let #F = (A,:yeN) be a given system. A discretization sequence (d-se-
quence) of F is any sequence (Ng, +++, N,) such that k = u.-[|N|+} and, for each
A=<k, the set N, is maximal with the properties

N;CN-N-{: {flr-A;l[j:}'ENl‘Jgp
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Thus Ny is maximal such that N, = N; (4, 7Ny}, . Next,
N, is maximal such that N, =N — Ng; (4, — Ax.:veNos
N, is maximal such that N;c N —(Ng UN,): (A, — Ay, Uy, 7N,

and so on. Let us put Ay; = §, for every ordinal A < k&, and Ay, = 5, for every
cardinal p < |k|. =

Lemma 1. Let (Ny, -+, N,) be a d-sequence of (A,: 1eN).

(3) There is ko <k such that {A<k: Ny # @} = kq;
(4) if A<k; {myle = N;, then A, MA =8,;

(5) if A<ki peN —Nysy, then Ay, N A, & S;;

(6) if A<k;peN — Ny, then |S,n4,| = |4].

ProoroF (3). Let A<p < k; N; = &, Then, by definition of N,, we have
N, = @&. Also, | k| > |N|.

PrOOF OF (4). 4, N A, — §, = (A4,— §) N(4, — §,) = (J by definition of N
ProoF oF (5), The relation (A4, — 8;:ye N; U {it}), is false by the maximality

of N;. Hence there is y& N; such that (4, — S;) N (4, - S5,) # &. Then 4, N
MA,E S A, NAy; 2A,NA, ¢ 5;.

ProOF OF (6). Let k<1, Then peN — Ny = N —N,,, and, by (5), there
BX.EAy NA, =8, .fx' <kthenx edy— Ay = 4, — [x,.}. Hence
|8, M A,| 2 |{xg s %} | = | 4]. This proves Lemma 1.

Proor oF THEOREM 1.
Praoof of (i). Let (N, -+, N,) be a d-sequence of # . Then k = a{m™**).
Case 1. There is ke n with | N, | = m*. Then there is x, = min{x =n: | N,|

= m*}. Then | S| Enmmm=m. Put P={yeN_:|4, r'\S,m| =nl; @G=N_

Cast la. |P| = m*. Then, for yeP, there is B,e[4,nS, ] Then
|{B,:yeP}| = [[S..J'| = m" = m<|P|, and there is {u, ¥} = P such that
B, = B,. Then |4, N A,| 2 |B,NB,| = |B,| = n>|A4, N 4, which is a con-
tradiction. -

CasEe b, |P| < m.Then |Q| = m*;|4,08,,| <n(ye0). Since [S,,]*"|
= Z(t<nmm' = nm™ = m, thereis D[S, ]""and @’ € [Q]"" such that A,NS,.
= Dforally@'. Then, by Lemma 1(4), 4, N A, = D for {g,7}. = Q' and so

(A,cye@)estAimt).
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Case 2. [N,| s m (xen). Then |N,|<nm=m; |[N=N,|=m*. By
Lemma 1(6), | 4, NS,| = n (G N — N,). Choose B, £[4, NS,]* for ye N — N,
Then -

[{B,:yeN —N,_,-}| = |[;':.T,|I “| S (mm)'=m= |N— N,
and there is {y,y}» =N — N, such that B, = B,. Then

L]

|d,na,| 2 |B,NB,)| = |B,| =n>|4,04,]

which is a contradiction. This proves (i),
Before proving (ii) we establish a lemma.

Lemma 2, Let
n<mz Ny m">m; |§| =m; |N| = m*;
X, e[S]" (yeN).
Assume GCH, Then there is {jt, v} 2 = N such that |J1i.’m r“lX,| =1,
PROOF OF LEMMA 2.1 = cf{m). There is a respresentation §= Ty - U T,

such that t = efcf(m)): | Ty| = my<m (A <1). Let y N. Then there is 1 <t
such that | X, N T;bi > n, For otherwise we obtain the contradiction

m=|X,|< E(i<n|X,nT,| < |t|n<m.
Now there is M e[N]"" and ' such that 4, = 2’ (e M). Then
| X, N Ty|=n (yeM).
Since [T‘a.]""| < ™ < m*, there is {i,y)}o =M with X, nT;. = X.NT;.
Then [ X, NX,| 2 [ X, nX,NT;| = |X,NTs|>n.

ProOF OF THEOREM 1 (ii). Let (Ng,--,N,) be a d-sequence of (A,:y&N).
Then k = aw{m™ 7). Let §; and §, have their previous medning.

Cast 1. |[Ny| < m. Then |N =N, | =m*: |§,| = m. By Lemma 1(6),
|-’S',,.|'"\A?| Zzm (yeN— Ng). By Lemma 2, there is {p,y}. = N—N,, such
that

|4, A, | 2 [(SynAd,) NS, NA)|>n> 4,04,

which is false.

