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In this short survey I will state many solved and unsol-

ved problems . I will give almost no proofs and will try to give

extensive references, so that the interested reader can find what

is omitted here . Gr denotes an r-graph, G r (k) an r-graph with

k vertices and Gr(k;m) an r-graph with k vertices and m

r-tuples. Kr (t) denotes the complete r-graph of t vertices,

i.e . the r-graph G (t ;(t)) . K (t, . . .,t) denotes the r-graphr

	

r

	

r

of rt vertices and tr r-tuples where the vertices are split

into r classes of t vertices each and every r-tuple con-

tains one and only one vertex of each class .

If Gr is an r-graph then f(n ;Gr ) is the smallest integer

so that every Gr(n;f(n ;G r)) contains our Gr as a subgraph .

In 1940 Turán [1] proved that if n ∎ s ( mod t - I ), then

f(n;K2 (t»- 2(t - - 0 (n2 - s 2 ) + () .

H6 also proved that the only G2(n; K2(t)-1) which does not

contain a K 2 (t) is the complete (t - 1)-partite graph K 2(m l - -mt-1)

where m l + . . . + mt-1 - n and the summands are as nearly equal as



possible . Turán's paper initiated the systematic study of extremal

properties of graphs and hypergraphs„Turán posed the very beautiful and

difficult problem of determining f(n ; K r (t)) for r > 2 and t > r .

This problem is unsolved . It is not hard to see (Katona - Nemetz-

Simonovits [2]) that

,,af(n ;Kr(t))/<r) =cr,t

always exists, but the value of cr t is unknown for every r > 2,

t > r though Turán has some plausible conjectures .

In fact very few exact results are known for r > 2 . Before I

state systematically the problems and results in our subject I mention

the following recent result of B . Bollobás who proved the following

conjecture of Katona : Every G3 (n ; [3][n31][n31] + 1) contains three

triples so that one of them contains the symmetric difference of the

other two . The result is easily seen to be best possible . The paper

of Bollobás will be published soon .

í r (n ;k, 1) is the smallest integer so that every G r(n ; f r (n ; k , 1)

contains at least one Gr (k ;1) as a subgraph in other words the

structure of our G r (k,l) is not specified . The study of i r(n ;k, 1)

in general is simpler (but perhaps less interesting) than that of

fr (n ;Gr (k ;1) . In the first chapter I discuss r = 2 and in the second

I state some of our meagre knowledge for r > 2

r = 2 .

As far as I know the first paper which tried to study systematically

extremal properties of graphs was [3] . First I state the following

general theorem of Simonovits -Stone and myself [4] . Let G be a graph



of chromatic number k . Then

(1)

	

nimm f(n ; G)/(2 ) = 1 - k1

In view of (1) we will mostly restrict ourselves to the study of

bipartite graphs . A result of Kövari,the Turáns and myself states that

[S] (the c's denote absolute constants not necessarily the same if they

occur in different formulas)

2-t
(2)

	

f(n ; K2 (t, t)) < c l n

2- 1

In other words every G(n ;[c ln t J) contains a complete bipartite

graph K2 (t,t) as a subgraph if c I is sufficiently large . We conjec-

tured that (2) is best possible but this has been proved only for t = 2

and t = 3 [6) . Denote by C k a circuit having k edges . Brown,

V. T. SOS, Renyi and I proved that [6]

(3)

gives

(4)

Our proof in fact gives

77

lim f(n ; C )/n3/2

	

1
n=m

	

4

	

2

3 /2
f (n ; C 4) S Z

	

+ 4+ a (n)

and in fact many of us conjectured that

2
f (n ; C 4 ) = 4 + 4 + a (n)

Let n

	

2p + p + 1 where p is a power of a prime . Our method

f (n ; e4) z (p +2	2	 p' + 1

It would be nice if we would have equality in (4) .



(5)

I proved that

1+k
f (n,c 2k ) < ci n

I never published a proof of (5) since my proof was messy and perhaps

even not quite accurate and I lacked the incentive to fix everything

up since I never could settle various related sharper conjectures--all

these have now been proved by Bondy and Simonovits--their paper will

soon appear . Probably (5) is best possible but this has been proved

only for k = 2 and k = 3 (Singleton) . For further results on cycles

see the papers of Bondy and Woodall [7] .

Gallal and I proved that every G(n ; [J(k - 1)n] + 1) contains a

path of lengtet k and V. T . Sos and I conjectured that every such graph

contains every tree of k edges [1] . No progress has been made with

this conjecture [S] .

Let G be a bipartite graph . I conjectured that f(n ; G)/nI+a

tends to a finite non zero limit for some a of the form k or

1 - k(k = 2,3, . . .) . Simonovits and I disproved this conjecture [9] .

We still think that for every bipartite G there is an a,l < a < 2,

for which

(6)

	

nim f (n ; G) /na = c (G) , 0 < c (G) < m

but the set of these a's is everywhere dense in (1,2) . Probably

the a in (6) is always rational .

Let G be the skeleton of a cube . Simonovits and I proved [9]

(7)

	

f (n ; G) < cn
8/5

We could not decide whether (7) is best possible .



