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Abstract. Given the integers! , &, 1., k,, r. which satisfy the condition!,, [, Zr>k,, k, >0,
we define m = N(I, k,;1,, k,;r) as the smallest integer with the following property: if §is a
set containing m points and the r-subsets of § are partitioned arbitrarily into two classes, then
fori =1 or 2 there exists an {; subset of § each of whose k-subsets lies in some r-subset of the
ith Class. The integers defined in this way form a collection of which the usual Ramsey num-
bers are a special case: i.e., the Ramsey number N(/,, 1, r) is represented as N(/ ., r: 1, ;7).
We derive two major results concerning the values of these generalized Ramsey numbers. If

ky +k,=r+1thenN(, k1, k,;r)=1 +1,—k, —k,+1, corresponding to the “pigeonhole
principle™. For k +k, <r, we show that N(/ |, k., [,, k,; r) = max (/,,1,). The next interesting
case occurs for k, + k, =7+ 2, where we show that there are constants ¢, and ¢, such that
for sufficiently large /, 20 < N( &, ; 1, k,r) <22,

Given integers [, k;, i = 1, ..., n, and r, which satisfy the properties

li >r>k;>0,fori=1,..,n we may define an integer N(/,, k.5, k5;
1, k,:r)=m as the smallest integer with the following property: If

S is a set containing m points and the r-subsets of S are partitioned
arbitrarily into n classes, then for some i, 1 <i<n, there exists an /;-
subset of S each of whose k;-subsets lies in some r-subset of the i?"
The fact that such an integer exists follows immediately from the exist-
ence of the Ramsey number N(/,./,, ..., [,; r), for if the set S contains
this many points, there is some /, 1 </ <n, such that all the r-subsets of
some /;-set are of the i class [3]. Then certainly each k; subset of this
[; subset lies in such an r-set, since k; < r. In what follows we shall be con-

class.
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cerned mainly with the case where there are only two classes of r-sub-
sets (7 = 2). The proof of the following remarks are entirely analogous
to those found in [3] and will be omitted.

Remark 1. N(r, k1, ky: )= NU, ky:r, ky 1) =1,

Remark 2. N(ly, ky.: 1y, ko DS NWNU =1, k0 1y, ko 1), Ky —1;
NUy k=1, k), k=1 r—=1) + 1.

The following remark has no counterpart in any theorem on Ramsey
numbers, but is elementary.

Remark 3. If k] <k, and k5 < k,, then NU, k', 15, k5; r) < NU,, k,;
Ly, ky,r).

Proof. Let m < N(/, ky, {5, k5, r). Then there exists a partition of the
r-subsets of the m-set S into two classes such that every /; subset contains
a k; subset all of whose containing r-subsets are classj,j#i, 4, j=1,2.
Since k| < &y, k% < k,, the above property is inherited and

m< Ny, K\ 1y, k5 ). Thus NIy, kY01, kK5 )SINA L Ky Ly, ko).

We will show:

Theorem 1. [f ky + ky =r+ 1, then NI}, k15, ky;r)=1+15—k;—ky+1.
Further, if ky +ky <vr, then N}, ky: 15, ky;r)=max (I}, ;).

Proof. Let us first dispose of the simpler case where k| + k, <r. We
may assume [/, </, . Clearly, N(/;, k,;[5, ky.r) 2 l,; merely consider
the set S containing /, —1 points all of whose r-sets lie in class 2; S has
no /, subset at all and no /, subsets with k, -subsets contained in class 1
r-sets. Now assume S contains /, points. If every k, subset lies in an r-
set of class 2, we are finished; therefore assume there is a k,-subset S
all of whose containing r-sets are class 1. But now all k,-subsets §,C S
lie in an r-subset of class 1, since |5, U S,| <r.

Nowletk, +ky, =r+ 1. Assume§ =S5, U S,, S, and S, disjoint, with
ISy 1 =1~k and |S,| =/,—k,. We construct a partition of the r-set of
S as follows: place #-sets in class 1 which intersect S, in > k, points
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and all other r-sets in class 2, i.e., those that intersect S, in at least k,
points, since k| + k, =r+ 1. Note that any /, -set must contain at least
k, pointsin S, and those k| points are contained only in class 2 r-sets.
The situation is entirely symmetric for /,-sets. Thus

Now assume that we have a set .S whose r-sets are partitioned into
two classes such that there is no /;-set each of whose k;-sets lies in an
r-set of class i, i = 1, 2. We may assume that S is of maximal cardinality
with the property

(2) IS1 = Ny, ky iy, Ky P)— 1.