Case 2,

Nu| = m*. Then there is 4, = min{iem:|N;| = m*}. Then
|4, N8, | = |8i,] = m (reN).

Case 2a. There is M [N, ]™" such that |4, N S,,| = m (y=M). Then, by
Lemma 2, there is {u,7}, = M such that
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[(4, N8 N4, NS | > n>|A,n4,].
This is a contradiction.
Cast 2b. There is Me [N, ]"" such that |4, NS, | <m (ye M),

Then there is M’ [M]"" such that the cardinal |4,N S, | is constant for
veM’, say | A, M5, !=q (yeM'). There are sets X, B, such that (X, ). Ax)s
and |BT| = p+gq= pg,say (yeM’), where B, = (4, 5 )W X, (yeM'), Then
(B,:ye M) eQ(=p, *, po), and by [1], Theorem I, there is M" = M’ such that
(B,i yeM)est Alpg *). Then (4, NS, :yeM")est A(pg* ) and, by Lemma 1,
(4,:yeM") est A(p; 7). This proves Theorem 1 (ii).

PrROGE OF THEOREM | (i), Itsuffices to find a system
(A ¥ EN) o ELAM ™, m)

which has no st A{m)-subsystem. Put & = c{cf(m)). There are cardinals m; such
that mg; .. <m = mig 4+ + . Put

N = {y = (o vl mEmMIL < K)},
B, = {{yo.oFudi A <k} (2 = (9gs -, T EN).

Then (B,: yeNYeQ(ITmy, |k|). We have ITmy = m*; | k| = cffm) < m. Let
| X,| =m (ye N) and ((X,),cn+Bn)o, and - put A, = B, U X, (yeN). Then
(4,: ye M) eQ(m*,m). Let {j,7}s = N. Then there is 4, = po y, and we have

|A!'h'-'4r| T ]{BHUX.H]HILB?UX,}[ = anﬂB?| = |‘1“i = |k| = cf(m).

Now let M = Nand (4,:ye M)est A, Then (B, :ye M)=st A. But then there is
4y < ksuchthat po y = Agand B,0 B, = {(pg, -+, p)1 4 = 4, forall {y, 7}, = M.

Here pyem, (A< 4), and py, -+, f;, are independent of u,y. Therefore

|M| — |{'}'1,:l'.r'.;,"-.':'¢}EM}| =m,<m,

and the proof of Theorem 1 i1s completed.

5. Some special Theorems
THEOREM 2. Let (A,:yeN)ewk A. Assume that
(i) |4,| = n<¥N, for yeN,
(i) |4, 04| =k for {ny}. =N,
(i) |N|=>1+ n(D.
Then (4,:yeN)est A,
Proor. Let 5 N. By (i) and (ii),

[{4, N d i veN = {rl}]| £ @.
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Hence, by (iii), there are sets M, D with M =[N — {3,}]""" and De[4,,]' such
that A,nA, = D for peM.

Case 1. There is y, N — {yo} with Dd A,,. Then, for every pueM, we
have 4, N A,, # D, and there is x,e 4, N4, — D. Then

(b, e MY | 5| 4, | 5 m <[],

and there is {p, o}. = M withx, = x,. Then x,e A, N A, = D which is a contra-
diction.

Case 2. D= A, for all ye N —{y,}. Then A, NnA, =D for {myl,=N
and the theorem follows.

Definitions: (4,: y€ N} is called a system without repetition if 4, # 4, for
{1, 7} = N. For n < M, denote by g(n) the largest integer such that there exists
a (g(n),n)-system without repetition which has no wk A(3)-subsystem. Let h(n)
be defined similarly but with repetitions allowed.

Itis easy to see that g{1) = 1; g(2) = 5; g{3) = 10. D. Hanson proved that
4(3) = 10.

THEOREM 3. ForallnwithO<n < ¥;,

(i) h(m) = 2g(n),  (ii) g(n + 1) = 2g(n).

CoroLLARY. g(n) = 5272 for n = 2.

Proor oF (i). 1f (4,41, -+, 4,) is a(g(n), n)-system without repetition which
has no wk A(3)-subsystem, then (A, , A, 4y, -+, 4,) is a (2g(n), n)-system, with
repetition, and again without wk A(3)-subsystem., Hence h(n) = 2g(n). If, for
some n, we have hin) > 2g(n) then there is a ( = 2g{n), n)-system without wk A(3})-

subsystem. Such a system contains at least g(n) + 1 distinct members, and these
form a system whose existence contradicts the definition of g(n). Hence (i).

