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1 . Introduction

We consider the cyclotomic polynomials

~m(z) _ Fl (z-e(m/n)),
m=1

(m, n)= 1

where e(a) = e2nia and write (Dn in the form

n

(1)

0(n)

(D n(z) _ y_ a,(n)zr,

	

(2)r=o

where a) is Euler's function .
Bounds for a,(n) in terms of n have been obtained by a number of people [1, 3, 4,

5, 6, 12, 13, 14, 16] . Bateman [2] has shown that

l ar(n)I < exp (n'llog log n)

and Erdős [7, 8] has shown that this is best possible .
Mirsky has mentioned in conversation that it is possible to obtain a bound for

a,(n) which is independent of n. Moreover, Möller [15 ; (9) and Satz 3] has shown
that

l a,(n)I < p(r)-p(r-2),

	

(3)

where p(m) is the number of partitions of m, and also that

max la,(n)I > rm (r > ro(in)) .

	

(4)

There is clearly a close connection between the size of a,(n) and the values (D n (z)
takes as lzl --). 1- . Thus we first of all prove

THEOREM 1 . For each z with lzl < 1 we have

I4)n(z)l < exp(c(1-Izl)-'+C,(1-lzl)-3/4),
where

(5)

T = IZ
( 1- P(P+1) )

	

(6)

Although this cannot be far from the truth, we suspect that the right hand side of
(5) should be

as Izl -+ 1- .
Our main theorem is
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exp (o((1- lz1)-i))
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and

lim sup Iar (n)I > exp C3 (lo
r

	

1/2

r)

	

(r > ro) .

Clearly (8) is much sharper than (4) . By (6) we have i < z, and by a classical
result of Hardy and Ramanujan [10] we have

log(p(r)-p(r-2)) - 71"/(3)r
1/2

as r -> oo. Thus we see that (7) is stronger than (3) .
In view of our remark following Theorem 1, we expect that

max Iar (n)I < exp (o (ri/z))

	

(9)
n

as r -4 oo. We also believe that (8) should hold for Jim sup ar(n) and -Jim inf ar (n),
but we have been unable to prove this for all r . If we write r = 2'"t where t is odd,
then we can combine our proof of (8) with the relationship

(D2-I In (Z) _ (Dn(-Z2m)

	

(n odd)

to obtain the lower bound

t

	

t~z
exp C3

(log t)
(t > to )

g t

in each case, but this is weaker if m is large .
A question suggests itself in connection with this . If fx (n) is the number of

partitions of n into primes between X and 2X, then how large does n have to be
before fx is a monotone increasing function of n? Possibly n > X will suffice .

In §§2 and 3 we prove (5) and (7) respectively. Then in §4 we establish some lemmas
which enable us to prove (8) in §5 .

2. Proof of Theorem 1

It is convenient to note here that

(Dn(Z) _ rl (I -Zly ( n/d) (n > 1, Iz1

	

1),

	

(10)
din

where µ is Möbius' function . This follows easily from the well known formula

q,. (z) = H (Zd-1)µ(n/d)

	

(IZI

	

I) .
din

When n = 1, (5) is trivial. We thus assume n > I and then on appealing to (10)
we obtain, for Iz1 < 1,

I(Dn(z)I = exp (Y_

din
p d) log I I -Zdl)

= exp
(
Re y n ) log (1 -zd)) ,

din

	

d

THEOREM 2 . We have
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Iar (n)I < exp (2i i / 2 r 112 +C2 r 318 ), (7)

(8)



where we have taken the principal value of the logarithm . Now log (I -z') is regular,
for I z I < 1 and has the Taylor expansion

in this region . We use this and interchange the order of summation to obtain

By Theorems 271 and 272 of Hardy and Wright [11] we see that the inner sum is
Ramanujan's sum cn (j), and we have

Y_dµ(
nd

-
u(

(

	 n

n~j) )
0(n)10(

	 n

(n, j) (12)d1n, did

By (10) it is easily seen that

where
M = 11p,

PIn

so that to prove the theorem it suffices to assume that n is squarefree . Then, by (12),
we have

Hence

	 00)
__ y-

f(d) X

	

zX + O (X)y-
0

JyX
	 J 	

dyX d ( d
rl(1-p-2)+O((X/d)3/4\) =

	

3/4

A partial summation applied to the sum in (13) establishes

)

(5) .

