BOUNDS FOR THE r-th COEFFICIENTS OF
CYCLOTOMIC POLYNOMIALS
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1. Introduciion
We consider the cyclotomic polynomials

D iz) = TI (z—elm/m), (N
I'rl'lu: :ﬁ'—‘ 1
where e(xt) = **", and write @, in the form
#in)
D,(z) = Eﬂ a,(n) =", (2)

where o is Euler’s function.
Bounds for g, (1) in terms of # have been obtained by a number of people [1, 3, 4,
5,6,12, 13, 14, 16]. Bateman [2] has shown that

| (n)| < exp (n*/'°= % ")

and Erdds [7, 8] has shown that this is best possible,

Mirsky has mentioned in conversation that it is possible to obtain a bound for
a.(n) which is independent of n, Moreover, Mdller [15; (%) and Satz 3] has shown
that :

|a. ()| < plr)—=p(r—2), (3)
where p(m) is the number of partitions of m, and also that

max |a,(n)] > " (r = ro(m)). (C)]

There is clearly a close connection between the size of a.(n) and the values ®,(z)
takes as |z| = 1 —, Thus we first of all prove

TueoreM 1. For each z with |z] < | we have

| D2} < exp(z(l=]z)~"+C (1 =[z])73"), (5)
where
2
= St if &
2 1;[(1 pfp+l}) ®

Although this cannot be far from the truth, we suspect that the right hand side of

{5) should be
exp (ﬁ{{l—lzl}"}]
aslz] = 1—.

Our main theorem is
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TueorREM 2. We have
la,(n)] < exp (2:'2 P24 C, P YH), -
ard

12
]iquszupla,{n]l > exp (C; (@) ) (r > ra). (%)

Clearly (8) is much sharper than (4). By (6) we have © <4, and by a classical
result of Hardy and Ramanujan [10] we have

log (p(r)—p(r—2)) ~ n/(§) '

as ¥ — oo, Thus we see that (7) is stronger than (3).
In view of our remark following Theorem 1, we expect that

max |a,(n)] < exp(o(r''?)) (9
as r— oo, We also believe that (8) should hold for lim sup a,(n) and —lim inf e {n),

but we have been unable to prove this for all r. If we write r = 2™ where ¢ is odd,
then we can combine our proof of (8) with the relationship

qjl"" i {I} - mu{ _22#} (” Ddd}

to obtain the lower bound
F g Ty A
exp (Cl [I'{':rg_r) ) {t = ty)

in each case, but this is weaker if m is large.

A question suggests jtself in connection with this. If fi(n) is the number of
partitions of n into primes between X and 2X. then how large does i have to be
before fy is a monotone increasing function of n? Possibly n 2 X will suffice,

In §§2 and 3 we prove (5) and (7) respectively. Then in §4 we establish some lemmas
which enable us to prove (8) in §5.

2. Proaf of Theorem |
It is convenient to note here that

D, (z) = ll'[ (1= (= 1, |z 2 1), (10)
iflm

where i i1s Mibius' function. This follows easily from the well known formula
@,(z) = 5[(1"“ R 1 b
L}

When n = 1, (5) is trivial. We thus assume n > 1 and then on appealing to (10)
we obtain, for |z] < 1,

|®,(z)] = exp (?J (%) log |1 —:"l)

= i i
= exp (Reﬁu(d)[ug{] zj),
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where we have taken the principal value of the logarithm. Now log (1 —z") is regular
for|z| < I and has the Taylor expansion

in this region. We use this and iumrch_angc the order of summation to obtain

=hd

=

J=1 1 dimdl}

& nh'
|<b,,{z}|=exp(—Rez e r.‘,u(?)), (1)

By Theorems 271 and 272 of Hardy and Wright [11] we see that the inner sum is
Ramanujan’s sum ¢,(j), and we have

(G ) =1l sose( oy ) (12)

By (10) it is easily seen that

O, (z) = B, (z"™)
where

=[1p,

pln

50 that to prove the theorem it suffices to assume that n is squarefree. Then, by (12),
we have

n , :
.:|Elud'u(i)\ < o0n 1)) < $0o),

where j; =[],

i p. Henee, by (11),

i 'f,fn'ﬁ Iz ]_,)

|®,(2)] = exp ( Z (13)