Proor oF (ii). There is a (g(n), n)-system (A.: ye N) without repetition and
without wk A(3)-subsystem. Let x,; be any 2g(n) distinct objects, forye Nand 1€2
which do not belong to A, Then it is easily verified that

(A, Vix,;}:v7eEN; Ae2)

isa (2g(n)m + 1)-system without repetition and without wk A{3)-subsystem, This
proves (ii).

THeoREM 4. Let a >0 gnd | = n = Wy, Then there is an (a", n)-system
(A xe X)), which has no wk Ala™ )-subsystem.

PROOF. Put X = {x = (xq," =, %) Xq,*+, £, E4a};
A, = {(xprix,): vEN} (x€X).
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Then (4, xeX),eQ(a" n). If {x,y}. =X then
|4, N Ay| = | {(xg, -, x): p<x 0y} =x0 y<n.

Let X' =X and (4.: xeX")ewk A. Then there is m < n such that xo y =m
for {x,y}+ = X', and hence | X' | = |{x,: x€ X"} | = a. The theorem follows.

THEOREM 5. Let o be a non-zere ordinal, and put d, = 2", Then there
is a (d, R )-system (A,: 7€ N}y, without wk A(3)-subsystem. In particular, we
have (d,. N,)+wk A3). If () 2%l = N, for f<a, (i) N, = ||, then we can
stipulate that, in addirion, |A,.-| =¥,

Remark. The condition (i) is a weak version of the generalized continuum
hypothesis, and the condition (ii) is equivalent to w, = z and is known to hold
for some a.

Proor. Let the letter 4 denote elements of 2, and the letters f#,y, § elements
of a. Let | X(dg, -+, 4y) | = Ny4, for all §, Ay, -, 4, and

(X(Ags =  Ap): Pen; dgur=r d5e2),.

Put N = {(Ao, .4 Aoy v, A, €2} and Aldg, -, 4) = U (B <) X (Ao, , 4p)
for (dos -+, A € N. Then |N| = 2, ;A{Aﬂ,i-- )| = (<o, =N,
Now suppose that {(dg,--, ) (Ag, = AD (A5, -, AN}, = N. Put p=Aiol.
Then |A(D) NA(L)| = Z(y<p,y SN, <N, Put o =40 t=240l"
Change the notation, if necessary, so that p = ¢ = 1. Then

p<t| ADNAGR) | SN, <B, SN, = T <o, = |41 nA@n|.

Hence the (2%, N,)-system (A(4): A€ N).y_has no wk A(3)-subsystem. Now sup-
pose that (i) and (i) hold. Then

| UGeM AR | = | UB<asig, o, 42 X(hg, 1 4p)
= Z(f=<e)2? iy, =¥, |N| =2l = o

Hence, on changing the notation slightly, we obtain a (2™, N,)-system (4,: ue M)
without wk A(3)-subsystem, and now |AM] = N..

TueoReM 6. Let a = W,. Then (i) assuming GCH, there is an (a*,N,)-
system (A;: Ae LYoy, with | A, | £ a; (ii) no (a*,Ng)-system (By: A L).y with
|H:.i = a has a wk Ala*)-subsystem; (iii) if GCH holds then

[Nnﬂ- I Nﬂ}""' wk 'ﬁ[ﬁu& 1} L
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ReMarks. The result (i) is due to A, Tarski. For the convenience of the
réader we give 4 proof, In Section 7, Case 1 b2al, we prove (N, 1. Mo+ wkANL),
a relation which is stronger than (iii).

PRrOOF OF (i). Let L be the set of all sequences 4 = (Iy, -, {,,) such that lew,
fory<w.Put d; = {(lgo+, L) p<w} for le L. Then (A A Lyefa*,N,);
|4 = | {(lon - L) p < @ L, e, For y < p} | = Z(p<a}[](y < ¥, =a.

If {1, 1'}: = L then there is yy = 45 4, and we have[.ﬂl‘i ﬁ"i&'l =7y +1 <N,

ProoF of (ii). Let the (a*,¥,)-system (By: A€ L)y, satisfy |BL] = Let
(B;: Ae L)ewk A for some L'e[LT".Choose {i',A"}+ = L'. Then |B; N B;.|
= p<N,. Choose D;e[B;]"" for ie L' Then| (D;: 2e L'} | = [B,| < |L| and
therefore there is {p,o}. < L' such that D, = D, Then

b= |B,AB, 2D, = p+1

which is the required contradiction.

6. Some Lemmas

It is convenient to use the function f(a) = |{x: x =5 al
over cardinals, Thus, (M) = ¥, + [a!.

Throughout the rest of this paper we use the following notation lor Lwo
fixed cardinals:

, wWhere a ranges

ﬂ=h‘ b=‘NE!

'z 3

Furthermore, GCH is assumed without reference being made to this fact.
Lemma 3. Let a > cf{a), Then (a,b)+ wk Ala).
Proor. If' n = w{cf(a)) then there are cardinals a, with
Bgs =,y < 8 = aGp + o + d,.