3 . Proof of (7)

We use Theorem 1 with I z I = 1- (í/r) 1 / 2 , and Cauchy's inequalities for the
coefficients of a power series, whence

as required .
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d	 n
dln, dl~

fd

	

d

I'Dn(Z)I = exp (-Re

	

z~

	

dµ(
n

~~ .

	

(11)
J = 1 j din, dlJ

	

d

on(Z) = (Din(Zn/nz)

~«n,i» < ~(jo),

where jo = rlpl , p. Hence, by (11),

I (Dn(Z)I < eXp ( JZ1
	 (

10} IzI')

	

(13)

Let f be the multiplicative function with f (p'n) _ - (m-1) (p-1)2 . Then

Y_f (d)0(j1d) _ 0(jo),
dl ;

Y, f (d) d-2 converges absolutely to H(1- (p+ 1) -2), and

Y- I f (d)I d-2
< X-114 rj(1 +p - 312) < X-114 .

d>X

l a,.(n)I < exp (Zc1/2 r112 +C2 r318)
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4. Lemmas for the proof of (8)
Throughout this and the next section we assume that r is large,

X = r 112 ,

	

(14)

Y = I ó o X(logX) 112

	

(15)

and pi ( j = 1, . . ., s) are the 7r(Y) -7c(X) prime numbers satisfying

X<pl< . . .<p,<Y.

	

(16)

LEMMA 1 . Let k be the largest integer j such that p i < jp l . Then every integer m
with m > C 4 X can be written in the form

k
m = E hi pi

i=1

with hi >0.

Proof. Let R(u) be the number of representations of u as the sum of two primes
p', p" with pl < p', p" < jp, By an application of any of the modern forms of the
sieve (see, for instance, Prachar [17; Kapitel 11, Satz 4 .8]), we have

R(u) < PI (logpl) 2 jjP
Plu p- l

Thus by Cauchy's inequality and some elementary estimates we have

y_ 1 > Pi-
u

R(u)>0

This means that there are at least C S pl + 1 numbers u, with 2p l < u < 3p 1 , which
can be written in the form u = p'+p" with p l < p', p" < Zp l . Hence there are at
least C S p l + 1 residue classes u modulo p l so that

u - p'+ p" (mode,) .
Let

v = [PI1[CSPI]]+1 .

	

(17)

Then by repeated application of the Cauchy-Davenport theorem (for an account of
which see, for instance, Theorem 15, Chapter 1, of Halberstam and Roth [9]) we
can write every residue class u modulo pl in the form

u =- pl'+PI"+ . . . +p„'+p„' (model)
with

p, < pi', Pi " < ipi .

By (17), v is bounded . Let C4 > 6v. Then since 2vp l < p l'+ . . . +p„" < 3vp l we are
able, by subtracting a suitable multiple of p l , to write every m > TC4 p1 in the form

k
m = Y hl pi .i=1

Moreover C 4X > 2C4p1 . This proves Lemma 1 .

We now introduce some further notation that we require in this and the next
section. Let b,,, be the coefficient of z' in the Taylor expansion of

(1-ZP')-, . . . (1-ZPs) -I
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in powers of z, valid when JzJ < 1 . Clearly b;,, is just the number of different ways of
choosing h l , . . ., hs with hj > 0 so that

397

LEMMA 2. For at least one integer m with T < m S T +S we have

r

	

1~z
bn, - b,n - I > exp C6

(logy)
~ .

Proof. It suffices to show that
1~z

bT+s-bT > exp (C'
(lo

r
r)

	

(20)g
Since ps I S, bT+s-bT is the number of ways of choosing hl , . . ., hs so that hj >, 0,
hs < S/p s and

Let g(v) be the number of ways of choosing hk+1, . . ., hs-, so that hj > 0 and

Then, by Lemma 1 and (14),

bT+s -bT >

	

E g(v) •

	

(21)
0SvSrl50

This last expression is at least as large as the number of ways of choosing h,+ 1, . . ., hs-1
so that hj > 0 and

Thus, if we write

the sum in (21) is

s
T+S=

	

hi pi .j=1

s - 1
v =

	

hipjij=k+1

s-1
E hj pj < -I r .

j=k+1

d = s-1-k = 7r(Y)-1-z(zp1) .

