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We consider directed graphs without loops and multiple edges, where the
exclusion of multiple edges means that two vertices cannot be joined by two
edges of the same orientation. Let L, ,..., L, be given digraphs.

What is the maximum number of edges a digraph can have if it does not contain
any L; as a subgraph and has given number of vertices?

We shall prove the existence of a sequence of asymptotical extremal graphs
having fairly simple structure. More exactly:

There exist a matrix 4 = (a;,1)i.;<, and a sequence {§"} of graphs such that

(i) the vertices of S” can be divided into classes C, ,..., C. so that, if i # j,
each vertex of C; is joined to each vertex of C; by an edge oriented from C; to
C; if and only if a,; = 2; the vertices of C; are independent if a,, = 0; and
otherwise @;; = 1 and the digraph determined by C; is a complete acyclic
digraph;

(ii) S" contains no L; but any graph having [en*] more edges than §* must
contain at least one L;.

(Here the word graph is an “‘abbreviation™ for “directed graph or digraph.”)

NoOTATION

The digraphs (= directed graphs) considered in this paper have neither
loops nor multiple edges: a vertex cannot be joined to itself and the
digraph cannot have two edges joining the vertices x and y and oriented
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from x to y; however, it can contain an edge oriented from x to y and
another edge oriented from y to x. The word “digraph’ sometimes will be
replaced by “graph” where this cannot cause any confusion.

The number of vertices and edges of G will be denoted by ¢(G) and e(G)
respectively. We shall also use upper indices to indicated the numer of
vertices: thus G" always denotes a graph of n vertices. The cardinality
of a set E will be denoted by | E|.

1. INTRODUCTION

The first paper written on extremal digraphs was a joint paper of
W. G. Brown and F. Harary [1]. They considered problems which were
“digraph analogues of the now classical theorem of P. Turdn [2, 3]
which determines the maximum number of edges a graph may posses
without containing a complete r-graph, K,.” Turdn determined the
maximum and also characterized the unique extremal graphs. The extre-
mal graphs for K, had a very simple structure: n vertices were divided
into r — 1 classes each of which contained [r/(r — 1)] or [r/(r — 1)] + 1
vertices and two vertices were joined iff they belonged to different classes.
Later Erdos and Simonovits [4] proved that these graphs are asymptotic
extremal graphs for every family L,,..., L, of sample graphs in the
following sense:

Let T(r, n) denote the extremal graph for K, and L, ..., L, be given
(undirected graphs). Let the chromatic number of each L; be at least r,
the chromatic number of L, be exactly r. Then T(r, #) does not contain
any L, but if n > ny(e) and

e(G™) = e(T(r, m))(1 + ¢€)

then G must contain at least one L, .

P. Erdos and M. Simonovits have also proved independently [5-7] that
(using the notations above) for n > ny(e) and & > 0 sufficiently small
any G* which contains no L; and has at least

e(T(r, (1 — §)

edges can be obtained from 7'(r, n) by omitting fewer than en® edges and
adding at most en® new edges.

Brown and Harary considered and solved some special cases of the
following general

ProprLEM 1. Let L,,..., L, be given digraphs. What is the maximum
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number of edges a digraph G* (having n vertices) can have if it does not
contain any L, as a subgraph ?

The maximum will be denoted by f(u; L,.....L,) and the graphs
attaining the maximum for a given n will be called extremal digraphs.
The graphs L, ,..., L, will be called sample digraphs. Problem 1 can also
be generalized to infinite families of sample digraphs. If L is an infinite
family of sample digraphs, f(r; L) will denote the maximum.

In this paper we shall prove a general existence theorem according to
which for every finite or infinite family of sample digraphs there exists a
sequence of asymptotical extremal graphs each having a fairly simple
structure. To formulate our theorem we need a few definitions.

