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Abstract . Let L # Kp be a p-chromatic graph and e be an edge of L such that L - e is (p - 1)-
chromatic . If G n is a graph of n vertices without containing L but containing Kp , then the mini-
mum valence of G" is

0. Notation

We consider only graphs without loops and multiple edges . The num-
ber of edges, vertices and the chromatic number of a graph G will be de-
noted by

n (1 - p- 13/2 •) +0(1) .

e(G), u(G), X(G),

respectively. The number of vertices will also be indicated sometimes by
the upper indices, e .g . Gn will always denote a graph of n vertices . N(x)
will denote the neighbours of the vertex x in G, i.e ., the set of vertices
joined to x ; o(x) denotes the valence of x (= cardinality of N(x)) and
o(G) denotes the minimum valence in G. If E is any set, JEJ denotes its
cardinality .

Let G l , . . ., Gd be given graphs, no two of which have common vertices .
Joining every vertex of G i to every vertex of G, if i j, we obtain the
product
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Kp will denote the complete p-graph . KP (n 1 , . . ., np) denotes the com-
plete p-chromatic graph having n i vertices in its i th class .

1 . Introduction

B . Andrásfai asked the following question in connection with the
well-known theorem of P . Turán [81 :

Problem. Determine

0(n, Kp , t) = max { Q(G11) : Kp ~ Gn . X(Gn)

In other words, what is the minimum value of k such that if every ver-
tex of Gn has valence > k and Gn is at least t-chromatic, then Gn con-
tains a complete p-graph (if n, p and t > p are given) .
For t < p - 1, Turán's theorem gives ~ ( n, Kp , t) _ [ n (l - 1 /(p - 1))] .
B . Andrhsfai, P . Erdős and V.T . Sós [ 1 ] proved that

d
X Gi =G,XG 2 X . . .XGd .
i=1

(1)

	

~(n, Kp , p)=(1 - 11(p-3»n+0(1) .

The extremal graph, i .e . the graph for given n which attains the maxi-
mum, is the following one :

Tn = Pmo X Kp_3(ml, . . ., mp_3),

where Z p-ó mi = n . The vertices of Pm o are divided into the non-empty
classes Cl , . . ., CS and each vertex of C i is joined to each vertex of C i+l

(where C6 = Cl ) . (See Fig . 1 .) Then mo , . . ., mp _ 3 are chosen so that the
minimum valence should be as large as possible .

One can easily show that, in this case,

ICi l=n/(3p-4)+0(1), mi=3n/(3p-4)+0(1),

and from this (1) follows immediately .
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~ (n, K3 , 4) - s n

or not. The authors of this paper and of [ 1 ] thought that there exists a
sequence e t - 0 (when t - -) such that

~ (n, K 3 , t) < e t n .

An example, obtained in collaboration with A . Hajnal, will disprove this
conjecture, showing that

~(n, K3 , t) '> (3 -o(1))n .
We conjecture that

~ (n, K3 , t) 3 n

	

(t > 4),

but we can prove only

lim n -1 (n, K 3 , 4) < 5 .

Fig. 1 .

The case of 0 (n, Kp , t) for t > p seems to be much more difficult .
E.g. even in the simplest case of 0 (n, K3 , 4) we do not know whether

-3

In this paper, we investigate

1 (n, L, t) = max {Q(Gn) : Gn 1) L, X(G n) >, t },

where L is a given (so called sample) graph. The valence-problems are
interesting only in those cases, when they are not trivial consequences
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of the corresponding edge-problem . The edge-extremal problem of L is
to determine

max {e(G") :Gn L} .

The solution of such problems is fairly well described in [ 2, 3, 71 and if
we suppose that t < p - 1, then

(2)

	

~ (n, L, t)=n(1-p-1)+o(n)

will follow immediately from the result on the corresponding edge ex-
tremal problem . Therefore we do not deal with this case . The behaviour
of ~(n, L, t) is too complicated if t > X(L) ; as we have mentioned, we
cannot solve it even if L = K3 . Therefore we restrict our investigation to
the case t = X(L) = p . But even in this case, (2) is almost always valid .
The only exception is when

(*)

	

L contains an edge e such that X(L - e) < X(L) .

Such edges are called (colour-) critical and from now on we shall sup-
pose that X(L) = p and L satisfies (*) .