Choose sets 8, with |B}.1 = b{y=<mn) and {Bﬂ,---.ﬁ;]u, and put D,, = B, for
y<nand Aea,. Then (D,;:y<n;ieajela,b). Let D, = a,(y<n);

(D, < n;deD)ewk Ae).

Case 1. There is vy < n such that ]Dm| = 2. Choose {o,t}s = D,,. Then
| Bype M D,,:| = b>0. Hence D, = & for yen — {y,}, and so

¢ =Z@<n|D,|=|D,| S a,<a.
Case 2. |D,| <2 for y<n. Then Z(y<n)|D,| = |n| = cf(a) <a.
Lesma 4. Let b < ci{c). Then (c*, b) = st Alc™).



[m Intersection theorems for systems of sets IIT 1

Proor. In [2], pi 471, the function s(x, y) was defined for all cardinals x, ¥
such that x = 2; y = 3; 2+ y = ¥, by putting

s(x, ¥) = sup{ L (yex)¥o-- It Yor =+ s Pty < ¥}-
We have

s(b*,c*y = E(yeb)e! = E(yebt)e = bte =c¢ = s(b™,¢?).

Here, the first inequality follows from |?| < b = cf{e), and the second inequality
from b = 0. By [2], Theorem IV,

SalbF®,e%) = sH(bTeT),
and therefore

(st(bt,et), £ b)—»stAle*);(c*, = b)—st AlcT);
(¢, b) — st A(c™).
Lemua 5. Let a = a— = cfia) > b. Then (a, b) — st Ala).

Proor. s(b*,a) = E(yeb*)a’l = Z(yeb*)a=bta=a:
stbt,a) Z sup {agiag<a}l = a.

Hence s{b*,a) = a, We now prove fu(b*,a) = s(b",a). We want to apply [2]
Theorem IV (a) (ifi). To do this we musi prove

(i) Wy S bt <cfig)=a =a;
(i) if sup {ap: ag < a} = d then d = cf(d) > a! for a, <a.
Now, (i) is true. Also,
sup {ab:a, <a} < sup {agb*:az<a} £ a
= sup {a}: a, < a}; sup {ay: ap < a} = a = cf(a).
Finally, let 4, <a. Then aj < ab* < a. This proves (ii), and we have, by [2],
falb*,a) = s(b*,a) = a; (a, < b*)— st A(a); (a, b) — st A(a).
Lemma 6. Let a =cf{a); f(r,y) e 2 for p<yea*. Then there is an (a*, a).-
system (F:ysa®) such that, for p<yea®, =
|Fkr"\F,l < a if fliy) =10
=a if fijy)=1.

Proor. 1, We begin by showing that, given any (a, a)system (A,: 7€ N)g,,
there is a set T (called a {< a)-fransversal of the system) such that
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Te[4y) 1 S |Tn4,| <a(ueN).

We may assume N = a. Then there are elements x,, for y ea, such that
X, EA, — {A_{u{xm--- AN (yea). Wemayput T = {x,:y=sa},. For, let pea.
If£eT N A, then there is y=a such that { = x, €4, — A,. Also, {€4,. Hence
péy; u =y, 50 that 1 = |T N4, | = |[(xeax)| = |+ 1] <a.

2. Choose a system (S,;:xca*:fea)e(at,a). We now choose sets B,
for pea*, by the following procedure. Let uy=a”, and suppose that By, -, E"u
have already been defined in such a way that

o [ B, is a ( < a)-transversal of the family

(8,020 £ p; fea), By, B, for p< .
We show that
(**) ((S.p: 2 = pps fea), Bo, - B, ) ca -

Let u < py. Then
B,= U@ =p; fsa) 5,3 UB, = 8441, B,, say.

By induction over u, we deduce that B, © 85, ,, (1 < o).

(i) Let « < po: fea; y<po. Wa<y, then |S,,NB,| <a by (*) with
p=7.12>y, then |S;; NB,| £ |8, NSy =0since agy+1.

(i) Let p < @ < pg. Then | B, N B, | < a by (*) with ¢ = ¢. This proves (**),
Now let B,, be a (< a)-transversal of the family (**). Put S, = Ulpe a)S,,
(meat);

Ay =8, NB, (x5 pea’).
Then it follows, by induction on u, that
B,c U(as s fea) Sy = U = 0)S,;
B, = U= ws,nB, = U(x=wA,, (uca*). Since |SyNB,| 21 (@ = p
ca*; fea), we have [A4,,| =a (xS pea*).Put F, =S, U Ur=<y; flmy
= ll&ﬂr [J:;EE'F]. Then ST:FT:Su {TE E-I-];
(F,:yea*)eiat, a).
Now let p<ypeat. Iff(,y) =1, then A4, cF; 4, <8, cF,; |F,NF,|

|A,;| = a. Now suppose f(u,7) = 0. Then F,n F, = (5, U U (& < 3 flou)
DA )N (S, v U <v: f(B.7) = 1)4;). We note that 5, NS, = &; if

i ay
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J(B,y)=1 then f+# u and hence S, NA,, =S, NS;=@. If a<p, then
A NS, =85, NS, = @ ilx & f,then A, NA, = 8§, NS, = @ All this shows
that F, nF,= U(z <A, NA,<B,NB; |F,NF,| 5 |B,NB,|<a. This
proves Lemma 6.