DeriNiTioN 1. Mairix graphs. If A = (a;;); ;2. 1S a given matrix
the elements of which are O or 1 in the diagonal and 0 or 2 outside of the
diagonal, and x = (x, ,..., x,) is a given vector with non-negative integer
coordinates, then the graph A4((x)) is defined as follows. We consider
classes Cj...., C, the i-th of which contains x; vertices, and join each
vertex of C; to each vertex of C,; by an edge oriented from C; to C; iff
a;; = 2(1 < i <j=r). Then we enumerate the vertices of C; by 1,..., x;
and join each pair of vertices by an edge directed from the smaller index
to the larger, i = 1,..., r. (In other words: we define a complete acyclic
graph on the vertices of C;.)

One can ask why the elements outside the diagonal are taken to be
2 instead of 1. The advantage of this convention is that, in this case,
trivially

2e(A(X))) = xAx -+ O (‘Z \) (1)

DerINITION 2. Optimal matrix graphs. Let us consider for given n
and A all the graph A((x)) such that x; + - + x, = n. Of those having
the maximum number of edges an arbitrary 4((x)) graph will be denoted
by A(n) and will be called an optimal matrix graph.

Example 1. Let T,= (2 — 28, ,); ;= where §;; is the Kronecker
symbol: 1 if i = j and 0 otherwise. Clearly, T,((x)) is a complete r-partite
digraph with x; vertices in the i-th class C, : for each pair (i, j) each vertex
of C; is joined to each vertex of C; by two edges of opposite directions.
It has the maximum number of edges if |x; — x;| =<1 for every
I <isj<r

Example 2. Let D, = (2 — 8; );.;<, - D.((x)} can be obtained from
the T,((x)) of the previous example by putting a complete acyclic digraph
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into each C;. The maximum is attained under the same condition, e.g.,
if n = kr, then all the classes have k points.

Example 3.

N OO
o N O o
N O NN
==l SS N S R 5]

While in the earlier examples the matrices were symmetric and the graphs
were easy to visualize, in this case we have a more complicated situation.

FiGuUre 1

The graph itself can be seen in Figure 1. In the case of the optimal graphs
the classes C; and C, are approximately equal and contain asymptotically
twice as many vertices as C; or C, which are also approximately equal.
It is also interesting that the graph A(n) is not uniquely determined, e.g.,
for n = 6k -+ 1 the vectors (k, k, 2k, 2k + 1), (k, k, 2k + 2k), (k. k + 1,
2k, 2k), and (k + 1, k, 2k, 2k) give four different optimal graphs. Let

g(d) = max judu: u >0, ug = 1{. @

We shall call g(A) the density of the matrix 4. It is trivial from (1) that
e(A(n)) = g(A)n®/2 + o(n®) 3)
and with a little more care one can also prove that
e(A(n)) = g(A)n*/2 + 0(n), )
but this will not be needed.
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DeriNITION 3. The matrix 4 will be called dense if for every principal
proper submatrix 4’ of 4

g(4) > g(4’).

Example 4. The following matrices are not dense:

0 2 2
a=0 ) A=) a=fo9

(At this stage we have to use direct methods to check that (1) in the cases
of 4, and A4, and (32) in the case of 4, are submatrices having the same
density as the whole matrix. Later we shall have some simpler methods
to check whether or not A4 is dense.)

DermiTioN 4. The sequence S™ will be called a sequence of asymptotic
extremal digraphs for L if S* does not contain any digraph from L and

lim e(S")/f(n; L) = L. )

Ao

(To speak about one asymptotical extremal graph makes no sense.)

Our main result is

THEOREM 1. For any finite or infinite family L of sample digraphs there
exists a dense matrix A such that A(n) is a sequence of asymptotic extremal
graphs for L.

Example 5. Let L be the graph having 3 vertices @, b, ¢ and 3 edges
(a—b), (a—c), (b—c). A trivial modification of Turdn’s original
proof or [1, p. 147] gives that the complete bipartite directed graph 7,(#)
(see Example 1) is the only extremal graph for L. Of course, T,y(n) is also
a sequence of asymptotical extremal graphs.