We shall prove that in this case the result obtained by Andrásfai,
Erdős and Sós remains valid .

Theorem 1 . Let X(L) = p and L satisfy (*) . Then 0(n, L, p) < 0(n, Kp , p)
if n is large enough .

Since
0(n, Kp , p)ln- 1 - 11(p-á)< 1- 11(p - z) .

Theorem 1 is an immediate consequence of

Theorem 2 . Let X(L) = p and L 0 Kp . If L satisfies (*), then

(3)

	

(n, L, p) = max { a(Gn) : L Gn, Kp C Gn }

<(1-l1(p-z))n+o(1) .

Indeed, if Gn of Theorem 1 does not contain Kp , then a(G") <
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~i(n, Kp , p) . If Gn D KP , then Theorem 2 gives that

a (G n) < (1 - 1I(p - 2 )) n + o(n) < 0(n, KP, p).

Hence Theorem 1 is really an easy consequence of Theorem 2 .

Remark 3 . One can prove, by much more complicated arguments, that

(3*)

	

(n, L, p)<(1-1AP-z))n+OL(1)

and this result cannot be improved since, (as we shall see) for every con-
stant M, there exists a graph L such that

2. Proof of Theorem 2

Let

~(n,L,p)>(1-1I(p-2»n+M .

q = 1 - lI(p- z)

(A) First we give an example, showing that Theorem 2 cannot be im-
proved. We fix an l and put r = 21 + 1 . Let

Tr = K2 X Kp-2(r, . . ., r) .

This Tr will be the sample graph. Now we construct a graph

Un=W6m+31X Kp_3(4m+1, . . .,4m+1)
of

n = (p - 3) (4m + 1) + (6m + 31)

vertices containing KP but not containing T, W 6m +31 is defined as fol-
lows (see Fig . 2) .

For i = 1, . . ., 6, JAI I = m, for i = 1, 2, 3, J B 1 I =1, and the 9 sets are
pairwise disjoint . The indices are counted mod 6 and mod 3, respectively .
Each vertex of A 1 is joined to each vertex of A2+, . Each vertex of B ; is
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ÁRI
4m+P

Fig . 2 .

joined to each vertex of A i U A i + 3 and to Bi_ I U Bi+1 . Finally, each ver-
tex of A i is joined to exactly l vertices of A i+3 . The minimum valence in
Un is

Q(U")=(p-3) (4m + 1) + 2(1 + m) .

Therefore,

(4)

	

a(U)=qn+31/(2p-3) .

Trivially, Kp C Un . On the other hand, Tr is a p-chromatic graph satis-
fying (*) and Tr Un .

Tr = Kp (1, 1, r, . . ., r) has p classes . At most p - 3 classes can be con-
tained by Kp _ 3 (4 m + l, . . ., 4 m + l) C Un . Therefore, at least 3 classes of
Tr are in W 6 m+ 31 Thus W6m+31 has an edge with r triangles on it . But
one can easily check that every edge of W6m+31 is contained in at most
21 < r triangles . This proves (A) (see also Remark 3) .

(B) We reduce the general case to the case of Tr showing that if L is
the p-chromatic graph satisfying (*), then from a(Gn) > qn and
Tr C Gn follows L C Gn, if r and n are large enough . If we prove also

4 (n, Tr , p) < (q + 0(1)) n,

then, for every q > q and n > no (q),

o (G n) > qn

-3
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will imply that a G" (containing Kp) must contain Tr and therefore L
too . Thus it will be proved that

V) (n, L, p) < q n

for every q > q and n > no (q), i .e .,

~(n, L, p) _ (q + o(1))n .

(B 1 ) Let us suppose that a (G") > qn and

Kp_2(r, . . ., r) C G" .

The classes of Kp_2(r, . . ., r) will be denoted by Cl , . . ., Cp_ 2 . The meth-
od used here will be repeated later twice more and we shall refer to it as
"estimation of the sum of valencies" . This means that we consider those
edges which join Kp _2 (r, . . . , r) to G" - Kp _2 (r, . . . , r) . Their number is at
least

(p-2)rgn-0(1) .

If x is the number of vertices joined to at least (p - 3 + S)r vertices of
Kp _2(r, . . ., r) (where S > 0 is a small constant, to be fixed later), then

Hence

(p-2)rgn-0(1) (p-3+S)r(n-x)+(p-2)rx+0(1)

=(p-2)rn-(1-S)(n-x)r+0(1) .