Lemma 7. Let a = cf{a). Then (a*,a)+ wk Ala*).

ProoF. By [3], a* ++(a*)}. Hence there is a function f: [a*]*++2 suchthat,
whenever M < a* and f is constant on [M]?, then |M | <a*. By Lemma 6, there
are sets F, such that |F,| = a for yea* and, for p<yea*, |F,NF,|<a if
f(,y) = 0; |F, "F,| = aif f(1,y) = 1. Then the (a*, a)-system (F,: ye a*) has
no wk Ala™)-subsystem.

Lemma 8. Let a—(¢)},,. Then (a,b)—=wkA ().

ProoF. Let (A,: ye N)e{Xa, b). Then

[N]* = U(bo S b){{my}e =N:|A,NA| = bo}.

By Hypothesis there are M and b, such that M e [N]; by S b; ld,nd_,[ = by
for {s, 7}« =M. Then

(A, ye M), ewkAle).
Lemma 9, Let a>a~. Then (a*,a) — wk Ala).

ProoF. Y(a) = y(a~) S a~ < a. Hence, clearly, a - (a);,, and therefore, by
the “‘stepping-up lemma’” of [3], a* - (a)j,,,. Now Lemma 8 yields (a*,a) -
wk A(a).

Lemsa 10. Let (a, b)+ wkAlc). Then (a’,b') ++ wkA(c) ifaza’; b S b";
e=c,

RemaRrK. This lemma will be applied without reference.

Proor. There is an (a, b)-system (A :yeN) without wk A{e)-subsystem.
Choose sets B, such that A, = B, and |B,| = b’ for y& N, and ((B, — A,),.w,
Ay)o. Let N' € [NT . Then the (a’, b")-system (B, : y € N') has no wk A(c")-subsystem.

Lessa 11. (b)), b)Y+ wk A(3).
ProoF. Put N = @y {ay, - ,dy};

A, =y oy S E<afy+ 1)) (eN).
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Then the (f(6), B)-system (A.:yeN) has no wkA(3)subsystem. For if
[ Ate =N then

|4, na,] = |u] <|7] =] 4, n4,].
Lemma 12, Let b = b=, Then (b*, b) + wk A(b).

PROOF. Put N = {y = (yg,"*, %,): You s o €2}
Ay = {(Vo, 210 A b} (yEN).

Then (4,: ye N)eQ(b*, b). Assume that there is M & [N]" such that (4,: ye M),
for some p. Let {s,7}. = M.Then p = |4, n4,| = |uoy|<b;poyep*. Put
o= a(p*). Then |i(yg -9 (g, Ju ) EM for some y,, - f?u,,} | <2
= ptt<b=|M|, and there is {i,7}+ = M such that (e, 1 f,) = (ou ***» 9,)-
On the other hand, if 4 = poy then A < ¢ uy # v;, which is a contradiction.

Lemsa 13. Let b = i(b). Then (b*, b)+>wk A(3).

Proor. Case 1. f = 0. The conclusion follows from the casea = 2;n = N,
of Theorem 4.

Case 2. fi= 0, For A< fi and y¢,-+-.9,€2, choose a set X(y,, %) with
]X{Tﬂs'" r?.l:'] = Ni41, such that (X (yg, -, 0): 4 < f: yoi-- . 9422)g Put A,
= U@ <P X@Gosf0) for y=(rors )i tove- 7€2. Then |4, |=
ZG<P) Nay =Ny = b. We have | {19 o, =2} = 2W1= g+
=b*. Let (u,7,p)p and (A4, 4,,4)ewkA(3). Put poy=r1.

We note that {i:(ug, ;) = (Yo~ P)} =1+ 1. Hence IAJI nA_,|
= tU (A=1+ DX(yg = .9 | =Xd<t+ 1N, =¥, =8 ... There-
foret=poy=pocp=yop, and (U7, p.). which is impossible. This proves
Lemma 13.

Lemma 14, Ler efid) = ;. Then (d*, %,) -+ wk Ald).

