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Abstract, Let L # K be a p-chromatic graph and e be an edge of L such that L — e is (p — 1)-
chromatic. If G” is a graph of  vertices without containing £ but containing Kp, then the mini-
mum valence of G" is

1
= n (l — ;}—_3'—!2')'?0(1).

0. Notation

We consider only graphs without loops and multiple edges. The num-
ber of edges, vertices and the chromatic number of a graph G will be de-
noted by

e(G),v(G), x(G),

respectively. The number of vertices will also be indicated sometimes by
the upper indices, e.g. G" will always denote a graph of n vertices. N(x)
will denote the neighbours of the vertex x in G, i.e., the set of vertices
joined to x: o(x) denotes the valence of x (= cardinality of N(x)) and
o(G) denotes the minimum valence in G. If E is any set, || denotes its
cardinality.

Let Gy, ..., G; be given graphs, no two of which have common vertices.
Joining every vertex of G; to every vertex of G; if i # j, we obtain the
product
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d
x GI=GIX62X...de.
i=1

Kp will denote the complete p-graph. Kp (ny, ..., np) denotes the com-
plete p-chromatic graph having #; vertices in its i th class.

1. Introduction

B. Andrasfai asked the following question in connection with the
well-known theorem of P. Turdn [8]:

Problem. Determine
Y(n, K, 1) =max {0(G"): K, ¢ G", x(G") =1},

In other words, what is the minimum value of & such that if every ver-
tex of G” has valence =k and G” is at least ¢-chromatic, then G” con-
tains a complete p-graph (if , p and 7 > p are given).
For t <p — 1, Turdn’s theorem gives Y (n, K, t) = [n(1 —1/(p — 1))].
B. Andrasfai, P. Erdos and V.T. S6s [1] proved that

(1 Vin, K, p)=(1—1/(p—3)n+0(1).

The extremal graph, i.e. the graph for given n which attains the maxi-
mum, is the following one:

Tn = PMex K, _3(my, ..., my,_3),

where £7_3 m; = n. The vertices of P are divided into the non-empty
classes Cy, ..., Cs and each vertex of C; is joined to each vertex of C;
(where Cg = C). (See Fig. 1.) Then my, ..., m,_53 are chosen so that the
minimum valence should be as large as possible.

One can easily show that, in this case,

ICi1=n/(3p —4) +0O(1), m;=3n/(3p—4)+0(1),

and from this (1) follows immediately.
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fo=s
Fig. 1.

The case of yi(n, K, t) for ¢ > p seems to be much more difficult.
E.g. even in the simplest case of Y (n, K3, 4) we do not know whether

w(-’?, KB} 4) %%n

or not. The authors of this paper and of [1] thought that there exists a
sequence €, » 0 (when 7 - =) such that

Yn, Ky, 1) <e;n.

An example, obtained in collaboration with A. Hajnal, will disprove this
conjecture, showing that

V(n, K3, 1) = (3 —o()n.
We conjecture that

v K3, D~3n (124,

but we can prove only

im n 'Y (n, Ky, 4)< 2.

n— e

In this paper, we investigate
Yy, L t)=max{o(G"):G"P L, x(G")=>1t},

where L is a given (so called sample) graph. The valence-problems are
interesting only in those cases, when they are not trivial consequences
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of the corresponding edge-problem. The edge-extremal problem of L is
to determine

max {e(G"):G" DB L}.

The solution of such problems is fairly well described in [2,3,7] and if
we suppose that t <p — 1, then

2) vin, L, )y=n(l —p~1)+o(n)

will follow immediately from the result on the corresponding edge ex-
tremal problem. Therefore we do not deal with this case. The behaviour
of Y(n, L, t)is too complicated if t > x(L); as we have mentioned, we
cannot solve it even if L = K. Therefore we restrict our investigation to
the case f = x(L) = p. But even in this case, (2) is almost always valid.
The only exception is when

(*) L contains an edge e such that x(L —e) < x(L).

Such edges are called (colour-) critical and from now on we shall sup-
pose that x(L) = p and L satisfies (*).