(1-S)n-(p-2)(1-q)n-0(1) <(1 -S)x.

If S is sufficiently small, then x > c o n (where co > 0 is a constant) . But
even the much weaker condition x > r would imply (as we shall prove in
B2)) that there exist A vertices outside of Kp _ 2(r, . . ., r) and A vertices in
each class of Kp _ 2 (r, . . ., r) forming a Kp _ 1 (~, . . ., A) C G", where A~ ~,
if r - - .

Let the original Kp _ 2 (r, . . ., r) be just the Kp_ 2 (r, . . ., r) of Tr C G",
then replacing 2 vertices of the A new ones by the two vertices of Tr

joined to each (other) vertex of Tr we obtain a Kp_ 1 (A, . . ., A) and with
an additional edge .
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This graph will be denoted by T((p - 1) A, (p - 1), 1). One can easily
prove that L satisfies (*) if and only if L C T((p -1) A, (p -1), 1) for
A = v(L) . Therefore, if r is large enough, Tr C Gn and G(Gn) > qn imply

LCT((p-1)X,(p-1),1)CGn .

This proves the possibility of reduction to the case L = Tr .
(13 2 ) We have to prove that, if x > r, then A vertices in each class of

Kp 2 (r, . . ., r) and A vertices outside can be determined so that the graph
spanned by them should contain Kp _ 1 (A, . . ., A) . One short but not too
elementary proof of this fact is the following one : Let rl > 0 be a small
constant, depending on S and fixed only later. We select nr vertices from
those joined to Kp _2 (r, . . ., r) by at least (p - 3 + S)r edges. Let G * be a
graph, the vertices of which are the considered (p - 2 + n)r vertices and
the edges of which join either two different classes of Kp_2 (r, . . ., r) or a
class of it to a vertex outside . An easy computation gives that if n is a
fixed sufficiently small constant, then

lim e(G*)Jv(G*)2'> 2(1 - 1J(p-2)) .
r- -

Now we apply a theorem of Erdős and Stone [4] according to which, if

lim e(G*)Jv(G*)2 > z (1 - 1 J(,r -1)),
0(9*)-, °°

then, for every A and v(G*) > n (A), G* contains Kr (A, . . ., A). In our
case, G* D Kp_ 1 (~, . . ., A) and, since we did not consider the edges of
Gn joining two vertices of the same class of Kp_2(r, . . ., r) or two vertices
outside, there must be A vertices outside and A vertices in each class,
forming a Kp_ 1 (A, . . ., A) .

(C) Now we prove Theorem 2 for L = Tr by induction on p . The case
p = 3 is trivial and is a special case of the proof below . Let us suppose
that Theorem 2 is known already for p - 1, and that q > q = 1 - 1 J (p - 2 ),

Q(G") 7 4n, Kp C Gn .

We have to prove that Tr C Gn . Let a be a vertex of Kp C Gn and let
Gan be a subgraph of Gn spanned by qn vertices ofN(a) . We suppose
also that Kp - a = Kp_1 C G4n . ( [ ] is usually omitted!)
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Since each vertex of G4n is joined to at least

qn-(1-q)n=(q+q-1)n

vertices of G4n and since

n(q+q-1)>n(2q-1)=(1-1/((p-1)-z)) qn .

we may apply the hypothesis to G 4n with p - 1 and v, obtaining a
K2 X Kp_3 (v, . . ., v) C G4n . Hence

V„ = K3 X Kp -3 ( 1), -- v) C G" .

Here K3 will be called the triangle of V,, .
(D) We apply the method of "estimation of the sum of valencies" to K3

of V,, . Let X be the set and x be the number of vertices, joined to at
least 2 vertices of the K 3 of V,, .

The method of (13 2) now gives that either X contains at most 3 v ver-
tices joined to > (p - 4 + 5) v vertices of Kp 3 (v, . . ., v) of V„ or there
exist r vertices in X joined to the same pair of vertices of the triangle of
V„ and r vertices in each class of Kp _ 3 (v, . . ., v), determining together a
Kp _ 2 (r, . . ., r) . If we add the edge of the triangle of V,,, to which each
considered vertex outside is joined by 2 edges, then we obtain a

K2 X Kp-2(r, . . ., r) = Tr C G n .

