MATHEMATICAL STRUCTURES — COMPUTATIONAL
MATHEMATICS — MATHEMATICAL MODELLING

Papers dedicated to Professor L. [liev's 60th Anniversary
Sofia, 1974, p. 225-234

CHEBYSHEV RATIONAL APPROXIMATION TO ENTIRE
FUNCTIONS IN [0, <]

P. Erdds, A. R. Reddy

Dedicated to Professor L. Hliev's 60th Anniversary

Summary. Let f(z) be an entire function with non-negative coefficients. Put
min  max | 1/f{z)—1/ga(2) |=Aul2),
0=x<

= oo

where the minimum is taken over all polynomials of degree mot exceeding n. The authors
obtain various inequalities for A,(f), e. g. they prove thatif f{z) is of infinite order then for
every £>0 A, fj>e—=n holds for infinitely many values of n, but if f(2) is of finite
order then for every £>0, A,(f)<<cn holds for infinitely many 7.

Introduction: Quite recently Chebyshev rational approximation to
certain entire functions on the whole positive axis has attracted the atten-
tion of many mathematicians. In this respect the papers ([3—7, 9]) are
worth mentioning. All these papers have been devoted only to entire func-
tions of finite order. On the otber hand, methods developed and used in
these papers are valid only to entire functions of finite order. In this paper
we develop a method by which we can get results for functions of zero,
finite as well as for infinite orders. We also obtain lower bounds for lgn,
the Chebyshev constants for 1/f on [0, o0). Besides this, we obtain much
more precise information in the case of functions of zero order. In fact we
give an example which shows clearly how much closely one can approxi-
mate entire functinons of small growth.

Notation. For any non-negative integer n, m, denotes the collection
of real polynomials of degree at most n. Then let

lop=_inf | 1/f—1/Pn|j0.e0)
PﬂEnn
denote the Chebyshev constants for 1/f(x) on [0, co)
Theorems:

=]

Theorem 1. Let f(z)= Z a,2" be an entire function with a,>0 and

=1
a,=0 (n=1). Then for an_; e>0, there are infinitely many values of n
such that
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(1) Zon=exp (—n/(log n)'=*).
It will be clear from the proof that (1) holds for every e, where
g(m) is increasing regularly and Zl,’mg(m)<oo.

Proof. Since f(z) is entire, |a, ' — 0. Put |a, =" = U,, then U,—c<.
Now it is easy to see from the convergence of

T Ja+1/t&10g k(og log £)%)
=4

that there are arbitrarily large values of n for which, for every [>0

@) Ui I_T(; +1/((n-+2) log (n+£)(log log (n+£))?))-

From (2) we get with /=nr

(3 Uszn>Ux(1+1/(2log n(log log n)*)).

Let S,(x) denote the n-th partial sum of f(x). Now we prove under the
uniform norm

(4) | 1//(x)—1/San(x) | <exp(—2n{(log 2n)!~%), x>0
and all large n. From the definition of 4, (1) follows from (4).

To prove (4), observe that on the one hand we have for all x=0
(5) 0=1/S5ulx) = 1/f(X) < 1/ SpalX)=1/anx".
Now for any >0, let x=U,(1+1/(log n)!*=2), then
a,x"=(1+1/(log n)!+=2)" = exp (n/2(log n)! =2y > exp (2n/(log 2n)! +¢).

In other words (4) holds for x=U,(1+1/(log n)'+=2).
Now let x<U,(1+1/(log n)l++2). Then for n=n,,

oo

6)  O=1/SonX)—1f(x)=(f(x)—Sarl®))/f(X)SerX)sa5? > aps*.

k=2n+1
By (2) and (3) we have for £>2n

(7) ar <U_*141/2log n(log log n)2)—*.
Thus, from (6) and (7) for x<<U,(1+1/(log n)'++?), we obtain
o 2‘ arx*<ag? Z U7*(1+1/log n(log log n)?)—* U*(1+1/(log n)! +</2)
1

k=2n+ k=2n+1

=a;? j ((1+1/(log n)!+=2)(14-1/2(log n)(log log n)2)—")*

k=2n-+1
* § may not be the same at each occurrence.
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<@ Z (1-—1/4(log n)(log log n)?)*<exp {—2n/(log 2n)' +¢)

E=2n+1
as stated.