Let 7'y be a maximal subset of S such that each of its & -subsets is con-
tained in an r-set of class 1. Then |7} | </, —1. Let T, =S5\T|, and
choose any point p in 7', If all r-subsets containing p and intersecting
T inr—1 points were in class 1, then 7, would not be maximal since
the point p could be adjoined. Therefore there is an r-set U of class 2
which intersects 7'y in »—1 points. We now show that 7, U U has the
property that each of its k,-subsets is contained in an r-set of class. Ob-
viously any k,-set lyingin U\ T, is contained in the set U which is of
class 2. Now take any k,-set V' in Ty U U such that ¥ n T, € U and

ky N Ty = W+# ( (this is the only remaining case). We assume that V'
lies only in r-subsets of class 1 and arrive at a contradiction. For take
any k) subset V' lying in 7, U W. If V" lies totally in T, it is contained
in an r-set of class 1;butif V' n W# 0, then |V' U V| < r and since all
r-subsets containing ¥ are of class 1, V' is contained in an r-set of class
1. Therefore any k-subset of 7y U W lies in an r-set of class 1 which
contradicts the maximality of 7. Thus the arbitrarily chosen k,-set
V'in T, U U must lie in some r-subset of class 2. But T, VUl=

|75 | +r—1, and we must have |T,| +r—1 < [, —1 by the definition of
S. Since T </, —1, we have

|Sl: iT||+ITj_J 51] +¢"2_-"+ 1 :!l +f2—k|—i'{2 4

or by equation (2)
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NU kil kyy )<+ =k —ky + 1.

Combining this result with inequality (1), we see that

(3) NU,, ko by, kyor)=1 =k —ky + 1,

which proves the theorem.

Theorem 1 is a generalization of the pigeonhole principle, the simplest
Ramsey result which states that the Ramsey number N(/,, 7, ; 1) (equiv-
alent in our notation to N(/,, 1;/,, 1; 1)) is given by /; +1,—1.

We now consider the numbers N(/, k. /5, k5, r), with the condition
that k; + k, =r + 2. These are analogous to the Ramsey numbers
Ny, 1,5 2) (N, 2:1,, 2;2), in our notation). To get an exact formula
for these numbers would be too much to expect since this has not been,
possible with the usual Ramsey numbers even in very restricted cases.
The numbers are so highly variable if both /; and /, are allowed to range
that we shall restrict ourselves to studying the asymptotic behavior of
N(, k.1 ky:r). We shall prove:

Theorem 2. If k| + ky =r+ 2, then there exist constants ¢, and ¢,
such that for sufficiently large |, 24! < NU k1 ky )< 2641,

Proof. We first show that N(/, k.1, k,, r) < 22!, Let S be a set contain-
ing N(/, I; 2) points. This assures that if the edges defined by pairs of
points in S are partitioned into two classes, there will be an /-gon (a
complete /-graph) all of whose edges are in one class.

Now partition the r-tuples of S into class | and class 2 in any manner.
We say that a k-set is of class 1 if all »-tuples containing it are of class
1, and a k,-set is of class 2 if all »-tuples containing it are of class 2.
Note that a & -set of class 1 and a k,-set of class 2 intersect in at most
one point, for if they intersected at two points, then the union of the
ky-set and k,-set would be an r-set which would have to be in class 1
and class 2 simultaneously.

We define two edge disjoint graphs as follows: an edge is in G, if it
is contained in a & -set of class 1 and is in G, if it is contained in a k-
set of class 2. Since IS| = N(, [; 2), there is an [-set where either G or
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G, has no edge, say G, . But then every k,-subset of this /-set is con-
tained in an r-set of class 2. Thus, N(/, k| 1, k5, r) < N(l, I; 2). Now it
has been shown in [2] that N(/, [; 2) < (:’11—_12 y< 222 and for ¢y =2,

(4) N, kyil kyir)<2sit

We will now show that N(, ky; 1, k5, r) > 26!, for some constant
¢, with I sufficiently large. To do this we shall need the following re-
sult:

