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OSCULATION VERTICES

IN ARRANGEMENTS OF CURVES

1 . INTRODUCTION

In 1897 de Rocquigny [18] raised the problem of determining the maximal
number of points of tangency possible in a system of n mutually non-crossing
circles in the plane . The problem seems to have been forgotten until an anal-
ogous question concerning 'Apollonian arrangements' of curves was raised
and the solution indicated in [11] . The aim of the present note is to indicate
the easy solutions to those questions together with some results on osculation
vertices in more general arrangements of circles or curves .

We begin by defining a number of concepts ; our terminology is patterned
after that of [11], modified to suit our present needs . A finite family
le= {C,, . . ., C„} of n=n (') simple closed curves is called an arrangement of
curves provided the intersection C i r C, of any two curves in V is either
empty, or a single point, or a pair of points at which the curves cross each
other. Each point which belongs to two or more curves is called a vertex of
the arrangement . If a vertex is the only intersection point of some two curves
it is called an osculation vertex, and the two curves are said to osculate each
other at that vertex . (It should be noted that through an osculation vertex
there may pass additional curves of the arrangement, either osculating other
curves at the vertex, or crossing them .) An arrangement of curves ' is called
Apollonian provided all pairs of its curves have either empty or one-point
intersections ; hence all its vertices are osculation vertices . We shall denote
by fo (W) and w (le) the number of all vertices and the number of osculation
vertices of the arrangement ' . Clearly w (W)=0 if n (W)=1, and w (W) S I if
n(f=2 ; also selfevident is the relation w(')+f0(`'),<n(i') (n(')-1) .
However, for Apollonian arrangements we have much better results :

THEOREM 1 . If W is an Apollonian arrangement of n=n(W)>, 3 curves then
co (`e)<,3n-6 ;

moreover, equality is possible for each n >, 3 even for Apollonian arrangements
of circles .
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The relationship between w (1e) and n (W) is much more complicated if
non-Apollonian arrangements of curves are considered . Using the notation
co(n)=max{co(W) I n(e)=n} we have :

THEOREM 2 . There exist constants c * > 0 and c ** such that for all n

c*n4/ 3 < Co (n) < c** n 5/3 .

Very little is known concerning the rate of growth of co (W) for arrange-
ments W of n circles . Denoting by w *(n) the maximum of w (W) for all such
arrangements, the best result we could establish is :

THEOREM 3. There exist constants c > 0 and n o such that

co* (n) > n l+'Ilog "8"

for all integers n > n o .
Sections 2, 3, and 4 are devoted to the proofs of the above theorems ;

various remarks, bibliographical references, and open questions are discussed
in Section 5 .

2 . THE PROOF OF THEOREM I

We shall first prove that w (W) < 3n (W) - 6, using induction on the number
k (`e) of curves C in W which have the property that both regions of C contain
points of other curves of W . (The two regions of a simple closed curve C are
the two connected components of the (open) complement of C in the plane .)

In case k(W)=0 we start by observing that we may assume, without loss
of generality, that each vertex of W is simple, i .e. belongs to precisely two
curves of W . Indeed, if three or more curves osculate each other at one vertex,
that vertex may be made simple by suitably `retracting' some of the curves .
An illustration is given in Figure 1, in which the `empty' region of each curve
is indicated by shading . Next, assuming all vertices of `G simple, we associate

Fig . 1 .
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with V a planar graph 9 as follows : To each curve C i e W we make correspond
a node Ni of 9 located in the `empty' region DL of C i. Nodes Ni and N; of 9
are connected by an edge E i ; if and only if Ci and C; osculate each other at
a vertex Vi; of V ; in that case Eij consists of an open arc in Di with endpoints
Ni and Vi; and an are in Dj with endpoints Vii and Nj , together with the
points Ni , Vii , and N; . By the Jordan curve theorem these arcs can be chosen
so that 9 is a planar graph . Therefore the number of edges in 9, and thus
also the number of vertices in V, is at most 3n-6, and our assertion is estab-
lished for k(1e)=0 .

If k (W) >, I we take any curve C eV for which each region meets other
curves of V and use it to form two `smaller' Apollonian arrangements : The
arrangement `e1 consists of C and of those curves of V contained in the
closure of one of the regions of C, while W2 consists of C and of the other
curves of V (that is, those contained in the closure of the remaining region
of C). Clearly k(VI)<k(W), k(e2)<k(C), and n(1e1)+nV2)=n(W)+1 .
Therefore, by the inductive assumption,

(0«6)'(0(`'1)+C) l~'2)<3n(W1)-6+3n(~'2)-
-6<3n-9<3n-6

provided n (W 1 ) > 3 and n (e 2 ) > 3 . But if n (W2)=2 then

co (6)<co(W1)+1 <3n(W 1)-6+I <3n(W)-6 ;

similarly if n(V1)=2 .
This completes the proof of the inequality of Theorem 1 .
In order to establish the equality assertion for Apollonian arrangements

of circles, we only have to observe that for n=3 three mutually touching
circles have 3=3n-6 osculation vertices, and that additional circles, each
osculating three previous ones, may be added in arbitrary numbers .