Example 6. Let L be the graph having 3 vertices g, b, ¢ and 5 edges
(a —b), (b —a), (a—c), (c—a) and (b — ¢). The extremal graphs are
completely characterized in [1, p. 147]. Again, 75(n) is an extremal graph
for L but there are very many other extremal graphs as well. The sequence
of complete acyclic graphs (corresponding to the dense 1 x 1 matrix (1)
is not a sequence of extremal graphs but it is a sequence of asymptotic
extremal graphs.

The main content of Theorem 1 is that one can construct the “almost
best” graphs for Problem 1 in a very simple way. However, the word
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“construct” unfortunately is abused in the sentence above: if we have a
matrix 4 and wish to decide whether or not A4 yields a sequence of asym-
ptotic extremal graphs, Theorem | does not help. We do not even know
a finite algorithm which would produce matrix 4 in the case of finitely
many sample graphs. More exactly, we know an algorithm which has in
many cases solved the problem but we cannot prove that it will always
work.

One can ask whether Theorem 1 can be improved—whether it is
possible to obtain some more information on the structure of the sequence
of asymptotic extremal graphs. Of course, this can be done by proving
theorems on the structure of the dense matrices. Another way of improving
Theorem 1 is to prove that only some special types of dense matrices can
occur in it. For example the following conjecture would solve the algorithm
problem as well:

ConNJECTURE 1. Let A(n) be a sequence of asymptotic extremal graphs
for L, ..., L, , where 4 is a dense matrix. Then A4 has less than

(L)) * o(Ls) ... v(Ly)
rows (and columns).

From another point of view Theorem 1 is the best possible:

THEOREM 2. There exists for any dense matrix A a finite family of
sample graphs for which A(n) is a sequence of extremal graphs. Moreover,
any sequence of asymptotic extremal graphs for these sample graphs can be
obtained from B(n) by changing o(n®) edges.

REMARK 1. The second part of Theorem 2 implies that, if D(n) is
a sequence of asymptotic extremal graphs for some D, then D = 4.

The proof of Theorem 2 is rather complicated; therefore we shall not
publish it in this paper.

THE CaAse OF UNDIRECTED GRAPHS. Let us omit the directions from a
directed graph considered here; then we obtain a non-oriented graph
without loops where some pairs of vertices will be joined by 2 edges
but never by 3. Let us call these graphs multigraphs. We can associate
with a multigraph all the digraphs obtainable by directing the single edges
arbitrarily and the multiple edges in opposite directions.

ProBLEM 1. What is the maximum number of edges in a multigraph
of n vertices which contains none of the multigraphs M, ,..., M,?
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Let B be an ¢ % r symmetric matrix, each element of which is 0, 1 or 2.
The matrix B((x)) can be defined similarly as for digraphs: We join each
vertex of C; to each vertex of C; by b, ; non-oriented edges of i += j and
each vertex of C; to each other vertex of C; by b, ; edges. An optimal
multigraph will be denoted by B(n).

THEOREM 1. For every finite or infinite family of sample multigraphs
there exists a dense symmetric matrix B such that B(n) is a sequence of
asymptotic extremal multigraphs.

THEOREM 2. Let B be a dense symmetric matrix. There exists a finite
Jamily of sample multigraphs for which B(n) is a sequence of extremal
multigraphs. Morever, any sequence of asymptotic extremal graphs for
these sample multigraphs can be obtained from B(n) by changing o(n®) edges.

Theorem 1 is a simple consequence of Theorem 1 while Theorem 2 im-
plies Theorem 2. The proof of Theorem 2 will not be given here. We show
how Theorem 1 can be derived from Theorem 1.