Theorem 2. Let f(z) be an entire janction of infinite order with non-
negative coefficients. Then for any >0 there are infinitely many values
of m such that

(8) ;‘iD,m}—. g—em,

Proof. Let us assume on the conirary the following:
(9) | (%) —1/Pyfx) | <e—

is valid for all large 7z and all 0=x<co. Since f(2) is of infinite order, for
every 7, there are arbitrarily large values of £, for which

(10) (ft)y <fit1+1/r).

It is possible to choose for any f, and ¢>0 sufficiently large n, such that
(11) fit)=ens,

From (9) and (11), we get for O0<x=¢,

(12) max | Pn(x) |<e4,

Now it follows from (12), for sufficiently large r, in the inferval 0<Cx
=t{(1+1/r) along with (9) of [10, p. 68],

(13) max | Po(x) | <ew?.

Take x=¢/(141/r), then

(14) U +1/r)>(f(E) = erenB>enn,
That is

FE) 0<1/Po(x)— e~ <1/Pox)— 1/fitA1+1/1)

From (15) it is easy to verify that

| 1/Py(x)—e~2m >e—n  for O0<x<{t[(1+1/r),
which contradicts our earlier assumption (9). Hence the theorem is proved.

Theorem 3. Let f(z)= Z a,2" be an entire function of finite order o
n=0
with a,>0 and a,=0 (n=1). Then for any >0,
(16) lim (dg,»)¢+9¥"<0.08.

f—yoa

Proof. Since f(z) is an entire function of finite order o, we get for
any >0

(17) lim nle+o | g, [ln=0 ([2, p. 9])

R—heo
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put U,=a;', then Upn—'fe+e) — co. Then there exist infinitely many n
for which
(18) Unsdn4- - 1etozUntieto (1=, 1, 2,...).

Let U,=(1.6)4e+a),
Then as in the case of the proof of Theorem 1, we get

(19) | 1/f(%)—1/Sanl) | S 1/SauX) <1 /g2 < (1.6) e ),

On the other hand let x<<U,(1.6)(e+a),
For any k>n, we get from (18),

kl(e+e) [ a l”k<Un_lﬂ”(g+')-
That is
(20) | ae |[<U, X njk)*e+e),
Then as earlier

| VAX)—1/Seal(%) |=a5? D) ap x*

k=n-+1

(21) <a;? 2 U ¥(n/kyHe+e)(1,6)k e+ U

k=2n+1

—az? Y (L6njk)e+a = ag¥1.6n)(2n-1))@n+e+e)

k=2n+1
><(2n+1)”‘"+=)/((2n+I)”@"'d—-(l.ﬁu)”f“*)).
Hence from (19) and (21) for all 0=x<oo along with the definition of 4,

lim (4.1 *+9"< max (116, 0.8)=0.8.

Remarks. We can replace lim by 1im for certain functions of regu-
lar growth.
Examples:

f)=1+ 3 x(nlog ny-ne ;

n=2

i 0<0<°°s
fx)= 2 x"(oeelny", oo o,
n=0

Theorem 4. Let f(z)=_>'a,z" be any entire function with a,>0 and
n=0
a,=0 (n=1). Let M(r)= mlax 'f(z)| and
| 2 |=r
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1< Tim (log log M(r))/(log log 7)= 1< 2.
r—yoo
Then for any >0,
(22) lim (2, "¢71#9=0.

f—3co

Proof. We get from [8, Theorems 1 and 3],
Tim (log n)/log (—,l: log |1/a, |)=,1—1.

A—300

From this we get as earlier for any £>0

(23) lim | a, V7 exp (n1/G—1+)=(,

(24) Put U,=a_1" then U,exp(—n"G-1+) _ co,
Then there exist infinitely many » for which

(25) Up 1 exp (—(n+DV0—1+9)= U, exp (—nl0—1+2),
Now let x=(20)""“"9), where 1<6<e/2.