We shall prove that in this case the result obtained by Andrasfai,
Erdos and Sos remains valid.

Theorem 1. Let x(L) = p and L satisfy (*). Then y(n, L, p) < ¥(n, K, .p)
if n is large enough.

Since
Vv(n K, p)n=1-1/(p—3)<1-1/(p—3).

Theorem 1 is an immediate consequence of

Theorem 2. Let x(L) =pand L # Kp. If L satisfies (), then

(3) ¥(n, L, p)=max{o(G"): L ¢ G", K,C G"}
<(1=1/(p—=2)n+o().

Indeed, if G of Theorem 1 does not contain K,, then o(GM <
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Y(n, K, p). If G"D K, then Theorem 2 gives that
a(GM <1 =1/(p—3Nn+or)< Y@, K, p).
Hence Theorem 1 is really an easy consequence of Theorem 2.

Remark 3. One can prove, by much more complicated arguments, that

(B*) Y Lp)<(—1/(p—3Nn+0,(1)

and this result cannot be improved since, (as we shall see) for every con-
stant M, there exists a graph L such that

Jn, L, p)=(1—1{(p—2Nn+M.

2. Proof of Theorem 2

Let
q=1-1/(p—-3).

(A) First we give an example, showing that Theorem 2 cannot be im-
proved. We fix an/ and putr =27+ 1. Let

T, =K, X K, 5(r,....r).
This T, will be the sample graph. Now we construct a graph

Ur=wim3lx K, s(dm+1,...4m+1)
of
n=(p—-3)4m+1)+(6m+3l)

vertices containing K, but not containing 7. weém+31 js defined as fol-
lows (see Fig. 2).

Fori=1,..,6,|4;1=m,fori=1,2,3,|B;| =/, and the 9 sets are
pairwise disjoint. The indices are counted mod 6 and mod 3, respectively.
Each vertex of A4, is joined to each vertex of 4., . Each vertex of B; is
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Fig. 2.

joined to each vertex of 4; U 4;, 3 and to B;_, U B, . Finally, each ver-
tex of A; is joined to exactly / vertices of 4, ,3. The minimum valence in
U” is

a(UM=(p-3)dm+1)+2(+m).
Therefore,

(4) o(UM=qn+31/(2p—3).

Trivially, K, C U". On the other hand, 7, is a p-chromatic graph satis-
fying (*) and 7, ¢ U".

T, = Kp(l, 1, r, ..., r) has p classes. At most p — 3 classes can be con-
tained by Kp_3(4m +1,.., 4m+1) C U". Therefore, at least 3 classes of
T, are in Wom+3! Thus W6m+3! has an edge with r triangles on it. But
one can easily check that every edge of W6m+3! is contained in at most
21 < r triangles. This proves (A) (see also Remark 3).

(B) We reduce the general case to the case of 7, showing that if L is
the p-chromatic graph satisfying (#), then from o(G") = gn and
T,C G" follows L C G*, if r and n are large enough. If we prove also

-~

Y(n, T, p)<(g+o(1)n,
then, for every g > q and n > ny(g),

o(G™) = gn
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will imply that a G" (containing K,) must contain 7, and therefore L
too. Thus it will be proved that

U(n L p)<qn
for every § > q and n > ny(q), i.e.,
(n L p)=(q+o(1)n.
(B;) Let us suppose that 6(G™) > gn and
Ky Funvs ) E G".

The classes of K, _5(r, ..., ) will be denoted by C,, ..., C,,_5. The meth-
od used here will be repeated later twice more and we shall refer to it as
“estimation of the sum of valencies”. This means that we consider those
edges which join K, _,(r,...,r) to G" — K, ,(r, ..., r). Their number is at
least

(p—2)rgn—0(1).

If x is the number of vertices joined to at least (p — 3 + &)r vertices of
K, »(r,...n (where & > 0 is a small constant, to be fixed later), then

(p—2rgn—0O() <(p—-3+8)r(n—x)+(p—2)rx + O(1)

=(p—-Drm—(1-86)(n—x)r+0(1).
Hence
(1=8n—-(p—-2D(1—-g)n—0(1)<(1 -5)x.