Let M be a family of sample multigraphs. By definition, let L be the
family of digraphs associated with the multigraphs of M, i.e., obtainable
from them by directing the edges in all the permitted ways. According to
Theorem 1 there exists a dense A such that A(n) is a sequence of asymptotic
extremal graphs for L. Let B = § (4 + 4%), where 4* is the transpose
of A. The elements of B are 0, 1, or 2. Since for 4 and B for every pair of
corresponding submatrices of 4 and B the quadratic form is the same,
A is dense if and only if B is dense; i.e., B is also dense. We show that
B(n) is a sequence of asymptotic extremal graphs. First, the multigraphs
B(n) do not contain any sample multigraph, for otherwise A(n) would
contain a directed version of this sample multigraph, i.e. a digraph from
L. Further, for e fixed, n sufficiently large, and

e(G") > e(B(n)) + en? = e(A(n)) + en®

any multigraph must contain a sample multigraph from L; indeed,
orienting the edges of G” in a permitted way we get a graph containing
at least one sample digraph from L, the corresponding sample multigraph
is trivially contained in G*. Hence B(n) is really a sequence of asymptotic
extremal multigraphs for M.

2. THE STRUCTURE OF MATRIX GRAPHS

(A) First we remark that every matrix B is either dense or has a proper
principal dense submatrix A such that g(A) = g(B).
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Indeed, if 4 is a minimal submatrix of 4 such that g(4) = g(B), then
for each proper (principal) submatrix 4" of A g(A4") < g(A4), ie., A is
dense.

If B and A4 are in the relationship described above, we shall write
A = D(B). A is not generally uniquely determined by B.

(B) Let A be a dense matrix. For given n we select an optimal vector
(x; ,.... X;) = X, l.e., a vector such that

A(") = A((xy ;.- xr))*

Let the classes of this A(#n) be C, ,..., C, . Trivially, if two vertices of A(n)
belong to the same C;, their valence must be the same. We prove that
even if two vertices a, and a, belong to different classes, e.g. to C; and C, ,
and their valencies are v; and v, , then

fo, — v | < 2. 6)

Indeed, we can obtain A(x; — 1, x; + 1, x3,..., X)) from A((x; ,..., x,))
by omitting the v, edges incident with a; and then joining @, to all the
vertices in the resulting graph which are joined to a, , and joining g, to a,
by a, , edges. The number of edges is increased by at least

v+ (0 — M@y 4+ a1)) Z v — v — 2. )]

On the other hand, the number of edges cannot be increased since A(n)
had maximum number of edges. Thus v, — v, << 2. Q.E.D.

(C) Next we prove that, if x, = (X1, ..., Xr,») are optimal vectors
corresponding to A(n) for a dense A(i.e., A(n) = A((x,))), then the vectors
(1/n)x,, converge to a vector u = (4 ,...,%,) (in the Euclidean norm)
where u is uniquely determined by the system of linear equations

(u; ) =1 and (4 + A*) u = 2g(A)e, e = (1,..., ). (8)

Indeed, let us suppose that u is a limit point of the vectors (1/n)x,, . Then,
by (3) and (1)

2e(A((x,))) = X, AX, + O(n) = 2e(A(n)) = g(A)n* + o(n®),
and therefore

uAdu= g(A), while (u, e) = 1.

This shows that u yields the maximum in (2).
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If, e.g., u, = 0 were valid, then the submatrix 4" obtained from A4 by
omitting the last row and column would have the same maximum:
g(A) = g(4") would hold. This contradicts the hypothesis that A4 is dense.
Therefore each coordinate of u is positive.

The second equation of (8) can be obtained either by using the Lagrange
method for the maximum-problem (2) or from (6). We use the second
method. By (3) the average valence in A(n) is g(A)n + o(n). By (6) each
vertex has essentially the same valence, i.e. each vertex has the valence
g(Ar + o(n). On the other hand, each vertex of C; has the valence

@i — 1) + Y (@is + a5, x4/2. )
J=i
Hence
Y ag i + Y, agu = 2g(A). (10)
j=r i<r

This proves the second equality of (8). Now we prove that u is the only
solution of (8). This will also prove that (1/#)x, has only one limit point,
i.e., must converge to u.