Simonovits and I determined f(n ; G) if G is the skeleton of

an octahedron [10] and Simonovits determined f(n ; G) if G is the

skeleton of the icosahedron

Before I close this chapter I state two simple unsolved questions

considered by Simonovits and myself . Let Gk be the graph having the

1 + k + (2 ) vertices

	

yl, . . . .
yk , and z i,

	

1 5 i < j s k .

x I is joined to yl	yk and

	

j
is joined to

	

and x
J

. .

Is it true that

(8)

	

f (n ; Gk) < e kn3/2

I proved (8) for k = 3 [11] . Gk contains rectangles so that (8)

if true is best possible . Denote by G - x the graph obtained from

G by removing the vertex x and all edges incident to it . Is it true

that for every k

nim. f (n ;Gk - x )
/n3/2 _ p

II

Now we discuss some problems and results for r > 2 . A few years

ago I proved that for every r and t there is an
Er,t

so that every

Gr(n,[nr Or, t ]) contains a Krr)(t, . . .,t) [12] . For r = 2 this is the

theorem of Kövári and the Turáns stated in (2) . For r > 2 t a 2

the exact value of e r,t is not known . This result implies that every

Gr (n ;[En r ]) contains a subgraph of m = m(n) -+ © as vertices which

has at least mr r/ r

	

ed ges . I conjecture that the following result is



true ; There to an absolute constant c > r so that every
r

r
Gr(n;[nr (1 + e)]) contain a subgraph Gr (m ;[cmr ]) where m = m(n)-

r

as n - m . The case r = 2 is completely cleared up by the result of

stone and myself [13][4] . For r > 2 and for r = 2 and directed graphs

or multigraphs many unsolved problems remain (see a forthcoming paper of

Brown, Símonovits and myself) .

In two forthcoming papers W . Brown, V . T . sós and I began a

systematic study of extremal problems for r-graphs . Before stating

some of our results I state the most attractive unsolved problem :

Is it true that

(9)

	

f(n ;G3 (6,3)/n2 -. 0 .

we proved f(n;G3 (6 ;3) > en3/2 and it seems likely that in fact

f (n ;G3 (6 ;3 )) < n2-e for some e > 0 , but we could not even prove (9) .

Very recently Szemer;di states that he proved (9) .

We prove that every G3 (n;[e l tt5/2 ]) contains a triangulation of

the sphere for sufficiently large c I (the result fails if c l is

3 1
small) . Simonovits independently proved that every G3(n ;[en

k])

contains a k- tuple pyramid and that for k = 2 and k = 3 the

exponent is best possible .

To conclude I state some of the problems,results,for 3-graphs . In our

paper for simplicity we take r = 3 some of the results hold with

appropriate change for r > 3) . We have

nimm 2 f (n ;G3 (4,2) = 6 .
n



but the determination of

al

nim 3 f(n;G3(4 ;3))
n

seems to be very difficult, perhaps as difficult as Turad s problem on

f (n ; K3 (4)) .

(10)

	

e1n5/2 < f (n;G3 (5 ;4) < c 2n5/2

We have not been able to get an asymptotic formula for f(n ;G3 (5 ;4) .

By the probabilistic method we proved

2+e k
(11)

	

f(n ;G3 (k,k-1) > n

but except for k = 5 we do not know the exact value of e k . It is

easy to see that for every k > 3 0 ,

(12)

	

c (k)n2 < f(n ;G3 (k,k - 2) < c2
(k) n2 .

As stated previously cik) = c2k) = 6 , but for k > 4 we have no

asymptotic formula for f(n ;G3 (k,k - 2)) I would not be surprised if it

would turn out that for every k

(13)

	

lnimm2 f (n ; G3 (k, k - 2) ) = 6 .
n

The only argument in favor of this conjecture (the conjecture may

easily turn out to be nonsense) is the following

Theorem. Every G3 (n ; [ 3 ( 2) + 1) contains either a G3 (5 ;3) or

a G3 (6 ;4) .

Let x l , . . .,x n be the vertices of our graph and T l'
--- ' TI

B = [ 3 ( 2 ) + 1 its triples . Since 31 > ( 2) at least one pair say



82

(x1,x2 ) is contained in two triples say T, and T 2 . We can clearly

assume that no pair is contained in three triples for otherwise our

graph would contain a G3 (5 ;3) . Also if say T, = (x l' x2' x3 ) and

T2 = (xl,x2,x4) ' no Ti can contain (x 3 ' x4 ) since if T i = (x3'x 4'x 5 )

then G3 (xl' x 2 ,x3'x4'x 5 ) contains three triples . Thus to every pair

which is contained in two triples there corresponds a pair not contained

in any triple . This correspondence can not be one to one since otherwise

b would be x at most [3 (2)]

	

Thus there must be two triples

(x l ,x 5 ,x6 ) and (x2' x5'x 6 ) which have a common pair and also exclude

(x l ,x 2 ) . But then G3(xl' . . .'x6) contains four triples and thus our

theorem is proved. I hope this argument can be improved .

It is clear that many more problems could be formulated .
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