Let f be the multiplicative function with f(p™) = —(m—1){p—1)". Then
JZ_I () p(ild) = Pljo),

¥ f(d)d™? converges absolutely to [J(1—(p+1)"%), and
Z @I < XTI +p™ ) < X7

Hence

E Q{r “ﬂ] e z &E} (_11“ —2}+0{{de}3{4}) -, TX+G{X'!""4}.

igx s2x

A partial summation applied to the sum in (13) establishes (5).

3. Proof of (T)
We use Theorem 1 with |z| = 1—(z/r)"%, and Cauchy's inequalities for the
coefficients of a power series, whence

la,(m)] < exp (2t"/2 #1124 €, #¥9)
as required.
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4. Lemmas for the proof of (8)
Throughout this and the next section we assume that r is large,

X =rA (14)
Y = fyX(log X)'? (15)

and p; (j= 1, ..., 5) are the =(Y)—n(X) prime numbers satisfying
X<p,<..<pY (16)

Lesma 1. Let k be the largest integer j such that p; < 4p,. Then every integer m
with m > Cy X can be written in the form :

k
ms ,f?l h‘fp‘l
with flj =0

Proof. Let R{u) be the number of representations of v as the sum of two primes
p',p* with p; < p’, p" < ip,. By an application of any of the modern forms of the
sieve (see, for instance, Prachar [17; Kapitel 11, Satz 4.8]), we have

W) | AL
R{u) < p, (logpy) '[“]p_l -

Thus by Cauchy's inequality and some elementary estimates we have
Z 1#p.

u
Riu}=0

This means that there are at least Csp,+ 1 numbers w, with 2p; =< u < 3p,, which
cnn be written in the form u = p'+p" with py < p', p" < 4p;. Hence there are at
least C5p,+1 residue classes w modulo p, so that

u=p+p" (modp,).

v =[p/ICs p,]]+1. an

Then by repeated application of the Cauchy-Davenpori theorem (for an account of
which see, for instance, Theorem 15, Chapter I, of Halberstam and Roth [9]) we
can write every residue class u modulo py in the form

Let

usmp,+p"+ ... +p, +p,” (mod p,)
with
Pe<pfs B <3P
By (I17), v is bounded. Let C, > 6v. Then since 2op, < p,'+ ... +p." < Jop; we are
able, by subtracting a suitable multipie of p,, to write every m > 1C,4 p, in the form
K
= hy pi

= ;?;-l ) Py

Moteover C.X > 4Cyp,. This proves Lemma 1.

We now introduce some further notation that we require in this and the next
section. Let b, be the coeflicient of z™ in the Taylor expansion of

(1=22)1 . (1 —2%)"!
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in powers of z, valid when |z| < 1. Clearly 4, is just the number of different ways of
choosing fy, ..., h, with /i; = 0 so that

hpi+ ... +hp =n.
In addition, let

|
T = [ﬁ ] (18)
and
.
St [rmpﬂ]‘ 02

Lemma 2. For at least one integer m with T < m = T+ 8 we have

roNi2
bu=b,_ > exp{C; (lug r) .

Proof. It suffices to show that

r 1/2
brig=by > eap [ C5 (Fgr) ; (20)
Since p, | 8, by s—by is the number of ways of choosing #y, ..., &, so that &y =0,

h, < Sjp, and

N
T4+S = ;Zn hy py-

Let g(v) be the number of ways of choosing /iy, ..., #,_; so that fi; = 0 and
®—=1 j"
b= .

