EXTREMAL PROBLEMS ON GRAPHS AND HYPERGRAPHS
Paul Erdos, Hungarian Academy of Science

In this short survey I will state many solved and uusol-
ved problems, I will give almost mo proofs and will try to give
extensive references, 8o that the interested reader can find what
is omitted here. Gr denotes an r-graph, Gr(k} an r-graph with
k vertices and Gr(k;m) an r-graph with k vertices and m
r-tuples. Kr (t) denotes the complete r-graph of t wvertices,
i.e. the r-graph Gr(t=(§))' K (t,...,t) denotes the r-graph
of rt vertices and t© r-tuples where the vertices are split
into r classes of t vertices each and every r-tuple con-
tains one and only one vertex of each class.
1f Gr is an r-graph then f(n;Gr) is the smallest integer
so that every Gr(n;f(n;Gr)] contains our Gr as a subgraph.

In 1940 Turdn [1] proved that if n = s (mod t = 1 ), then
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£k, (1)) = 5=y @ - ) + D).
Hs also proved that the only Gz(n; K, (t)-1) which does not

contain a Kz (t) is the complete (t = l)-partite graph Kz(m!;....mt_l)

where m, * s # m_, =0 and the summands are as nearly equal as
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possible. Turén's paper initiated the systematic study of extremal
properties of graphs and hypergraphs WTurdn posed the very beautiful and
difficult problem of determining £ (n; xr(t}) for r>2 and t>r .
This problem is unsolved. It 1s not hard to see (Katona - Nemetz-
Simonovits [2]) that

Hm £ K (D) /(F) =c,

always exists, but the value of €.t is unknown for every r > 2,
r
t > r though Turan has some plausible conjectures.
In fact very few exact results are known for r > 2. Before 1

state systematically the problems and results in our subject I mention

the following recent result of B. Bollobis who proved the following

. norn+l 1 :
conjecture of Katoma: Every G, ; [3][— ][E-i'—] + 1) contains three

triples so that one of them contains the symmetric difference of the
other two. The result is easily seen to be best possible. The paper
of Bollob&s will be published soon.

Ir(n i+ k,1) is the smallest integer so that every Gr(n 2 fl_ n;k,1)

contains at least one Gr (k;1) as a subgraph in other words the

structure of our Gr(k,l) i8 not specified. The study of fr(n ik, 1)

in general is simpler (but perhaps less interesting) than that of

fr(n 4 Gr(k ;+1). 1In the first chapter I discuss r =2 and in the second

1 state some of our meagre knowledge for r > 2
r=2,.
As far as 1 know the first paper which tried to study systematically
extremal properties of graphs was [3]. FPirst I state the following

general theorem of Simonovits - Stone and myself [4]. Let G be a graph
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of chromatic number k. Then

o) lim £ @/(3) =1 - -

In view of (1) we will mostly restrict ourselves to the study of
bipartite graphs. A result of Kovari, the Turdns and myself states that
[5] (the c's denote absolute constants not necessarily the same if they

occur in different formulas)
1
2-=
(2) !(n;Kz(t,t))dcln
In other words every G(n; [clu ] contains a complete bipartite

graph K,(t,t) as a subgraph if c, is sufficiently large. We conjec-

1
tured that (2) is best possible but this has been proved only for t =2
and t =3 [6]. Denote by C, @ circuit having k edges. Brown,

V. T. Sbs, Rényi and I proved that [6]

ceys372 1
1111': f(n,C4)/n =3

Our proof in fact gives

3
3) f(n;c4) S% ""E'”’(“)

and in fact many of us conjectured that

2

+24+0m .

f(n; Cq) = 3

wie

2
let n=p +p+ 1 where p is a power of a prime. Our method

gives

2
(p+1° p’ 1
—_..-.2_—+ "

(4) I(n;c4) =

It would be nice if we would have equality in (4).
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I proved that

1+l

(5) r(n,c2k) < ¢,n

I never published a proof of (5) since my proof was messy and perhaps
even not quite accurate and I lacked the incentive to fix everything

up since 1 never could settle various related sharper conjectures--all
these have now been proved by Bondy and Simonovits--their paper will
socon appear. Probably (5) is best possible but this has been proved
only for k=2 and k =3 (Singleton). For further results on cycles
see the papers of Bondy and Woodall [7].

Gallai and I proved that every G(n;[#(k - 1)n] + 1) contains &
path of lenght k and V. T. S6s and I conjectured that every such graph
contains every tree of k edges [1]. No progress has been made with
this conjecture [8].

Let G be a bipartite graph. I conjectured that £(a;G)/n "

tends to a finite non zero limit for some @ of the form % or

1 - -ll-‘-{k =2,3,...). Simonovits and 1 disproved this conjecture [9].

We still think that for every bipartite G there is an @,l1 < a < 2,

for which
5 l]iglnf(n:c)fnazc(ﬁ) , 0<c(@® <®

but the set of these a's is everywhere dense in (1,2). Probably
the @ in (6) is always rational.
Let G be the skeleton of a cube. Simonovits and I proved [9]

) f(n; G) < cnS}S

We could not decide whether (7) is best possible.