First we remark that if v satisfies (8) then

2VAV = VAV + vA*v = ¥v(A + A¥)y = (v; 2g(A)e) = 2g(4)

and therefore v gives the maximum in (3) apart from the fact that v may
have negative coordinates as well. Let now u be a solution of (8) with
positive coordinates, let v be an arbitrary solution of (8), and let w =
wu -+ pv where o + p = 1. Then w is a solution of (8). With suitable
(w, p) one can get a w each coordinate of which is non-negative and at
least one of which is 0. But, as we have seen, such a w contradicts the
hypothesis that A is dense. Hence (8) has only one solution u and each
coordinate of this u is positive.

LemMmA 1. Let a;;, = a; ; in a dense matrix A = (Qy ). Then

;5 + @i, > 2a;,; .

Proof. We may suppose that / = 1 and j = 2 and that

.
Y (@r; + G50 — @5 — G0 4; =0,
3
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where u is the vector giving the maximum in (2). Let
v=(uy + u, 0 uy,..., ).
Since u is the only optimum vector,
0 > vdv — uVu
T
= Uy (z (@5 + @1 — @5 — G5.5) “j) + (2a11 — @15 — ay,) wyuy
3 y
= (2a1,, — ay,2 — ay1) Uylhy .

This completes the proof.

3. AUGMENTATION OF MATRICES

(A) Let 4 be an r X r dense matrix and m an integer, X = (X; ,..., X;)
a vector for which A(m) = A((x)). We construct a new graph by taking
x,,, new vertices forming a new class C,; and joining each vertex of the
new class to each vertex of the orlginal class C; in the same way, j = 1,..., 7.
Then we change the proportions so that the graph obtained should have
the maximum number of edges among all graphs of this type with the
given number of vertices. (The proportions of the vertices in the original
classes may also change.) This construction motivates the following
definition.

DEFINITION 5. Let B = (a;;) be an (r + 1) X (r + 1) matrix and
let A be the submatrix obtained by omitting the last row and column.
Let A be dense and u be the vector giving the maximum in (2). Let

b=1 (3 trns + ¥ i) > g(A). (1)

izr i=r

(S]]

Then we say that B is obtained from A by augmentation.

ReEMARK 2. In the graph construction given to motivate Definition 4
condition (11) means that the new vertices are joined to A(m) by more
edges than the valence of the vertices of A(m).

Lemma 2. If B is obtained from A by augmentation, then g(B) > g(A).
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Proof. Let g(4) =y, A =5/2b — y) (with b defined by (11)) and
i = (A ,..., Au,., 1 — Q). Then

gB) —y Z B —y =y + 201 — N b — gl — AR — vy
=y 20 — 20 — y =20 —y — (2b — y) A

= - = 0. QE.D. (12)

Let us suppose that A, is a dense matrix, B, is obtained from it by
augmentation, 4; = D(B,), B, is obtained from 4, by augmentation,...
A; = D(B,_,), and B; is obtained from A4; by augmentation. Since in
taking a matrix 4 = D(B) instead of B we usually have to omit some
rows and columns of B, it may happen that in the sequence above 4; does
not contain 4, ; moreover, 4, need not contain any rows or columns ori-
ginating from A, . However, in the process above we never omit the rows
and columns of 4, in which the diagonal element a; ; = 1. Here we prove
only a slightly weaker lemma.

Lemma 3. Let Ay = (2 — 8, ).« (i.e., the matrix D, of Example 2).
Let B; be obtained from A; by augmentation and A;, = D(B)), j =
0, 1,..., k. Then each A; and B, contain A, . Further, if one row of B, originates
from A, (i.e., is the expansion of a row of A,) then all its elements are equal
to 2; except, of course, the one in the diagonal.