If & is sufficiently small, then x > cyn (where ¢4 > 0 is a constant). But
even the much weaker condition x > r would imply (as we shall prove in
B,)) that there exist A vertices outside of Kp_z(r, ..., ¥) and X vertices in
each class of K'p_z(r, ..., ¥) forming a Kp_l(?\, ., A)C G" where A oo,
if ¥ = oo,

Let the original K, _,(r, ..., ) be just the K, »(7,....r) of T, C G",
then replacing 2 vertices of the A new ones by the two vertices of 7,
joined to each (other) vertex of 7, we obtain a Kp—l (X, .... A) and with
an additional edge.
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This graph will be denoted by T'({(p — 1)A, (p — 1). 1). One can easily
prove that L satisfies (*) if and only if L C T((p — 1)\, (p —1), 1) for
X =v(L). Therefore, if 7 is large enough, 7, C G and G (G") = gn imply

LCT((p—DA(p—1D,DHCG".

This proves the possibility of reduction to the case L = T,.

(B,) We have to prove that, if x > r, then X vertices in each class of
Kp_2 (r, ..., r) and A vertices outside can be determined so that the graph
spanned by them should contain Kp_ 1 (A, ..., ). One short but not too
elementary proof of this fact is the following one: Letn > 0 be a small
constant, depending on § and fixed only later. We select nr vertices from
those joined to Kp_z(r, ..., r) by atleast (p — 3 + 6)r edges. Let G* be a
graph, the vertices of which are the considered (p — 2 + n)r vertices and
the edges of which join either two different classes of Kp_z(r, ..,F)ora
class of it to a vertex outside. An easy computation gives that if p is a
fixed sufficiently small constant, then

lim e(G*)/v(G*)*'> 3(1—1/(p—2)).

F—+ oo

Now we apply a theorem of Erdos and Stone [4] according to which, if

lim e(G*)v(G*)2> 3(1 — 1)1 —1)),
V(%)= oo
then, for every A and v(G*) > n (), G* contains K, (A, ..., A). In our
case, G* D Kp_, (A, ..., A) and, since we did not consider the edges of
G" joining two vertices of the same class of Kp_z(r. ..., F) or two vertices
outside, there must be A vertices outside and A vertices in each class,
forming a Kp_l (A, ..., A).
(C) Now we prove Theorem 2 for L =T, by induction on p. The case
p = 3 is trivial and is a special case of the proof below. Let us suppose
that Theorem 2 is known already forp — 1, and thatg >¢g¢=1—1/(p— %),

o(G") = gn, Kp Cc Gn.
We have to prove that 7, C G". Leta be a vertex of K, C G" and let

G497 be a subgraph of G" spanned by gn vertices of N(a). We suppose
also that Kp —a= K'p_] C G2, ([ ] is usually omitted!)
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Since each vertex of G9" is joined to at least
gn—(l—gn=(q+qg—Dn
vertices of G4" and since
n(g+g—-1)>n2q-D=0-1/((p-1)-3)) qn.

we may apply the hypothesis to G¢" with p — | and v, obtaining a
Ky X K, 3(v,...,») C G9". Hence

Vv= K3 X Kp_3(v, csay V) cGn.

Here K, will be called the triangle of V.

(D) We apply the method of “estimation of the sum of valencies™ to K5
of V,. Let X be the set and x be the number of vertices, joined to at
least 2 vertices of the K3 of V.

(5) 3gn—3<(n—x+0(1))+3x=n+2x+0(1).
Thus
(6) x> 33— 1n+0(1).

The method of (B,) now gives that either X contains at most 3p ver-
tices joined to = (p — 4 + §)w vertices of K, _3(v, ...,») of V,, or there
exist r vertices in X joined to the same pair of vertices of the triangle of
V, and r vertices in each class of K, _3(v, ..., ), determining together a
Kp_z(r, ..., r). If we add the edge of the triangle of ¥V, to which each
considered vertex outside is joined by 2 edges, then we obtain a

K; X Kp_;,_(r,.“,r) =T, CG".