This completes the proof of Theorem 1 .

3 . PROOF OF THEOREM 2

We begin the proof by observing that in the search for arrangements of n
curves which maximize the number of osculation vertices we may restrict
ourselves to simple arrangements, that is arrangements in which no three
curves have a common point. Indeed, each vertex V of V through which
pass three or more curves may be `split up' into several simple vertices, at
each of which only two curves meet . It is easily checked that if V was an
osculation vertex of V the `splitting up' may be accomplished in such a way
that at least one of the new vertices is an osculation vertex .

In order to establish the upper bound on co (e), we associate with each
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simple arrangement W= {C,, . . ., C„} of curves an abstract graph mil' with
nodes Nl , . . ., N. . Nodes Ni and Nj determine an edge of -YC if and only if
Ci n C; is an osculation vertex of W . The key to our proof is the following
observation

LEMMA 1 . The graph mil' contains no subgraph isomorphic to the bipartite
graph .iC (3, 9) .
Proof of Lemma 1 . Three curves of a simple arrangement determine one

of the thirteen non-isomorphic subarrangements shown by the heavy curves
in Figure 2. In each of the thirteen cases, the lightly drawn curves indicate
the various non-isomorphic ways in which another curve can osculate the
first three. The number of such ways is indicated near each subarrangement ;

Fig. 2. (First part .)
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in two cases it equals 8, in all the others it is smaller. Simple reasoning using
the Jordan curve theorem shows that in each case it is impossible to add
another curve osculating the three starting ones without violating the as-
sumption that all the curves form a simple arrangement . Therefore it is not
possible to find, in any simple arrangement, nine curves each of which os-
culates each of three other curves of the arrangement . This completes the
proof of Lemma 1 .

As another ingredient of the proof we need :

LEMMA 2 . There exists an absolute constant c **with the following property :
If ~l is a graph with n nodes and if M' contains no subgraph isomorphic to the

Fig . 2 . (Second part .)
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bipartite graph -*^(3,9) then the number fl of edges of , satisfiesfl < c**n 5/3 .

Proof of Lemma 2 . We shall say that a triplet {N', N", N'j of nodes of S,
is associated with a node N of A- provided ' contains the edges NN', NN",
and NN'. We may compute the total number t of associations of triplets
with nodes by obArving that if a node Ni has valence v (N,) then Ni is as-

sociated with
Cv(3

	

triplets ; therefore

t = ~n (v (N,))

i=1

	

3

Denoting by v the average valence of the nodes of A' (so that v=2flln) we
have

i (

v (3 ,» > n
C3/

by the convexity of the function

C3)
for x , 1 .

Now, if we have

n
C3/

, 9
C3/

then t , 9
C3)

and thus at least one of the
/3

triplets of nodes of *' is associated with 9

or more nodes of AC-contradicting the assumption that

	

contains no sub-
graph isomorphic to ._(3,9) . Therefore necessarily

n
C3/

< 9
C3l

and so, for a suitable constant c', nv 3 <c'n3 , or

3

	

n3v3

	

c' 5
fl -

	

\ nó

	

ó

	

,

so that

fi < c* *n513

as claimed .
We return now to the proof of the upper bound of Theorem 2 . If _C is the

graph associated with the simple arrangement `e, then w (W) equals the num-
ber of edges in M'. But by Lemma I

	

contains no subgraph isomorphic to
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. (3,9) . Therefore, using Lemma 2, we have

w W< c**ns/3

and so
w (n) S c**n5/3

as claimed .
In order to establish the lower bound we recall the following lemma due

to Jarník (see [14, Satz 2]) :

LEMMA 3 . For each L > 0 there exists a curve C(L) with the following prop-
erties

(i) C(L) is a twice continuously differentiable, strictly convex curve of
length L ;

(ü) C(L) is symmetric with respect to each of the coordinate axes ;
(iii) C(L) passes through

cP (L) =3 L2/3 + O (Ll/3)
3 27L

lattice points (that is points both coordinates of which are integers) .
We note that each C(L) is centered at the origin (0, 0), and that (x, y) e C (L)

implies that the translate of C (L) centered at (2x, 2y) osculates C (L) at (x, y) .
For each integer L we now construct the arrangement W (n) formed by the
family of n = L 2 translates Cx, Y of C (L) with 1 < x, y < L, where Cx , Y is cen-
tered at the lattice point (x, y) . Since for each set of 4 lattice points symme-
trically situated on CX , Y at least one is an osculation vertex of r (n), the total
number of osculating pairs in W (n) will be at least