Proof. (Induction on k). For k = 0 the Lemma is trivial. Let us
suppose that it is known for k — 1. Let
By = (a1,9):,5¢e and Ay = (@5, )i5<01 >

and let the first row of B, , more exactly (4, ; ,..., ¢,.,), be also a row of 4;.
By the hypothesis, a,,=da;3= """ =a;,,= 2. Similarly, a,; =
Gy, = "~ = @41, = 2. We prove that a, , = a,, = 2. We know that,
if u gives the maximum in (2) for 4,_, , then (by (10) and (11))

g—1
28(Apy) = Z (@;q + av) = Moy + =+ + Uy1) + 21y
1
a—1
<2 = Z (Gig + @) ty < 4ty + =+ Uyy) + (@1, + g1) Uy .
1
(13)

Therefore a; , + a5, > 2. Since, for i #= j, a,; =001 2, a;,, = 4,1 = 2.



88 BROWN, ERDOS AND SIMONOVITS

Now we show that in omitting some rows and columns of B, in order to
obtain 4, we cannot omit the first row of B, . This will complete the proof
of Lemma 3. Let us suppose that A, does not contain the first row (and
column) of B, . Let 4 be the matrix determined by A4, and the first row
and first column of B, . We can apply Lemma 2 to 4 and A4, as follows:

The new elements (except the element in the diagonal) are equal to 2;
using the notations of (11), b = 2 and g(A4) is always less than 2. Hence
2(B,) = g(A) > g(A,) = g(B,). This contradiction proves the lemma.

LEMMA 4. For every dense matrix A, positive integer m, and positive
constant € there exists an integer m’ such that

If n is large enough and G* contains A(m'), and if each vertex of G»
has valence = (g(A) -+ €)n, then there exists a matrix B obtained from A
by augmentation and a maximal dense submatrix A* = D(B) such that G"
contains A*(m).

Proof. First we fix a few constants. Let b = g(4) + €, b’ = g(A4) + ¢/2
and b” = g(A) + €/4. Let ¢ = ¢/8r, where r is the number of rows in A4,
m =L

We divide G* into two parts: the vertices of A(m') will be in the first
and the other vertices in the second. The number of edges joining the
two parts is asymptotically bnm’ or more. Therefore the vertices in the
second part are joined to A(m’) by = bm’ — 1 edges in the average. Thus
there exists a positive constant ¢; such that at least ¢,n vertices are joined
to A(m’) by more than b'm’ edges. Let us denote the class of these vertices
by E,. Since the vertices of E, can be joined to A(m") in only finitely
many way, there exists a subclass E; of E, where | E; | = ¢,n, whose
elements are joined to A(m") in the same way. (We say that x and y are
joined to A(m') in the same way if for every z € A(m’') the directed edge
(x — z) belongs to G™ if and only if (y — z) also belongs to G* and the
directed edge (z — x) belongs to G™ if and only if (z — y) belongs to G*.)

Let 4 = (a; ;); < and let B = (a; ;); j<r+1 be defined as follows:

(i) if there exist em' vertices in C; joined to each vertex of E; by
two edges of different orientation, then a,., ; = a; ,,, = 2;

(i) if there exist cm’ vertices in C; joined to E; by edges directed
from C; to E; (from E; to C;) but (i) does not hold then let g;,,,, = 0,
Qri1s = 2 (@501 = 2, Gpq; = 0, except if a;,., and a,,, ; are already
defined by the first part if (ii)).

(iii) if neither (i) nor (ii) holds, then fewer than 2em’ vertices of C;
are joined to E, . In this case let a,,, ; = @, .., = 0. Finally, we define

Arit1r41 = 0.
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We prove that B is obtained from 4 by augmentation. Clearly, the
number of edges between C; and a point of E is less than

3 (@15 1 @pr0)| Ci | +20m’.