Then

San(X)Z apx®Z a,Un(20)r - 10140 (ggyal +10-140)
Hence as usual
(26) | 1/F()—1/San() | = (28)n- 61+

On the other hand let x<U,(20)*“'**), Then as earlier it is easy to see
that for any &>n,

(27) | ap | U exp (R(n'0—1+2)—gliti—1+e))),
Therefore,

Daxt< Y 20yt T b (k(miiG—1+e) — p1G=1+e3))

kE=2n+41 k=2n+1

< (20" exp (—kiu—1+)

k=2n+1

(28) < (206717 exp (—(2n)H et +a)Rat
X ((14(28) "1+ exp (niG—140)) exp ((2m)IO—1+04 . )
= ((20)* VO179) exp (— nliG—1+e)(QU—1+e) 1)))2+1
X ( exp ((2n)/6—1+9))/(exp ((2n) 1 +o)—(20)n 1),
Therefore we get from (26) and (28) along with the definition of iy,
lim (fo,) VG140 =0,

f—oo
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Theorem 5. Let f(x):qukxf, where 0<g<<1 and 2=k<co. Then

=
e - Ry o =
(29 g= lim (Zon)"" =lim(do.)i" = g1—2'""".
e n—oo

Proof. Let us write for convenience a,=q" =1 Jdidy . . . d,. Where d,

is positive and strictly increasing to o with n, S, denotes the rz-th partial
sumr of f(x). Then

0=1/San1(x)—1/f(x)=(f(x)— San—1(X))/f(%)S2n—1(%)

~, a s
=82 (%) _Z ar X* 09, x%"a 2" 2, Q2n1+7%7 | Qgny
k=n =0
because 83, (%)= ax™.
Therefore
(30) 0= 1/Son1(%) —1/f(X) S 007 Vd;,fﬂxf
J=0
Now we wel ron (30) for all 0<x=d,,,
0=] rézn-— TERE g \‘;;ama;‘_g Z (darr,-“fdm—:l)j:aanan_gd?rs -I-1X (d2n+l‘“ dﬁn)'
J=0
That is,
. {ido. . . d d2n41
31 0=1,8s, _,.—fx<—l1 g ___. :
( ) ! I{ ) 1 f( ) 1‘; . ods, d2n+l_d25

On the other hand let x=d,,, then
0= 1/8on1(X)—1/f(%)=1/Son-1(X)=1/dx"
(32) <l/a,df,=ddy. ..dd3"

By comparing (31) and (32), it is easy to see that for all large n, (31) is
larger than (32). Let

(33) 4= _sup (USA)—1/f(), wn=ng

Now subslitute a,,:q"k (k=2) in (31), then we obtain

(34)  0=1/Sumi(0)—1[fR)= g2 j(1—gins =),
Then from (33) and (34), we obtain

(35) lim (dog_p)@n F=g—2""",

n—oo

(35) is true for every large integer n of the form 27,—1 (p=1, 1, 3,...).
Let 2n,—1=n<2n,+1, then
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—k —k k —k, R —k (2n_i2 so*
4D iiif(zﬂ+l)1 — . Gm) eny) () =(4 (2np) ) 2%

2=t = g 1 2n,—1
therefore
— T R,
lim (20,2)* =lim 47
fi—koa H—roo
—k N 1—&
_llll‘l (Aﬂrrp—lmn‘”) (2ﬂpf(2ﬂp+2)J ;_.;ql—2 .

P=ro

We can also show easily that lii_n(ig‘,,)“ﬁkéq.

R—oco

Let fiz)=Y¢/" 2/ (k=2), let M(r)= max |f(z)|, then it is known [8,
j=0 2|=r

Theorems 1, 3] that,

(36) @(log log M(x))/log log x =k/(k—1).
From (36) we get for any ¢>0, there is an r,, such that for all r=ry(e),
(37) M(r)=exp ((log r)k1+e)iE—1)),
For all 0=x=r, we have
(38) 0=f(x)=f(r)=M(r)=exp ((log r)k1+iE=1), k=2,
From the definition of 4y, we know that
(39) lon= inj | 1/f(%)— 1/Pn(X) | 10,0):
;e o

Now we pick only those £, which give best approximation in the sense
of (39), and we denote them by P). Then