In 'J9 (L) = c,ne" + nO (Ll/3) =
cin4/3 + O (n7/6 )

By suitable perturbations the arrangement W (n) may be changed into a
simple arrangement `e*(n) such that each osculating pair in W(n) becomes
an osculating pair in W*(n), and thus co (W*(n)) = c ln4/ 3 + O (n 7 / 6 ) . Therefore,
for a suitable positive c* we have

w (n) > c*n4/3

for all n, and the proof of Theorem 2 is completed .
(3) Various extensions and refinements of Jarník's [14] result (Lemma 3

above) have recently been obtained by Swinnerton-Dyer [20] . His results
may be applied, instead of Lemma 3, in order to obtain results related to the
lower bound of Theorem 2 . As an example we mention :

For every e > 0 and for every integer k>2, there exists a strictly convex,
k times continuously differentiable curve C, and a number c= c (k, e)>0
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with the following property : For every n there exists an arrangement W (n)
of n curves, each homothetic with C, such that m (~ (n)) cn1-E+i/2k

(4) The number of ways in which an integer may be expressed as a sum
of two squares has been investigated already by Fermat, Gauss, and Jacobi
(see [13] for references), and belongs to the well-known parts of elementary
number theory. Nevertheless, we were unable to locate an explicit state-
ment of Lemma 4 in the literature, and have therefore included a sketch
of its proof.

(5) Among our results, Theorem 3 is clearly the least satisfactory since it
gives no upper bound for co* (n) . We conjecture that n1+`/loglogn is the order
of magnitude of co* (n), but it would be of interest to show that co* (n) = o (nl +E\
for each s > 0, or at least w* (n) < cn 3 /z .

(6) It is easily seen that judicious choices of the number s used in the proof
of Theorem 3 yield simple arrangements W (n) . In other words, Theorem 3
remains valid even if in the definition of co* (n) we consider only arrange-
ments for which no point belongs to three circles .

4. PROOF OF THEOREM 3

The proof of Theorem 3 is analogous to the proof of the lower bound in
Theorem 2 . Instead of Jarník's [14] construction we use the following lemma,
in which 0 (m) denotes the number of distinct solutions in positive integers
x, y of the Diophantine equation x2 +y2=m ; in other words, 40 (m) is the
number of lattice points on the circle of radius Vm centered at the origin .-

LEMMA 4. For each s > 0 and m > mo = mo (E) there exists a k < m such that

1'/ (k) > m(1
-E) log 2/log log m .

Proof of Lemma 4 . Let p 1 = 5 <p2 =13 <p3 < . . . be the sequence of con-
secutive primes of the form p ;-I (mod 4) . The prime number theorem for
arithmetic progressions (see, for example, Davenport [4], Prachar [17]) im-
plies that

(*)

	

pr =2 (1 + o (1)) r log r .

For a given m let r be chosen so that

r

	

r+1
Pi < m < F1 Pi

=1

	

~=1

Then, on the one hand it is well known (see, for example, Hardy-Wright
[13, pp . 242 and 23 8]) that ~ (li=1

p;)=2". On the other hand, by Stirling's
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formula and relation (*) we have

r=(1+o(1))
log m

log log m

Putting k=~i=1 p i this completes the proof of Lemma 4 .
The proof of Theorem 3 is now easy. We consider first the arrangement

V* (n*) formed by n*=k2 circles, each of radius 1k, centered at lattice points
(x, y) with 15 x, y < k . Each of them passes through 41 (k) lattice points, and
all those lattice points are contained in the square 1- [ilk] S x, y < k+ [Vk] .
There are 4k21 (k) incidences between lattice points and the circles of 'e*(n*) .
We observe that if a circle with radius r centered at a point A passes through
a point B then the circle with radius r+s centered at A osculates the circle
with radius s centered at B, the osculation point belonging to the line deter-
mined by A and B. Now we construct an arrangement W(n) consisting of
n=k2 +(k +2[Vk])2 circles . W(n) contains k2 circles, each of radius s+ ilk,
centered at lattice points (x, y) with 1 <x, y<k, and (k +2[Vk])2 circles,
each of radius s, centered at lattice points (x, y) with 1- [Jk] 5 x,
y < k+ [Vk], where s is a suitable number (for example, s= ) . By the above
we have

w (V (n)) > 4k2 1 (k) i 4k2 +(1 -e) log 2/log log k > n' +'*/log log e

for a suitable c * > 0 and all sufficiently large n of the form n=k2 +(k+
+2[Vk])2 ; from this follows the estimate a)* (n) >,n"Ilogl og' valid for a
suitable positive c < c * and all sufficiently large n .