Proo¥. There are cardinals d, such that dg,---,d, <d = dy + - + d,,. Put
X =ix=(xp,2)x6d, (1<)

A= {(xg,-- . Z): i< o} (xeX). Then (AxxeX)eMd*,Ny), Let L = X and

(dy:xeL)ewkA. Then there is < @ such that |Axﬁriy| =oc+lixoy=0o

for {x,y}, = L. Then |L| = |{x,: xeL}| = d, < d which proves Lemma 14.
Lemma 15, Let cf(d) = W, Then (d*, N, )+ wkAld).

Proor. There are cardinals d; such that dg, ,a’m <d=dy+ -+ d‘m, Let
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X ={x=(xg % )ix,ed, (<w)}. For xeX and 1 < w,, let | B(xy,
e, 80| = Ny, and (Blxg, .80 A<, x, ed, (7 < A)g. Put

A, = U (A< “-".,}B{xm s 8

for xeX. Then |X| =dy-- d,, = d*; | 4] = Z(h <o, )N, = N,,, so that
(A xeX)elid™,H,,). Let L = X and (4,: xe L)e wk A. Then there is ¢ < @,
such that x o y =& for {x, y}. = L. Hence |L| = |{x,::rEL}| =d, < d, which
completes the proof.

LEmMa 16. Let 0 <d =d~ < ¥, . Then cfid) < N,.
Proor, We have d = ¥ for some § < w,. Since d = d~ we conclude that
d = Z(rn<dN,; cffd) £ |d|<N,.

For the last two lemmas we need the following definitions: Consider a sys-
tem F = (A,:yeN). We call # an (g, b, £ d)-system if F Q(a,b) and (4,
YEN)-, . An (a, b, < d)-system is defined similarly. For every set 4 and every
cardinal d we put

FlA,d) = {yeN: |An4,| = d}.

Lemma 17. Let & be an (a,b, = d)-system; a = cf{a) > b’}
| #(4,d)| = a. Then F has a wkA(a)-subsystem.

A|=b;

Proor. We have |[4]'| = b* < a = cf(a). Hence there is an (a, b)-subsystem
F' = (A,:yeN')of 5 and a set X such that |X[ =dand AnA,=X(yeN’).
Then, for {1, 7}« = N',wehaved = | X| = |4,n 4, = d, and F" is a wkA(a)-
system.

LEMMA 18. Let & = (A,:yeN) be an (a, b, < d)-system, such that
| #(4,,d) | <a
Jorevery yeN. Suppose that a = cf{a). Then & has an (a, b, < dy-subsystem.

Proor, Assume N = a. We can construct inductively ordinals y, for pea
such that, for each pea, y,6(N— U(e < p)F(4, .d)) — {¥os**+9,}+ Then
(A, :pea) is an (a,b, < d}system.

7. Discussion of the wk A-relation

We consider two fixed infinite cardinals a, b, where

a =N b="%,,
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and we shall determine all cardinals ¢ such that the wk A-relation

(7 (a, by — wk Afc)

is true. There is a least cardinal ¢(a,b) in 3 = ¢(a, b) = a* such that (7) holds
if and only if c< ¢(a, b). We shall determine ¢{a, b). If ¢la,b) = 3 then (7)
enly holds completely trivially, ie. for ¢ = 2, whereas ¢(a, b) = a* means that

(7) holds for all values of ¢ which are at all admissible, which are the cardinals
L

Our results show that, for all a, b.
gla, by {3,a-,a,a%}.

In our discussion we shall write ¢ instead of ¢(a, b). We remind the reader that
throughout this section we assume GCH.

Casg'l, a=b".

CAsE 1a. a>a~ =>a —. We prove that ¢ = a*. We can write a = ap* ™,
and then we have g~ = a = b~ 4y = b. By [2], Theorem [ (ii), with a, b
in [2] replaced by ag . a, respectively, we have (a; 7, a,) -+ stA{a} *). Hence
(a, b} — st Ala).

Casg lb. g>a=a —,
Casg 1bl. b = cf{a™). Then ¢ = a*. Indeed, by Lemma 4, (a, b) — st A{a).

Case 1b2. b = cf(a™). Let ag <a~. Puta, = max{ag,b}. Then (a; *,a,)
~»stA(af * ) by [2]. Hence (a, b) - st Alay) (g, <a~ ).

Case 1b2a. cffa™) = ef{a™).

Case 1b2al. cffa™) = N;. Then ¢ =a~. For, by Lemma 14, (a, Ny)
++whkAla~) and therefore (a, b)+—wkAla™).

Case 1b2a2, cffa™) > ¥y, Then ¢ = a~, For, we have, by Lemma L5,
(a,cl{a=))+>whkAia).

To see this, put cf(a™) = W,;. Then 5 is a positive limit ordinal; N, = efi¥,).
If 6<m, then ¥, = X(5, < 8)N,,: (V) £ |8 <N, which is false. Hence
# = w,. By Lemma 15, with d = a—, we have (a, ¥} wkA(a~),ie. (a, cfla™))
+»wk A{a~). This implies (a, b)+wk Ala™).