Lemma 1. Let F, (2, 1) be the largest integer for which there is a graph

G on Fi (2, 1) vertices so that every set of | vertices in it contains a com-
plete k-gon and a set of k independent points (no two joined by an edge).
There is a constant ¢;, depending only on k such that for l sufficiently
large, Fy, (2,1) > 26K,

Consider a set of § = F; (2, 1) points and let K = max (k, k,) <r,
ky +ky =r+ 2. We partition the r-sets of S as follows: place an r-set in
class 2if it contains a k| -gon in the graph G and in class 1 if it contains an
independent k,-set. Note that an r-set cannot contain both a k-gon and
an independent k,-set as they would intersect at two points; thus the
partition is well defined if we add that r-sets not containing either a k; -
gon or an independent k,-set are placed arbitrarily in either class.

Now with [S| = F (2, /) points we have constructed a partition of the
r-tuples such that every /-set contains a & -set all of whose containing
r-sets are class 2 and a k,-set all of whose containing r-sets are class 1.
Thus

(5) N kLo kyor)> F (2,1, k=max (ky, ky) .

This shows that the definition of F, (2, /) as the largest integer with the
given property is proper, since we know that N(/, k| /[, k5, r) is bounded
above. Furthermore, given the result of Lemma 1 and eq. (5), we will
know that there is an integer ¢, depending only on max (ky, k), such
that, for / sufficiently large,

(6) N(L eyl kypry s 9€0E



34 P. Erdds, P.E. O'Neil, On a generalization of Ramsey numbers

This taken with eq. (4) will give Theorem 2. It is only necessary to prove
Lemma 1 therefore.

Proof of Lemma 1. By a theorem of Erd6s and Hanani [1], for fixed k
and / large, a set of [ elements contains (1 +¢ (1)) 12/k? = L(k, I) k-sub-
sets, every two of which have at most one element in common, asymp-
totically in /. We shall disregard the (1) term, since we shall see that it
only affects the value of the constant ¢;.

Let m < 2°k!. (We shall indicate the value of ¢ later). There are 22"
graphs on m labelled vertices. We first estimate the number of graphs G
on m points for which a given /-subset of points does not contain both a
complete k-gon and k independent points. Consider our L(k, /) k-sets.
Let us say that we do not permit k-gons in this /-subset of G. Then there
are 2‘§) —1 ways in which the edges of the graph G may be placed in
each of the L(k, /) k-sets, and since the L(k, 1) k-sets are edge disjoint,
the colorings are independent. The number of graphs on/ points which
do not contain k-gons is therefore at most

(7) 2 (1_]/2(’;(1)1,(&1;.

Since we could just as well have permitted k-gons and forbidden in-
dependent k-sets, the number of graphs on / points becomes at most
twice the number. All the remaining edges among the m points, ('5’ )—(5)
in number may be included or not included in the graph G arbitrarily and
it will remain a graph for which a given /-subset of points does not con-
tain both a complete k-gon and & independent points. The number of
such graphs G is

220 (1-1/2G) yLtkd

Since there are (') [-subsets, the total number of graphs with some /-sub-
set which does not contain a complete k-gon or k independent points is
not greater than

m

(8) (?;1)2(2 )+l (1_1/2(f) )L(RJ) 2% m’(l—l/Z‘f))"(""” _g_(T} .

which we may prove is less than 2(5HJ, for { sufficiently large. We need
merely show that



P. Erdos, P.E. O'Neil, On a generalization of Ramsey numbers 35
! k. Ik ,"Ik 2
2-ml (1-1/2@)) <1.
Cancelling, we get
|
m(l—cy)+

where ¢3 and ¢4 depend only on &, and for a proper ch01ce of ¢,

m < 2°! guarantees this. But this means that among the 2(2) graphs on
m < 2°k! points there are some all of whose /-subsets contain both a
complete k-gon and & independent points. Since F},(2,/) is the largest
cardinality for such graphs

F2,h)> 2,
and the lemma is proved.

As a final remark, we note that using essentially the same technique
as above, we may show that if k; + k, =r + 3, then for/ sufficiently
large

N ko1 kyiys 298

where ¢; depends only on max (k;, k,). This bound is probably very
poor, however. By somewhat more complicated methods, we can prove
that

NU, kil kyr)< 27

forr > r(e),c, <eif k; +ky =r+ 2. We hope to return to this and
other related questions in another paper.
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