Simonovits and I determined f(n;G) 1if G is the skeleton of
an octahedron [10] and Simonovits determined f(n;G) if G is the
skeleton of the icosahedron

Before I close this chapter I state two simple unsolved questions

considered by Simonovits and myself. Let Gk be the graph having the

D TEEEeS § % de

k
1+ k+ (5) vertices X) i ¥yaeee¥y, o and %5

Xy is joined to yl,...,yk and zi.j is joined to xi and xj.

Is it true that

(8 ;G < cknm

1 proved (8) for k =3 [13]. Gk contains rectangles so that (8)

if true is best possible. Denote by G - x the graph obtained from

G by removing the vertex x and all edges incident to it., 1Is it true
that for every k

- X )/‘HB/Z =0,

‘112\; f(n; Gk

I1

Now we discuss some problems and results for r > 2. A few years

ago I proved that for every r and t there is an sr ¢ 2° that every
L]

Tei

¢ _(,[n T1%])  contains a K:r)(t,...,t) [12]. For r =2 this is the

theorem of Kovari and the Turans stated in (2). For r > 2, t2 2

the exact value of Er ¢ is not known. This result implies that every
)

G {n; [Enr]) contains a subgraph of m = m(n) *® as vertices which
r

has at least mr/ rr edzes. I conjecture that the folloewing result is



true: There is an absclute constant ¢ > —11-; B0 that every
r

r
Gr(n;[a; (1L + £)]) contains a subgraph Gr(m:[cmr]) where m = m(n) —»®
r

as n-+® ., The case T =2 is completely cleared up by the result of
Stone and myself [13][4]. For r > 2 and for r =2 and directed graphs
or multigraphs many unsolved problems remain (see a forthcoming paper of
Brown, Simonovits and myself).

In two forthcoming papers W. Brown, V. T. sbs and 1 began a
systematic study of extremal problems for r-graphs. Before stating
some of our results I state the most attractive unsolved problem:

Is it true that
2
) I(n;Crs(G,S)fn <0 .,

3/2

We proved ff(n;G3 (6;3) > cn and it seems likely that in fact

2-£
f(n;G3 (8;3)J< n for some € > 0, but we could not even prove (9).
Very recently Szemerédi states that he proved (9).

5/2 b

We prove that every G3 (n;[cln contains a triangulation of

the sphere for sufficiently large cl (the result fails 1f cl is
1
i T

small) . Simonovits independently proved that every Ga(n;[cn k])

contains a k- tuple pyramid and that for k =2 and k =3 the
exponent is best possible.

To conclude I state some of the problems,results, for 3-graphs. In our
paper for simplicity we take r = 3 (some of the results hold with

appropriate change for r > 3). We have

1 _ 1
%LE? ffﬂgﬁs (4,2) =% -
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but the determinatiom of
lim — #(n;G, (4;3))
N=wm na a3 ¥

seems to be very difficult, perhaps as difficult as Turads problem on

.t‘(n;[(3(4)) B

5 5
(10) ¢,n 72 ¢ £(n;6,(5;9) < c,n 7z

We have not been able to get an asymptotic formula for :l’(n;(i3 (5;4) .

By the probabilistic method we proved

2+8k
(11) I(n;Gs(k,k— 1) > n

but except for k =5 we do not know the exact value of ¢ It is

k'
easy to see that for every k>3 0,

(l) n® (k) 2

az) (f(nﬁ(kk-Z)dc n

x _ k) _1
1 =% _E,butfnr k>4 we have no

As stated previously c
asymptotic formula for f(n;Ga(k,k-z)) . 1 would not be surprised if it
would turn out that for every k

1
(13) }l= F f(n; G (k,k~-2)) =

mlr-'

The only argument in favor of this conjecture (the conjecture may
easily turn out to be nonsense) is the following

Theorem, Every 63(11 3 (2)] + 1) conteins either a Gy (5;3) or
a 53(5'.4).

Let x x be the vertices of our graph and T

11"" !9“'111 »

4 [%(g)] + 1 its triples. Since 3i > (g] at least one pair say



(xl,xz) i8 contained in two triples say T, and '1'2 . We can clearly

assume that no pair is contained in three triples for otherwise our

graph would contain a G3(5;3). Also 1f say Tl = (xl,xz,xs) and

'1‘2 = (xl,xz,x4) . No T, can contain (xa,x‘a) since if T = (lex‘i,xs) s

i i

then (.‘.3 (xl,xz,xz,x4,

which is contained in two triples there corresponds a pailr not contained

x5) contains three triples. Thus to every pair

in any triple. This correspondence can not be one to one since otherwise

4 would be x at most [%‘-(2“)] . Thus there must be two triples
(xl,xs,xs) and (xz,xs,xa) which have a common pair and also exclude
(xl,xz) . But then Ga (xl,...,xa) contains four triples and thus our

theorem is proved. I hope this argument can be improved.

It is clear that many moré problems could be formulated.
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