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Summary. Let f(z) be an entire function with non-negative coefficients . Put

min max I I1f(z)-11g,,(z) J=A,(z),
o<x<-

where the minimum is taken over all polynomials of degree not exceeding n . The authors
obtain various inequalities for A,(f), e. g. they prove that if f(z) is of infinite order then for
every c>0 A,(f)>e-En holds for infinitely many values of n, but if f(z) is of finite
order then for every s>0, A j(f)Ccn holds for infinitely many n .

Introduction : Quite recently Chebyshev rational approximation to
certain entire functions on the whole positive axis has attracted the atten-
tion of many mathematicians. In this respect the papers ([3-7, 9]) are
worth mentioning. All these papers have been devoted only to entire func-
tions of finite order. On the other hand, methods developed and used in
these papers are valid only to entire functions of finite order . In this paper
we develop a method by which we can get results for functions of zero,
finite as well as for infinite orders. We also obtain lower bounds for Ao,,,,
the Chebyshev constants for 1/f on [0, co) . Besides this, we obtain much
more precise information in the case of functions of zero order . In fact we
give an example which shows clearly how much closely one can approxi-
mate entire functions of small growth .

Notation. For any non-negative integer n, -rn denotes the collection
of real polynomials of degree at most n . Then let

2o,n= inf 1,1If- IIP. Il[o,-)P En,,

denote the Chebyshev constants for l/f(x) on [0, oo)
Theorems :

Theorem 1 . Let f(z)=Ea„zn be an entire function with, a,>0 and
n=o

1). Then for any E>O, there are infinitely many values of n
such that
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(1)

	

1o,n C exp (-n/(log n) 1 I )
.

It will be clear from the proof that (1) holds for every

	

where
g(m) is increasing regularly and Yl 111mg(m)<co.

P r o o f. Since f(z) is entire, a,, : "', , 0. Put a -'

	

Un, then U,- c
Now it is easy to see from the convergence of

11(l + 1,1(k log k(log log k)'))
k=4

that there are arbitrarily large values of n for which, for every 1>0
c

(2)

	

Un+i>Un lj(l+ 1!'((n { t) log (n+t)(log log (n+t))2)) .
t=1

From (2) we get with l = n

(3)

	

U2n>Un(1 + 1/(2 log n(log log n) 2)) .

Let S,(x) denote the n-th partial sum of f(x) . Now we prove under the
uniform norm

(4) 1 1/f(x)-1/S2n(x) I<exp(-2nl(log 2n) 1+ , ), Vx>0

and all large n. From the definition of AJ,n (1) follows from (4) .

To prove (4), observe that on the one hand we have for all x>0

(5)

	

0 c 1/S2n(x) - I lf(x) < I /S2n(x) 1 l anxn .

Now for any s>0, let x>Un(1+1/(logn)1+=/2), then

anxn- (1 +1/(log n)1+-`2)n> exp (n/2(log n)1+=,2) >exp (2n/(Iog 2n),

In other words (4) holds for x>_ Un(1 + 1 /(log n)1 += 12) .
Now let x<Un(1-}-If(logn) 1+=rz) . Then for n :-:-n,,

(6)

	

0< 1 IS2n(x)- 1lf(x)= (f(x)- S2n(x))/f(x)S2n(x)<_ ao 2 -1 akxk.
k--2n+ 1

By (2) and (3) we have for k>2n
(7)

	

ak <Unk(l + 1 /2 log n(log log n) 2)- k .

Thus, from (6) and (7) for x<Un(1+l1(logn) 1 +=r2 ), we obtain
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s s may not be the same at each occurrence .

ao 2

	

akxk<a~z

	

Unk(l+1/logn(loglogn) 2 )-k Un(1 { 1/(logn)1 +=?z)k
k=217+1

	

k=2n+1

=a0 2

	

((1 + 1/(log n) 1 -= z)(1 + 1/2(log n)(log log n)2)-1 ) k
k=2n+1



(8)

(9 )

(10)

<ao2 Y (1 -- 1/4(log n)(log log n)2)k<exp (-2. i/(log 2n)' -)
k=2n + 1

as stated .
Theorem 2. Let f(z) be an entire function of infinite order with non-

negative coefficients . Then for any e>O there are infinitely many values
of in such that

~ o m > e-E nt .