	

(22)

S-1
II (1+

j=k+1

s-1

	

r
j=k+1 50dpj

50dpj ] )

Hence, by (14),

y- g(v) > exp (dlog	
x2

-'9(Y)+9(zp1)+loges),

	

(23)
0 -<v-rí50

	

sod
where as usual 9(x) _ EP ,, log p .

h 1 p1+ . . . +h, p, = m .
In addition, let

T
[10 r]

(18)

and

S = ps [

	

] . (19)100 Ps
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By (14), (l5), (22) and the prime number theorem with a reasonable error term,

d = i I X(IogX) -i / z - z3-X(logX) -i - z I	 X(IoglbgX) (logX) -3 / z
00

	

00

+ i ó	 0(1+10g 100) X(log X) -3 / z
+ O(X(log X) -z ),

z
log 50d = log X+s log log X+log 2+0((log X)-1/z)

and
,9(Y) - ,9(zp1) -logps = l ó oX(logX) 1 / z - zX+O(X(IogX) -i ) .

	

(24)
Hence

z
dlog	

Sod
= ióoX (log X)i/ z + í ó o (1+log200)X(logX) -i / z

-zX+o(X(loglo9X)(109X)(2s)

By (21), (23), (24) and (25) we see that

bT+s - bT > exp (C7 X(log X)-1 /z) .

As an immediate consequence of this and (14) we have (20), and hence the lemma .

LEMMA 3 . Suppose m satisfies T < m < T+S . Then if r-m is odd we can
choose prime numbers q 1 , q z and q 3 so that

r-m = q1+qz+q3
and

4r < ql < qz < q3 < 3r.

On the other hand, if r-m is even we can choose prime numbers ql, qz, q3 and q4 so that

r-m = q1+qz+q3+q4
und

sr < ql < qz < q3 < q4 < 4Y .

The above lemma follows by a straightforward application of the Hardy-Little-
wood-Vinogradov method . There are a number of accounts of this method . One
that springs to mind is Prachar [17 ; Kapitel VI] .

5 . Proof of (8)
We show that there are arbitrarily large values of n for which la,(n)l >, ),, where

r

	

1/z
íl = e I s exp C6 (log

r)

	

(26)

For suppose not . Let n o = p l . . . p, P, where P is a product of primes larger than r,
chosen so that µ(n o ) = 1 . We first of all take n n o . By (10)

(D„ (z) _ (1-z) (1-zp') - i . . . (1-zps)- ~ x other terms,

and it is easily seen that
a, (n) = b,-b,- 1 = Do , say .

Thus, by our assumption,
IDoj < ~.
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Now let P, be a prime greater than P and q any prime with

ps < q < r.

	

(28)
Then if n = no gP, we have

,D,, (z) _ (1-z) (

	

b,,, z') (

	

z'

	

x other terms,
m=0

	

h=o

so that

= Ao +A, (q), say .

Thus, by (27) and our assumption, we must have

IA,(q)l < 2~ .

	

(29)

Now let P 2 be a prime greater than P,, and q, and q2 be any primes satisfying

ps < q, < q 2 < r .

	

(30)

Then if n = n o q1 q2 P, P2 we have

so that

where

where

ar(n) = b,-b,-,+

	

(b,.-hq-br-hq-1)
1 <h<r/q

(%(z) _ ( 1 -z) ( Y, b,,,z" ) (

	

Zh ' g ) (

	

Z''2 9z) X other terms,
m=0

	

h,=0

	

h2=0

ar(n) = Ao+A1(g1)+A1(g2)+A2(g1,g2),

A2(q,,g2)-

	

h,,h2 1
(b r - h,q, - h2g2 -br-h,gi -h2g2- 1) •

h, q, +hz q2 <r

Thus, by (27), (28), (29) and our assumption, we have for all q,, q 2 satisfying (30),

1A2(gl,g2)I < 6A.

Proceeding inductively we see that for each set of . j (,> 3) primes q,, . . ., qj satisfying

p,<q,< . . .<qj <r

	

(31)
we have

IAj(q,, . . .,q j)1 < (j+l)j~,

	

(32)

Aj(q,, . . .,qj) _

	

(br-1, ql- . . .-hjgj-br-hI qi- . . . -hjgj-1) •
h1 + . .

,hj%1
h, q,

.
. +hj qj <r

But if r/(j+1) < q, < . . . < qj < r/j, then

Aj(gl, . . .,q j) = br-q,- . . .-qj-br-q,- . . .-qj-1 •

Thus, by Lemmas 2 and 3 and (26) we see at once that there is a set of primes q,, . . . . qj
with j = 3 or 4, satisfying (31), and such that (32) is false .

This contradiction enables us to assert that lar (n)I > íl for arbitrarily large values
of n and thus, by (26), the proof of (8) is complete .
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