(40) 1/f—1/P:<lop

! n—

We choose in (38), r—exp (nt—1*1+2) then exp ((logr)¥1+=*-D)=e", then
f(x)=e" <1/lon, which is valid for all large n, because of

H(;.g'a)k = = gl—QI_k'

H=—hon

Now (40) gives with a simple calculation
(41)  —f2xX)(AfdonA-fXN =P (%) —[X)=fAx)/(1/ 20— f(x)), O=x=r.
From (41) we get

| Pr(x)—f(x) | = fAx)[(1/A0n— f(x)) =€*/(1 [d0,n—e" ),
(42) O=x=r,

because f2(x)/(1/4,.—f(x)) is an increasing function of x.
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Now let
(43) E, =int {o max |r, (x)—f(x)|}, wa=0.
- =x=r

r”En'

From (42) and (43) we get
(44) Ey =e*[(1[dpn—e"), In=n,.

To get the lower bound for E,, we transform the interval [0, r=
exp (n*+e)*-1)] into the interval [—1, 1] by means of the linear transfor-
mation

x:_t;;_l_ exp (nk—D4a)  _1={=1,

The function g(f)= f( H; exp (n"‘—‘)f‘*“ﬂ))) is also an entire function of 7.

From the statement of the theorem the coefficients of f(x) are clearly non-
negative now by using a result of S. N. Bernstein ([1], (16), p. 10)
we get

E, g™+ )(—1)/2" (n-+1)=f®+0) exp (#=DH0+(n + 1)2-2~(n-+ 1)
that is,

(45) Ey =@n1272"1 exp (n*-1V*0=2)(n 1 1)),
Hence by (44) and (45), we get
(46) @n+1 2721 exp (nA—DRO+)(n+ 1)) =e2/(1 /A n—e" ).

A simple calculation based on (46) gives us by observing the fact that k=2
and a, -—=q"’ 5

lim (fg,) "= g.

n—yoo

Theorem 6. Let f(x) be a real valued continuous function (not +0)
on any finite interval [0, b] and assume that there exist a sequence of
real polynomials {P,(x)}y with P,¢n. for. each n=0, and a real number

R>1 such that
(47) lim (|| 1/f(x)—1/Pa (x) [} "< 1/R<1
for any 0<a<1. Then f(x) is infinitely differentiable on [0, b].

Proof. Let M(b)=||f||p,5; 0=b<ce. For any R, with R>R,>1, it
follows from (41), that there exists a positive integer n,(R;) such that

(48) | 1/f(x)=1/Pa(x) | =R  for all n>ny(R)).

Now for any fixed b>0 and «>0, we can find a least positive integer
ng=nsy(b) such that

(49) R >R —M(b)=R"2-" for all n>ny(b).
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We get from (48) and (49) with a simple calculation that

(50) | Pe —fl|<2MB)R " for all nz=max (n, ny)=n,
Denote by

(51) E,(f; 0, b)=qiriﬂf—0nf.’w, B

From (50) and (51) we get

(52) Ea(f; 0, 5)=2MB)R;"", n=ns

From (52) we get

(53) nlﬁ‘ E-" <1.

From (53) we get for any positive integer
(54) lim w’E, (f; 0, b)=0.

n—rco

Then it is known ([10, p. 350]) that f is infinitely differentiable on [0, &].
Remarks:
In conclusion it may be pointed out that it is possible to obtain much
more information than in [3] using the method of Theorem 5 for certain

entire functions. For instance, let f(z)=1-+ Z (log n/n)*lezn , where 0<o<

n=1
oo, this is an entire function of order ¢ and type infinity, satisfying the
assumptions of Theorem 5 of [3], but the conclusion is

lim (Ao ,)l"< 1.

n—roo

It is easy to show for this function by adopting the method of Theorem 5
that

lim (Jgn)\n <2V,
n—oo

Further, let

g2)=1+ 'z 112238 . . pn,
n=1
this is an entire function of order zero with
lim (log log M(r))/log log r=14=2.
n—oo

For this function, we can show easily by using the method of Theorem 5 that
lim (4o,,)% =0,

improving the conclusion of our Theorem 4 for this function.
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Similarly, there exist many entire functions satisiying certain growth
conditions for which we can get better conclusions than some of the theo-
rems presented here.
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