This completes the proof of Theorem 3 .

5. REMARKS

(1) In view of Lemma 1 it may be inquired what other graphs may (or may
not) be subgraphs of graphs 1l associated with simple arrangements of
curves, or with various special kinds of arrangements . For example, Jr (4,6)
may be associated (see Figure 3), but it seems that neither V'(4,7) nor
.V^ (5,5) are possible. Unfortunately, the upper bound of Theorem 2 could
not be improved using our method of proof even if those observations were
established. On the other hand, it is easily seen that _-C (3, 8) may be present
even in graphs associated with arrangements of circles ; therefore our methods
do not yield any better upper bounds for arrangements of circles than for
general arrangements of curves .

(2) Our Lemma 2 is only a very special case of a family of results that were
initiated by a problem of Zarankiewicz [22] . Bounds of the form c(j, k)n2-11'

for the number of edges in graphs with n nodes containing no subgraphs
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isomorphic to the bipartite graph -V- (j, k) were first mentioned in Kövári-
Sós-Turán [15], where explicit formulae are given for the case j =k . We
reproduced the proof of the special case of Lemma 2 (after which the general
argument can easily be patterned) in order to make the present paper more
self-contained, and also since we feel that it deserves to be more widely
known. The general question (compare Turán [21) how many edges may a
graph with n nodes have without possessing subgraphs of specific types has
been the topic of many investigations ; recent papers which provide access to
the abundant literature are Erdös [5], [6], Simonovits [19], and Guy [12] .

(7) De Rocquigny [18] also asked about the maximal possible number
0~3 (n) of points of osculation in a family of n mutually non-crossing spheres
in Euclidean 3-space (`Apollonian arrangements' of spheres in E3) . While
the precise answer is still not known, some estimates may be found easily .
We recall, first, the well known fact that a ball in E3 may be osculated by at
most K3 =12 mutually nonoverlapping balls of equal or larger size. (This
fact, asserted by Newton in 1694, was first established by R. Hoppe in 1874
(see [1]) ; for a survey of known results on this interesting problem, and for
historical references, see Coxeter [2]) . The simple appearance of the result is
deceptive ; compare, for example, the fallacious arguments of Fauquem-
bergue [7] . For other results on the `Hadwiger numbers', `Newton numbers',
and similar notions, and for references to additional literature, (see Fejes
Tóth [8], in particular pages 200 and 214) . Next, given any Apollonian
arrangement of spheres in E 3 none of which bounds another, it follows that
any smallest sphere osculates at most 12 others . By arguments similar to
those used in the proof of Theorem 1 it follows easily that (for n,>3)

(o3 (n) < 12n-24 . However, this estimate is probably far from best possible ;
we conjecture that o)3(n)=6n-cn 2 / 3 +o(n 1 / 3 ) for a suitable constant c>0 .

For analogously defined Apollonian arrangements of n spheres in Ed one
may similarly prove the rather crude estimate o) d (n) < Kdn . Here Kd denotes
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the maximal number of equal, nonoverlapping balls in Ed that may touch
another of the same size ; thus, as mentioned above, K 3 =12, and clearly
K 2 =6 . For results on the numbers Ka see Coxeter [2], Fejes Tóth [8, p. 214],
Leech [16] ; already for K4 only the estimate 24< K 4 526 is known. We
venture the conjectures co4(n)=12n+o(n), cos(n)=20n+o(n), andw'6(n)

36n + o (n) .
Using the results of [9] it is not hard to prove in a similar way the existence

of numbers Zd with the property : Whenever is a convex body in E° and V an
Apollonian arrangement consisting of n surfaces, each homothetic to the
boundary of K, then the number of osculation vertices of V is at most 2An .

It may seem that the arrangements just considered are too special, and
that it would be more meaningful to investigate Apollonian arrangements of
arbitrary surfaces (homeomorphic to the (d-1)-sphere) in E°. However,
already in E3 it is possible to find, for each n, n nonoverlapping, smooth,
rotund convex bodies, the boundaries of which form an Apollonian arrange-

ment with
(n2

osculation vertices (see Danzer-Grünbaum-Klee [3, p . 151]

for polyhedral examples, which may be easily modified into the type of
families required here) . On the other hand, it seems that a less trivial estimate
should exist for the number of osculation vertices in Apollonian arrange-
ments of boundaries of centrally symmetric convex bodies in Ed (compare

1101) .
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