P r o o f . Let us assume on the contrary the following :

I IIf(x)- I/Pn(x) <e-en

is valid for all large n and all 0<x<oD. Since f(z) is of infinite order, for
every r, there are arbitr«rily large values of t r for which

It is possible to choose for any tr and e>O sufficiently large n, such that

(11 )

	

.f(tr)=eE ~ •
From (9) and (11), we get for 0<x-:ztr

(12)

	

max,, P,,(x) I<e£n ;4.

Now it follows from (12), for sufficiently large r, in the interval O<x
tr(1-1-11r) along with (9) of [10, p . 68],

(13)

	

max Í P,(x) I< eEn12.

Take x=tr(I + I Jr), then

(14)

	

f(tr(1 -1-1 /r))>(f(tr))r= erEn,!8>e2rn .

That is
(15)

	

0 < I /P,(x)-e-ten < 1
/pn(x)- 1 /f(tr( I + I /r)) .

From (15) it is easy to verify that

11/Pn(x)-e-2En', >e--En for 0<x<tr(1-I-1/r),

which contradicts our earlier assumption (9) . Hence the theorem is proved .

Theorem 3 . Let f(z)=~a nzn be an entire function of finite order Q
n=0

with a o>O and an >O (n> 1). Then for any e>O,

(16)

	

lim (tia,n)(°+`) ;nc0.08 .
n- -

n-e-

(f(tr,j)r<f tr(1 + Ilr».

P r o o f. Since f(z) is an entire function of finite order o, we get for
any e>O
(17)

	

lim nll(°+E) Í an Í1'n=0

	

([2, p . 9])
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put Un =a, lrn, then Unn-11(P+E) -i, oc . Then there exist infinitely many n
for which

(18)

	

Un+,(n+I)-"(e+E)>Unn-u(-+E)

	

(1=0, 1, 2, . . . ) .

Let Un>(1 .6)'*,+E).
Then as in the case of the proof of Theorem 1, we get

19)

	

I 1 lf(x)- 1 I S2n(x) IC 11S2n(x)< 1 Janxn < (I .6rn 1(e+E) .

On the other hand let x<Un(1 .6) 1 1(Q +E) .
For any k>n, we get from (18),

ku(e+E) at l1k<U
n
-1n1*,+E) .

That is

(20)

	

I at

Then as earlier

X (2ná--1)'1(P+E)J((2n+ 1)11(9+E)- (1 .6n)"(e+E)) .

Hence from (19) and (21) for all 0<x<oo along with the definition of 20,n

lim

	

max (1,11 .6, 0.8)=0.8 .
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n->-

1 /f(x) -1 JS2n(x) IC ao 2 Ia* x.1
k=n+1

cu

(21)

	

<ao2

	

U-k(nJk)k~(P+E)(1 .6)k~(P+E)(Jn
k=2n+1

=aj-2

	

(1 .6n/k)MQ+E)=a~2(1 .6nC(2n { 1))(2n+1)ne+E)
k=2n+1

Remarks. We can replace lim by lim for certain functions of regu-
lar growth .

Examples :

f(X) = I+ZXn(n log n) -n1v ;
n=2

0<a<00,

f(x)
- ,,.Yxn(6eol n)n'Q, Q<e< en=0

< Un k(nlk)k/(e+E) .

Theorem 4. Let f(z)=Zanzn be any entire function with a0>0 and
n=0

an >_0 (n>1). Let M(r) = max 1 f(z) ~ and
IzI=r



Then for any s>0,

(22)

I :S hm (log log M(r))/(log log r)=2<2 .
r-D o0

P r o o f. We get from [8, Theorems 1 and 3],

lim (log n)Jlog
n

log's 1/an I)=A-1 .n-a-
From this we get as earlier for any e>0
(23)

	

lim jan I1/n exp (n1/(z-1+E))=0,

(24)

	

Put Un=an1'n then U,, exp (-nll(z-1+E))

	

~,

Then there exist infinitely many n for which

(25)

	

Un +i exp (-(n { l)'it~.-1+E))>Un exp

Now let x>(26)n1~(z-'+E), where 1<6<e/2 .
Then

S2n(x) > anx n > a,,Q'I )n . n11(z-1+E)- (26) nl+'(z-1+E)

Hence as usual

(26)

	

1 1 Íí(x)-- 1 /S2n(x) I < (20)-n . n 01-1+E) .

On the other hand let x<Un(26)n1"('*-1+E) Then as earlier it is easy to see
that for any k>n,
(27)

	

at 1< Unk exp (k(n'i('-'+E)-k'~~A-'+E))) .