Therefore
b'm’ < }Y (@rirg + G104 | G| + 2rem’.

Let u be the vector attaining the maximum in (2) for 4. Since | C; |/m’
tends to u; as m’ tends to infinity, we may choose m’ so large that

Z @ria,5 + @y pe1) U; > 20" — der > 2g(A4).

This shows that B is obtained from 4 by augmentation.
Itis also clear that, if ¥ < em’, then B((ke)) = B(((k...., k))) is a subgraph
of G". Therefore, if A* = D(B), then A*(m) is also a subgraph of G”.
Q.E.D.

4. PROOF OF THEOREM 1

For a given family of sample digraphs L, ..., L, let us first consider a
simpler problem instead of Problem 1, which could be called the
Zarankiewicz problem corresponding to Problem 1.

ProBLEM 3. For given n, what is the maximum d for which there
exists a graph G* containing no L; and each vertex of which has valence
>d?

We denote by Z” one of the extremal graphs for Problem 3 and by d,
the minimum valence in Z". Let

a* = lim sup d,/n.

H-c0

There exists a sequence N, of integers such that d,/n —a* if ne N,
n— co. Given a dense 4 and a sequence of graphs G*, we shall say that
A is strongly (weakly) contained by the sequence G* if the maximum
m = m, for which A(m) C G" tends to infinity (is unbounded) as » — co.

Let D, be the matrix defined in Example 2. If £ = »(L,), D,(k) contains
L, . (Each class of D,(k) contains exactly one vertex; therefore each pair
of vertices is joined by two edges of opposite directions.) Hence, if
{Z": n € Ny} contains D, weakly, then p << k. Let r be the maximum of
those p for which {Z":ne N} contains D, weakly. We may select for
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every m an n,, € N, such that D,(m) C Z"=. This means that a subsequence
of N, must contain D, strongly. Now we show that there exists 2 maximal
B such that

(i) B occurs in some sequence described by Lemma 3 and starting
with 4, = D, ,
(ii) B is weakly contained by the sequence {Z": n € N,}.

Let B satisfy (i) and (ii) and s be an integer such that the number of rows
in Bis at least r -+ 2* but fewer than r - 251, A trivial consequence of the
Ramsey theorem (or cf. [8]) is that a complete directed graph of 2¢ vertices
must contain a complete acyclic graph of s vertices. Let us select from
each class of D, C B s vertices and from each other class of B just one
vertex; let us call them vertices of the first and second type, respectively.
Applying Lemma 1 with a;; = @; ; = 0, we obtain that each pair of
vertices of the second type are joined by at least one edge. Therefore we
can choose s of them spanning a complete acyclic graph of s vertices
(perhaps with some additional edges). Applying Lemma 3, we obtain that
each vertex of the second type is joined to each vertex of the first type by
two edges. Hence B contains a D, ;(s). Since D, is not even weakly
contained by {Z": n € N,}, s must be bounded. Thus the set of matrices B
being considered is finite and there exists a B for which g(B) is maximal.
We shall prove that B(n) is a sequence of asymptotical extremal graphs.

(It can happen that {Z": n € N,} does not even contain D, weakly. In
this case » = 0 in the argument above and we do not need Lemma 3.)

Each B(n) is contained in some Z"'; therefore B(n) cannot contain any
sample digraph. The vertices of B(n) have valence g(B)n + o(n) (by (3)
and (6)). Therefore

a* = a, = lim inf d,/n = g(B). (14)

oo
But, if in (14) we had a* > g(B), then Lemma 4 would yield a B’ which
is obtained from B by augmentation such that a B* = D(B’) is weakly

contained in {Z" : n € N,}. This would contradict the maximality of B.