Case 1b2b, effa~) > c¢f~(a~). Then cif{a™) has the form ¥;.,.

CASE 1b2bl. W = b. Then ¢ =a~. For, by Lemma 15, (a,i¥

Wis|

++wk A(a~), which implies (a, b)-++wkA(a™).

-
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Case 1b2b2. ¥, ., = b. Weshow that =0, We use the notation (A, d)
introduced before the statement of Lemma 17. We assume that the (a, b)-system
F has no wkA{a)-subsystemn, and we have to deduce a contradiction. Since & is
an (a, b, = b)-system, it follows that there is a least cardinal o such that & has
an {a, b, = d}subsystem. We have 0 <d = b, We may assume that "5 iiself is
an (a, b, = d)-system. Then & has no (a, b, = e)-subsystem, for every e < d. Let
F = (A;17EN)zy. Let yoeN and |F(A, ,d)| = a. Since b* = b* = b* <a,
it follows from Lemma 17 that & has a wk A(a)-subsystem, which is a contra-
diction. Hence |.§'[A,,d:|| < g forye N. Then, by Lemma 18, 5 has an (a, b, < d)-
subsystem. We may assume that % = (A,: y= N)., is itself an (4, b, < d)-system.
If d =e*, then & is an (a, b, = e)-system, which contradicts the minimality of d.
Hence 0 <d = d~ = b< N, and, by Lemma 16, cf(d) <N,,,.

We shall now construct a modified d-sequence. There is a maximal set Ny N
such that (4,: 7% Ng)g. Then 0 < |Nﬂ|-::a. Let 0 <oea. Suppose that, for
each p <o, we have already defined a set N e[N]<", where N, s &, such
that, putting S, = Ay,, we have |AFHSF| <dforyeN,;d, A, =8, for {py} e N,
Suppose, furthermore, that, for each p < m, the set N, is maximal such that the
above stated conditions hold, i.e.: if yeN — N, then either A, = §,, or there
is pe N, — [y} with A,mvAdy4 5,. We shall now define N, and in such a way
that all these conditions hold for p = o. Put S, = Ay . Then |S,| = |o|a~be
= a~. Well-order 5§, by a relation — , so that tp{5,, =) = w{a~), Put N*
= {yeN: |A,.r“|5,.,[ = d}. We now prove |N*| = . Assume |N*| =a. For
each y& N*, denote by g(y) the initial section of (4, N §,,—<) of type w(d). If
{i,7} s = N* then, by (4,: 75 N).,, we have |A,,nA,!-=::.:i._, and hence glu)
# gl{y). There is an initial section T of (§,, =) such that | T1 <a~ and |{;,1 eEN*:
g{y}cT}' = g, For; if |Sn.r < g~ then we put T = §,, Now let |S,| =oat,
We have cf(d) = W,., = ¢f(a™). For cach y e N¥, the set (g(y),—<) has a cofinal
subset of cardinal cf(d). This subset is not cofinal in (5,,—). Hence g(¥) is not
cofinal in (5,,—), and there is x_= S, such that g(3) = {x = §5,: x <x,}. In view
of a = cf(a), there is x*& S, such that |{ye N*: x, = x*}| = a. Then we may
put T = {xe8,:x—<{x*}. This completes the definition of T. Now we have
|[TT*| = 2!"1 = a~. Hence there is X = T such that | (e N*:g(y) = X}| =a.
But then (A4,: ye N*; g(y) = X).,, which contradicts the relation (A.:ypeN).,.

We have thus proved |N“'| <a. Let ye N— N* If A, =5, thenwe have
b=|4,|=|4,n8,| <d = bwhichis false. Hence y & N —N* implies A, & S,,.
Let N, be maximal suchthat N, = N — N*and (4, — §,:yeN_),. Then N, # &
It follows that if yeN, then 4,4 §,, and if {g,7}. =N, then 4, nd, = 5,.
Also,if ye N— N, and |4,n S,| <d, then there s jue N, with 4, M 4, & S,. In order
to complete the inductive definition of Ny, NV, «+- we must now show that | N | < .
Assume that | N, | = a. Corresponding to every y= N, there is ¢, < d such that
[A,nﬁ',[ = e,. Then there is e < d such that |{yeN,: e, = ¢} [ = a. For we
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have [{e,:}rEN,} l =d=b<a. Put N'={yeN.: |A?HS,I =-¢}, so that
|N| = a. If {uy}. =N, then |4, N 4,|=|4,nA4 NS, |=|4,nS8]=e
Hence (4,: ye N')z, =0 a,b) which contradicts the minimum property of d.
This proves | N,{ < a ,and the inductive definition of N, for p & a is accomplished.
We have b* < a, and therefore we can choose y € Ny, . For each peb* there
15 g, &N, such that 4, M4, ¢S, = 4y,. We can choose z,ed, NnAd, — Ay, .
If t<pthen z,ed, NA, =4, <Ay, .Hence z, # z, for t<peb™; B

| 4| = [{z:peb}u| =b* > b= 4,].
which is the required contradiction.