Therefore,

lim (~lo,n)n1rcz-1+E)=0.
n-a-

Y ak xk< 2 (20)kn l ('
-1+E)k

exp (k(n1i(z-1+E)-k11U-1 +=)))
k--2n +1

	

k=2n+1

~~ ((20e)0(..-1+E))k exp (-k1/V-1+E))
k=2n+1

(28)

	

---((26e)nli('-1+E) eXp (-(2n)u(z-1+E)))2n+'

X ((I +(20)n "(z-1+E) exp (nli(z-1+E)))Í exp ((2n)'r(z-1 +E)+ . . . )

((26)n "'-'+') exp ( - n11('-1+E)(21uz-1+E)- 1))) 2n+1

X(exp ((2n)1/(z-1+E)))/(exp ((2n)'r(z-1+E)-(20)n 11(z-1+E)),

Therefore we get from (26) and (28) along with the definition of 1o,n

lim
n-4-
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becatlse
:re fore

S227í-1(x ) a
~ 22n

áí

Theorem 5 . Let, .f(x)= jgjkx1, where 0<q<l and 2-~k<U . Then
j-o

qc lim (~0n)Il"k cltm(~ o,n)l :nkcq(I-z1-k)>,
n-aoo

	

nom

Proof. Let us write for convenience a n --qn k =1%d,d2 . . . d n . Where do
is positive and strictly increasing to 00 With n, Sn denotes the n-th partial
s11,í, of f(x) . Then

0C I1S2n-I(x) - lÍf(x)-(f(x)- S2n-I(x))If(x)S2n-I(x)

án2 I(x)~ a,, xk ` a2nx2"aR2x-2n

	

a2,+jxf la2nr
k=2n

	

j=o

OCLS2n-1(x) - 1lf(x)Ca2nan2 Yd-j xi .
!_0

Now w -et ',on (30) for all 0<x ~--- d2n,

a . a 7i2

	

(d d

	

)'= a-2d2, j(d 1 d )0--= 1 S2n

	

Zn

	

2n-I

	

a2n

	

+1

	

2n I-- 2n
j=0

That is,

(31)

	

0-,1 ;'S_t,.-I(x)-l/f(x)<-
d jd2 . . .dn -

	

den+I
dt,-1`!n_';-2 . . . den

	

d2n+1 -d2n

On the other hand let x~-d2n , then

0c1,1S2n_1(x)- I lf(x) 111S2n-1(x)clldnxn

(32)

	

C 1land n =did, . . . d nd2n n .

By comparing (31) and (32), it is easy to see that for all large n, (31) is
larger than (32) . Let

(33)

	

in = sup i l/S,(x)- l'f(x) Vn>_n,

Now substitute an =qn k (k>2) in (31), then we obtain

(34)

	

0<~ 1/S2n-I(x)-Ilf(x)Cq(2t :)k(I-21-k)I(1-q2(n+I)-nk-(n +2) k ) .

Then from (33) and (34), we obtain

(35)

	

HID (d2n-I)(2n)-k q1-2 1-k .
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n--~oo

(35) is true for every large integer n of the form 2np-1 (p=1, 1, 3, . . .) .
Let 2np -1 ~n<2n,,+I, then



d(n+1)-k ~2n1)-k
= ,2rP12nP)k (2nP)-k(n-1)-k (ZJ 12np)-k) (2nP1(2Á-2))

k

P

therefore

We can also show easily that lim
n~-

Let f(z)=Z q kzj (k>2), let
j=0

Theorems 1, 3] that,

lim (42n -1(2nP ) -k (2nP 1(2nP+2)) k -~ q1-2
1-k .

PP- -

x~-

-k	 -k
lim ( ?O, n) n =fim d n

-h

,'vl(r)= max
Izl=r

f(z)

(36)

	

lim (log log M(x)),'log log x =k f (k-1) .

, then it is known [8,

From (36) we get for any e>O, there is an ro , such that for all r>ro(E),

pn G .r
Now we pick only those Pn which give best approximation in the sense
of (39), and we denote them by Pn. Then

(40)

	

1 If-1 ;P-- Ao,n .

We choose in (38), r- exp(n(k-1)!k(1+E)) then exp ((log r)k(1+E)1(k-1))=en,
f(x)-en < l /7o , n , which is valid for all large n, because of

hm (~(),n)k-n -- q1-21-k .
n --4-

Now (40) gives with a simple calculation

(41) -f2(x)1(1Í~o.n~-f(x))c pn(x)-f(x)Cf2(x)1(lh0,n-f(x)), OCxCr.