Then, by Lemma 1 and (14),

bris—br = o iiznyso SO (21)
This last expression is at least as large as the number of ways of choosing Jy 4, ...y -y

so that iy = 0 and

s=1
|
(%, upi St

Thus, if we write

d=s-l=k=a(¥Y)-1-n{m) (22)
the sum in (21) is
—1 r
2 J=k+1 (1+ [SMPJ ])
=1 r

F j-l:I+l 50dp;
Hence, by (14),

2

elv) = exp (dlng--‘ff— -3(1’]+3Hp|)+logp,). (23)

o ssu‘%um S0

where as usual 3(x) = ¥, logp.
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By (14), (15), (22) and the prime number theorem with a reasonable error term,

X (log X)™": —3X (log X) ' — 5k X (log log X) (log X) 7
+ i1 +log 100) X (log X)™** + O( X (log X)™3),

id =1

XI
log Tl = log X +}loglog X +log 24+ O(log X)~ %)
and
HY)=B(3p)—logp, = thsX(log X)'"? -3 X + O(X (log X) ') (24)
Hence

2

d 1ng%d- = 155X (log X)'? + 1501 +log 200) X (log X) 12
—3X +0(X(loglog X} (log X)) {25)
By (21), (23), (24) and (25) we see that
brys—by > exp (C; X(log X)™'7).
As an immediate consequence of this and (14) we have (20), and hence the lemma,

LEMMA 3. Suppose m satisfies T <m = T+8. Then if r—m is odd we can
choose prime numbers g, g2 and g4 so thar

F— = +qa1+4,
ard
br<q <q<q <in
On the other hand, if r—im is even we can choose prime numbers q,, 41, 5 and g, 5o that
r—m=g+d:+43+q,

and
=g, <q;<qg; =gy <ir

The above lemma follows by a straightforward application of the Hardy-Little-
wood-Vinogradov method. There are a number of accounts of this method, One
that springs to mind is Prachar [17; Kapitel V1],

5, Proof of (%)
We show that there are arbitrarily large values of n for which |a,(n)| = 4, where
Foh 2
A= —ﬁcw( A ) 26)
For suppose not. Let ng = p; ... p, P, where P is a product of primes larger than r,
chosen so that p{m,) = 1. We first of all take n = n;. By (10)
®,iz) = (1-2)(1=z")"" ... (1—=2")"" x other terms,

and it is easily seen that
@) = br_br—I = ﬁ'ﬂl say.
Thus, by our assumption,
|Agl < A, 27)
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MNow let P, be a prime greater than P and ¢ any prime with
DG <, (28)
Then if n = nygqP; we have

@ (2) = (1-2) (q:u b, :"") (hzn z""') * other terms,

so that
a(n) = b,—b,_;+ ! ﬂzwq (Brcpg=brmig-1)
= Ap+ A (g), say.
Thus, by (27) and our assumption, we must have
|A{g)] = 24, (299
Now let P, be a prime greater than P, and g, and g, be any primes satisfying
Pe<g1<qa<r (30)

Then if n = ny4,g; P, P; we have

®,(2) = (1-2) (éﬂ b,,,z‘") ( F z"""‘)( ¥ z"”*) x other terms,

by=0 By =0
so that
afn) = A+ A(g )+ A (q2)+A5044,43),
where
ﬁ.‘!{qh QI} = mg;} . {br—h m—hz.u_br—h i~k ﬂ'l_l:l‘

ki g, +hyqp 5
Thus, by (27), (28), (29) and our assumption, we have for all g,, q; satisfving (30),
|Aziay, g2 < 64.

Proceeding inductively we see that for each set of j (= 3) primes g,, ..., q; satisfying
Pi=diy <..<g;=F (31)
we have
|Ai(gy, gl < (F+1Y4, (32)
where
ﬁ_;l'fhs --.!":]rj.:| — ﬁ“___§ - “"l‘_fllqn—...‘fu-ll;_br"h:qr"...-h_jq_,-- l}*
by gy R e

But if r/(f4+1) =g, < ... <q; < r}j, then

ﬂ_r{'l?j, (Rt q.f]' - br—m—"-—q;_bl‘—ul— T Mt o

Thus, by Lemmas 2 and 3 and (26) we see at once that there is a set of primes q,, ... g,
with j = 3 or 4, satisfying (31), and such that (32) is false.

This contradiction enables us to assert that {a,(n)| = A for arbitrarily large values
of n and thus, by {26), the proof of (8} is complete.
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