CaASE Ic. a=a".
Cask lcl. a =¢f(a). Then ¢ = at, For, by Lemma 5, (a,b) — st A(a).

Case 1e2. a = cffa), Then ¢¢ = a. For, by Lemma 3, {a, b)++wk Ala). Let
a, < a and put a; = max{ay,b}. Then, by [2], (a;"*, a;) = stAla;*). Hence
(a, b) = st Alay) (a, < a).

CasE 2. a= b+,

Case 2a. b = |fi|. Then ¢ = 3. For, by Theorem 5, (2], b)+» wk A(3).
Hence (a, b)+ wk Af3),

Casg 2b. b> |p|.

Case 2bl. b> bh~. Then ¢¢ = a. For, by Lemma 7, (g, bj++wkA(a). Also,
by Lemma 9, {a, b) — wk A(b).

Case 2b2. b = b~.Then¢ = a~. For, by Lemma 12, (a, b) ++> wk A(b) . Now,
let by < b. Then, by [3], b~ (bg)in. and Lemma 8 gives (b,b) — wk A(bg).
Hence (a, b) — wk A(by) (by< b).

Casg 3. a = b.

Case 3a. b = |f|. Then ¢ = 3. For, by Lemma 11, {a, b} +> wk A(3).
Case 3b. b> |f].
Cast 3bl. b> b=, If b~ = cf(b™) then, by Lemma 7, (b, b™)-wkA(b),

and if b~ = cf(b~) then, by Lemma 12, (b, b))+ wk A{b 7). Thus, in either case,
(a, b} wk AL,

Case 3bla. b =>b-". Then¢p =a. Forwe have f = iy +1 = f§, + 2 for
some fig, fi;;(b) = Hu+|ﬁ1|i e L I];{EJ and, by [3], Hh-l-z_'{ﬂﬁ:'i'l};{b!’
Mow Lemma 8 gives (a, b) — wk A(b™),

Casg 3blb, b~ = b~~. Then, by Lemma 12, (b, b~ )++wkA(b~) and hence
(a, b) ++wk A(b™),
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Casg 3blbl. y{(b~) = b~. Then ¢ = 3. For, by Lemma 13, (b, b7 )4+
wk A{3). Hence (a, b)+—wkA(3).

Cast 3b1b2, (b~)<b~. Then ¢ =a~, For, let by<b~. Then b
{’boﬁm and, by Lemma 8,

(4, B) = wk Albo) (by < b-).

Cast 3b2. b = b~. Then ¢¢ = a. For, by Lemma 12, (b*, b)4+>wk A(b), and
hence (a, b)Y+ whk A(b),. Let by < b. Then b — {bﬂ}j[b} and, by Lemma 8,

(d, b) = wk A(bg) (b < b).
Case 4, a< b,

Case da. b = |ﬂ| Then ¢ = 3. For, by Lemma 11, (4(h), b)+»wk A{3) and
hence (a, b))+ wk A(3).

Case 4b. b > |B].

Case 4bl. a = 2|, Then ¢ = 3. For, by Theorem 5, (2", b)++ wk A(3) and
therefore (a, b)+wkA(3).

CAsE 4b2. a>2"*1* Then |f| <2¥ <a.

Case 4b2a. @ = a~, Then ¢ = a. For, by Lemma 12, {a*,a)— wkAla),
and therefore (a, b)+wk Al(a). Let a; < a. Then ﬂ"’fﬂu};nﬂmn and Lemma 8
gives (@, b) = wk May) (6, < a).

CASE 4b2b. a > a~.

CASE 4b2bl. a~ >a~~. Then ¢ = a. For: || <2 < a; a~+(a )+ n:
a—+(a~)jum; (a,b) -+ wkA(a~). By Lemma 7, (a,a”)+> wkA(a). Since a~ <a
< b, we deduce (a, b)+wk Afa).

CaSE 4b2bl. a~ = a . Then ¢ = a~. For, Lemma 12 yields (a,a7)+
wkMa~), and hence (a,b)++wkAMa~). Let ay<a~. Then 'ﬂ-""(”n}::nﬂﬂ;
a -r{au},i”,]; (a, b} = wk Alag) (ag <a™).

Case 4b3. 2l < ¢ < 2%**| Then ¢ = 3. For, we have f <wand a =N, .
By Lemma 13, (W, Ny)+wkA(3). Hence (a, b)-+ wk A(3).

This concludes the dicsussion of the relation (a, b) — wk A{c) for infinite car-
dinals a, b.
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