Hence
lim d,,/n = g(B). (15)

We prove that B(n) is a sequence of asymptotic extremal digraphs for
the considered set of sample digraphs. Since we know that it does not
contain any sample digraph, we have only to prove that if

e(G") = e(B(n)) + en®* = ¥(g(B) + 2¢e)n* + o(n?)
then G™ must contain a sample digraph. Let g(B) + € = g’. We define
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G"— recursively by omitting from G"—*! one vertex of valence
< g'(n — j + 1) if G*7*! has such a vertex; if not, the recursion stops.
Clearly

oG") > 1 (e®) + 29 — g KELZELD 4 o
— 2 2
=g E_”—k) A % + o(n?). (16)

From (16) we know that G"~* has at least en*/4 edges, i.e., the recursion
stops when G"~* has at least (€/2) n vertices. Each vertex of the obtained
G"* has valence = g’(n — k). If n is large enough, then n — k is also
large enough and by (15) G** must contain a sample graph. Q.E.D.

5. FinaL REMARKS, OPEN PROBLEMS

(A) Instead of considering graphs without loops and multiple directed
edges we could consider for a fixed integer ¢ graphs without loops, where
two vertices can be joined by at most ¢ edges of the same direction. We
conjecture that Theorem 1 is valid even in this case, if we modify slightly
the notion of matrix graphs. Now we consider a matrix A whose diagonal
elements are non-negative integers not greater than r — 1, and whose
other elements are even non-negative integers not greater than 2r. We
must also fix a vector a = (q ...., @,) with non-negative integer coordinates
where 2a; < a; ; will also be assumed. We join each vertex of C; to each
vertex of C; by a; ;/2 edges directed from C; to C; if i + j. The complete
acyclic graphs of the original definition now have to be replaced by the
following graph: If x, is the number of vertices in C, and the vertices are
Zy s 2o, then for every 1 << x" < x" < x, we join z,» to z,~ by a; ; edges,
a; of which are directed from z,- to z,- and the other a; ; — a; are directed
in the opposite way. Most of our results remain true even in this case;
in some of them | must be replaced by . But the final part of the proof
fails to generalize. Theorem 2 remain valid also in the general case and
its proof is not more complicated.

(B) Theorem | and 2 imply that for any infinite family of digraphs, L,
there exists a finite L* such that

fn; L) — f(n; L¥) = o(n®). amn

Indeed, let A(n) be a sequence of asymptotic extremal graphs for L.
Then there exists a finite L* such that 4(n) is a sequence of asymptotic
extremal graphs also for L. This proves (17).
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ConEcTURE 2. For any L there exists a finite L* C L such that (17)
holds.

Conjecture 2 is trivially valid in the case of undirected graphs without
loops or multiple edges. We think that it is always valid, i.e., not only for
Problem 1 but also for the generalization of Problem 1 given in (A). An
equivalent form of Conjecture 2 is

ConJECTURE 2*. (a) For every constant y there exist only finitely
many dense matrices 4 such that g(4) = y.

(b) Let A be the set of positive constants of form g(4), where 4 can
be any dense matrix. Providing A with the usual ordering of the real
numbers yields a well-ordered subset.

(c) In another paper we shall deal with characterizing the structure
of dense matrices. Here we mention only one result, the proof of which
will be published later.

THEOREM 3. Let A = (a;;); i<, be a dense matrix and a, , = 1; then
a,=a,;=2foreveryi =2andj>=2.

(d) Some ideas of the proof of Theorem 1 can be found in a paper of
Motzkin and Straus [9]; the most important is to associate a quadratic
form with a graph and look for the maximum of x4x in (2). Another
device of [9] is that used to prove Lemma 1, i.e., to consider the vector
v=(u + u,0, uy,..., u,). However, we have to mention here that this
latter is equivalent to a method used by A. Zykov [10] for the same purpose
(i.e., to prove Turdn’s theorem). On the other hand, the quadratic forms
here are much less surprising than in [9], since they express the number
of edges of the graphs A((x)).
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