From (41) we get

Pn(x)--f(x) `=f2(x)I(lIAO,n-f(x))-=e2n,i'(l fAo,n -en),

(42)

	

O-<x -~ r,

because f2(x)1(I1Ao , n -f(x)) is an increasing function of x.

then

23 1

(37)

	

M(r)`exp ((log r)k(1+E)1(k-1)l,

For all Of~.x~- r, we have

(38)

	

0-f&)<-f(r)=M(r)-exp ((log r)k(1+00-1)), k>2.

From the definition of d o, n we know that

(3q)

	

7p,n -- inf I I/f(x)-1/P,(x) il[o.-) •



Now let

(43)

	

En = inf { max j rn (x)-f(x) I }, V, > 0 .
r.Enn 0<x< r

From (42) and (43) we get
(44)

	

En < e2n1(l /Ao, n-en ), Vn>_ no .
To get the lower bound for En , we transform the interval [0, r=
exp(nk(I+E)1(k-I))] into the interval [-1, 1] by means of the linear transfor-
mation

x=-
t21

exp (0-I )bW+E),

The function g(t)=f( t +I exp(n(k-1 )1k(I+E)) ) is also an entire function of t .
From the statement of the theorem the coefficients of f(x) are clearly non-
negative now by using a result of S. N. B e r n s t e i n ([1 ], (16), p. 10)
we get

En =i g(n+I)(-l)/2n (n +1)-f(n+I)(0)eXp (n(k-1)Ik(I+F)(n+ 1))2-2n-1/(n+1)1

that is,

(45)

	

En ~-an +I2-2n-I eXp (n(k-I),!k(I-E)(n+ 1)) .
Hence by (44) and (45), we get

(46)

	

a,+12-2n-I exp (n(k-1)/k(I+0(n+ l))-:e2n/(1/4,n-en )

A simple calculation based on (46) gives us by observing the fact that k -2
and a,, = qnk ,

Jim (10, n ) n k>_ q .

Theorem 6. Let f(x) be a real valued continuous function (not *0)
on any finite interval [0, b] and assume that there exist a sequence of
real polynomials {P,, (x)}ó with Pn E7Ln for, each n>0, and a real number
R> 1 such that

(47)

for any 0<a< 1 . Then f(x) is infinitely differentiable on [0, b] .
Proof. Let M(b)=Jj f j i (o, n) ; 0<b< oo . For any R, with R>Rl> ], it

follows from (41), that there exists a positive integer n l (RI) such that

(48)

	

11 11f(x)- 11Pn (x)11 < Ri na for all n > nl(RI) .
Now for any fixed b>0 and a>0, we can find a least positive integer
N=n2(b) such that

(49)

	

)?,n"
>Ria -M(b)>R; a2-1 for all n>ng(b) .
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lim {II 1If(x) - 1/Pn (x) ~ }n
aC

1/R< 1
n~



We get from (48) and (49) with a simple calculation that

(50)

	

Pn -fjj- 2M2(b)RI 't a for all n~-max (ni , n2)=n3 .

Denote by

(51)

	

En (f ; 0, b)= inf Jjf-Q n II [o, h] .
Q, E'n

From (50) and (51) we get

(52)

	

En (f ; 0, b)~2M2(b)R I n a ,

	

n>n3 .

From (52) we get

(53)

	

Jim En n a < 1 .

From (53) we get for any positive integer

(54)

	

lim nrE, (f ; 0, b)=0 .
n- o-

Then it is known ([10, p. 350]) that f is infinitely differentiable on [0,b] .
Remarks :
In conclusion it may be pointed out that it is possible to obtain much

more information than in [3] using the method of Theorem 5 for certain

entire functions. For instance, let f(z)=l+

	

(log nJn)nlPzn, where 0<o<
nil

oo, this is an entire function of order e and type infinity, satisfying the
assumptions of Theorem 5 of [3], but the conclusion is

Further, let

this is an entire

n-

-a-hm (~0 n)lln< 1 .
n~-

It is easy to show for this function by adopting the method of Theorem 5
that

lim (%O,n) 1 !n-2-1 10

n--~oo

g(z)= 1 +Zzn / 1 12 233 . . . nn ,
n=1

function of order zero with

lim (log log M(r))/log log r= A = 2 .

For this function, we can show easily by using the method of Theorem 5 that
hm (ÁO~n ) 11n2=0,
n->

improving the conclusion of our Theorem 4 for this function .
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Similarly, there exist many entire functions satisfying certain growth
conditions for which we can get better conclusions than some of the theo-
rems presented here .
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