In this case our proof is finished . In the other case, when at most 3 v ver-
tices ofX are joined to Kp_3 (v ) . . ., v) by > (p - 4 + S) v edges, we shall
obtain a contradiction by applying again the method of "estimation of
the sum of valencies" . Now we apply it to Kp_3 (v, . . ., v) :

(5) 3qn-3<,(n-x+0(1))+3x=n+2x+0(1) .

Thus

(6) x> 2'Qq-1)n+0(1) .



33 2

	

P. Erdős, M. Simonovits, On a valence problem in extremal graph theory

v(p-3)qn<(p-3)(n-x+0(1))v+(p-4+S)v(x-0(1))

_ (p-3)nv-(1 -S)xv+0(1) .
This means that

(7)

	

(1-S)x<(p-3)n(1-q)+0(1) .

(6) is a lower, (7) an upper bound for x . Comparing them we get

(8)

	

T(q)=2(p-3)(1-q)/(3q-1)>I-S .

Here first q > q, then S (and then v which does not occur in (8)) are
fixed. But a trivial computation shows that r(q) = 1 . Further, it is also
trivial that T(q) is a monotone decreasing function of q, hence 7(q) < 1 .
Therefore, if S is small enough (what can be assumed), then (8) gives the
contradiction .

3. The lower estimation of 0(n, K3 , t)

In this section, we give an example of a graph Gn which does not con-
tain K 3 , is p-chromatic and G(G11) = n + o(n) .s

Kneser conjectured [6] that the following graph is 1 + 2-chromatic :
For a given m, we consider the ( 2 1 ) m-tuples of a given set of

2m + 1 elements. These are the vertices of our graph . Two m-tuples are
joined if and only if their intersection is empty .

Szemerédi obtained some lower bounds for the chromatic number of
this graph . We shall need the simplest case of Szemerédi's (unpublished)
results .

Lemma 4 . Let c > 0 be a given small constant. For 1= cm and m

	

the
chromatic number of the Kneser-graph tends to infinity .

Proof (Szemerédi) . Let us suppose that the n-tuples of 2 m + l = N ele-
ments can be divided into t classes so that all sets belonging to the
same class always have common elements. (This is equivalent to the as-
sertion that the Kneser-graph is < t-chromatic .) We add a subset of the
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N elements to the i th class if this subset contains an m-tuple in the it h

class. According to a result of Kleitman [ 5 ], the number of these sub-
sets is at most 2N- 2N- r Thus at least 2N- t subsets of the N elements
do not belong to any class. We know that exactly

(9)

( rr~l)+(m 2) + . . .+ (1

subsets do not belong to any class . Therefore

r (N) > 2N-t
k

k<m

It is a well-known fact that

(10)

	

(k) = o( 2N)
k< (2+e)

Therefore t ~ . (To prove (10) we can apply the Tschebitshev ine-
quality .)

Let us now consider the following graph . First we fix P and then
c > 0 . If m is large enough and l - cm, then the Kneser-graph of
y = (2m +l ) vertices will be > p-chromatic . Let the set of 2m + l elements
be just { 1, 2, . . ., 2m + l } and the subsets be S 1 , S2, ---,S, . Let x1, .- Xh
and yi i , i = 1, 2, . . ., 2m + l, i = 1, 2, . . ., h/m be new vertices . (For the
sake of simplicity we suppose that h is a multiple of m .) Let us join the
set Sk (which is a vertex of our graph) to yi i if i E Sk . Clearly, each Sk
is joined to h vertices, i .e ., has the valence h . Each xt and yi i are joined,
therefore u(x t ) > 2h, Q(y i i ) > h . If now n is the number of vertices in
this graph G n , then Q(G") - n/(3 + c) . Further, X(G n ) > p . It is not too
hard to show that K 3 (t G' . Thus

~(n, K 3 , t) > n/(3 + c) .

Since c was an arbitrary positive constant,

0(n, K 3 , t) > ( 3 + o(1))n .

The construction can be modified to obtain this lower bound for every
large n .
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4. Open problems

We have already mentioned that we could not prove or disprove that
ly(n, K3 , t) 3n if t > 4 . Another problem, which we could not solve,
is : whether there exists a sequence et - 0 (if t - -) such that

where CS is the pentagon .
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