In this case our proof is finished. In the other case, when at most 3» ver-
tices of X are joined to Kp_3(v, V) by = (p —4 + 8)v edges, we shall
obtain a contradiction by applying again the method of “estimation of
the sum of valencies”. Now we apply it to K, _3(, ..., »):
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vip—3)gn<(p-3)(n—x+0()v+(p—4+8)vx—0(1))

=(p—3nr—(1 —8)xr+0(1).
This means that

(7) (1=8)x<(p—3)n(l—g)+0(1).
(6) is a lower, (7) an upper bound for x. Comparing them we get
(8) (@ =2(p—-3)(1-)/(3g—-1)>1-48.

Here first § > ¢, then & (and then v which does not occur in (8)) are
fixed. But a trivial computation shows that 7(¢) = 1. Further, it is also
trivial that 7(g) is a monotone decreasing function of g, hence 7(g) < 1.
Therefore, if 6 is small enough (what can be assumed), then (8) gives the
contradiction.

3. The lower estimation of Y (n, K3, 1)

In this section, we give an example of a graph G" which does not con-
tain K5, is p-chromatic and G(G") = in + o(n).

Kneser conjectured [6] that the following graph is / + 2-chromatic:

For a given m, we consider the (2”;?”) m-tuples of a given set of
2m + | elements. These are the vertices of our graph. Two m-tuples are
joined if and only if their intersection is empty.

Szemeredi obtained some lower bounds for the chromatic number of
this graph. We shall need the simplest case of Szemerédi’s (unpublished)
results.

Lemma 4. Let ¢ > 0 be a given small constant. Forl = cm and m — = the
chromatic number of the Kneser-graph tends to infinity.

Proof (Szemerédi). Let us suppose that the n-tuples of 2m +/ =N ele-
ments can be divided into ¢ classes so that all sets belonging to the
same class always have common elements. (This is equivalent to the as-
sertion that the Kneser-graph is < f-chromatic.) We add a subset of the
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N elements to the ith class if this subset contains an m-tuple in the ith
class. According to a result of Kleitman [5], the number of these sub-
sets is at most 2V — 2¥—¢_Thus at least 2V ! subsets of the N elements
do not belong to any class. We know that exactly

XA+ gl
subsets do not belong to any class. Therefore

9) 2 (My=an-t,

k<m

It is a well-known fact that

(10) 27 (y=o(@M).
k<N/2+c)
Therefore ¢ - . (To prove (10) we can apply the Tschebitshev ine-
quality.)

Let us now consider the following graph. First we fix Pand then
¢ > 0. If m is large enough and / ~ ¢m, then the Kneser-graph of
Y= (me”) vertices will be = p-chromatic, Let the set of 2m + [ elements
be just {1, 2, ..., 2m + 1} and the subsets be S, S5, A..,S,},. Letxy,....x,
and Y i=1,2,....,2m+1,j=1,2,.., h/m be new vertices. (For the
sake of simplicity we suppose that # is a multiple of m.) Let us join the
set S, (which is a vertex of our graph) to y, ;if i € Sy . Clearly, each .S,
is joined to / vertices, i.e., has the valence h. Each x, and y;jare joined,
therefore o (x,) > 2h, o(y; ;) > h. If now 7 is the number of vertices in
this graph G", then o(G") ~ n/(3 + ¢). Further, x(G") > p. It is not too
hard to show that K3 ¢ G". Thus

Yy(n, Ky, )=n/(3 +0).
Since ¢ was an arbitrary positive constant,
Y(n Ky, 1) =(5+o(1)n.

The construction can be modified to obtain this lower bound for every
large n.
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4. Open problems

We have already mentioned that we could not prove or disprove that
y(n K3 1)~ %ﬂ if r = 4. Another problem, which we could not solve,
is: whether there exists a sequence €, > 0 (if £ = =) such that

max {0(G"): C3¢ G", x(G")>t}<en,

where C5 is the pentagon.
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