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l. INTRODUCTION

We are concerned in this paper with problems of the type illustrated
as follows: Is it true that for amy partition of the Euclidean plane into
two classes (we say that the plane 15 rwo-colored), there exists a set of
three poeints all in the same class forming the vertices of an equilateral
triangle of side length 17 (We call such a set menochromaric.)

In this example the answer is “no,” a8 can be seen by dividing the
points (x, y) into two classes according to the parity of [2¥/+/3]. On the
other hand, if we two-color the points of Fuclidean 4-space, we have
only to look at the five points of an equilateral simplex of side length |
to see that there must be a monochromatic equilateral triangle of side
length 1.

These examples; then, suggest the following general question: Let K
be a finite set of points in Euclidean m-space for some m. Then is there
an integer n, depending only on K and the integer r, such that for any
r-coloring of Euclidean s-space there is a monochromatic configuration
K' congruent to K7

In the case of an equilateral triangle with r = 2, we saw that the answer
is “ves," and that the minimal possible value for n satisfies 2 < n = 4.
We shall see later that the exact number is n = 3.

These questions can be considered special cases of the general Ramsey
problem, described as follows: Let A and B be two sets, and R a subset
of 4 « B, For a e 4 denote by Ra) the set (be 8| (a, b) = R]. R is said
to have the Ramsey property for r colors if for every partitioning of B
into r classes (r-coloring of B), there 15 an g £ 4 such that R{a) is contained
in only one class (monochromatic). The general Ramsey problem is to
characterize those R for which the Ramsey property holds. For instance,
suppose A is the set of [-subsets of an r-set 8, and # is the set of k-subsets
of §. Let R={{u. b) | b T al.

Tueorem | (Ramsey [T}, 4fnis farge enough (depending only on I, &, r),
R satisfies the Ramsey property for r colors.

The type of gquestions we are concerned with here, as indicated above,
are questions in which R is determined by geometric considerations. For
instance, in the example above, B is the set of points of Euclidean n-space.
E*, and A is the set of triples of these points forming equilateral triangles
of side |. R is just the inclusion relation. We saw that for r = 2and n = 4
the Ramsey property holds, while for r = 2 and #n = 2 it does not.

The theorem of van der Waerden [9] on arithmetic progressions was
the first important case in which R was determined geometrically. In this
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case we can take B to be the positive integer points on the real line,
A the subsets of [ equally spaced points of arbitrary distance (length [
arithmetic progressions), and R the inclusion relation.

Tueorem 2 (van der Waerden [9]), R has the Ramsey property for
all r.

(Actually, van der Waerden's Theorem is stronger, and says that if B
consists only of the first n integer points, where n depends on / and r,
then R satisfies the Ramsey property for » colors.)

Van der Waerden’s Theorem was generalized by Gallai [6] and others
[3, 1]. The generalization is as follows: Let K be a set of & points in
Euclidean m-space, E™. Let B 'be the set of peints E™ and A4 the set of
k-sets in £ similar (in fact homothetic, that is, similar without rotations)
to £. Let R be the inclusion relation,

Tueorew 3 (Gallai). R has the Ramsey property for all r.

Again, as in van der Waerden's Theorem, B need only consist of a
finite set of appropriately chosen points. This is due to the "compactness
argument™ (see [8], p. 69) which, when applied to the Rumsey property,
becomes the following:

Provosimion 4. For sets 4 and B suppose R satisfies the Ramsey
properiy for roeolors with R(a) finite for all ac A. Then there are finiie
subsets A' C A, B C Bwith Rla")C B for all ' © A" such that the induced
relation (defined for A" = B' by (a',5)e R' iff (¢, b") € R) satisfies the
Ramysey praoperty for r colors.

Theorem 3 is like the case above of the unit equilateral triangle except
that similarity replaces congruence. In general, we can consider a property
Ry K, m, r), where K is a finite set of points in £% r is an integer, and H
is a group of transformations on £" as follows:

RylK, n,r); For any r-coloring of the points of E® there is a mono-
chromatic configuration K° which is the image of K under some element
of £, (This, of course, is the statement that, if’ & is the set of points of E7,
A the set of images of K under H, and R the inclusion relation, then R
satisfies the Ramsey property for r colors.)

We are interested in whether for a given K, r, and / there 15 an » for
which Ry(K, n, r) is true. In particular, we are primarily concerned with
the group of Euclidean motions (congruences), and we will drop the
subscript A in Ry{K, n, r} when this group is considered if this causes
no confusion. (In our example, where K was a unit equilateral triangle,

%
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we saw that R(K, 2, 2) was false, but R(K, 4, 2) was true.) We remark
that, if R{K, n.r) is true, then so is R(K", n, r) For any K’ similar to K

In Sections 3, 4, and 5 we will investigate configurations K such that
for each r there is an n such that R(K, n, r) is true. These will be called
Ramsey configurations. Not all finite configurations are Ramsey, as we
shall see later. We begin first with some special cases.

2. ExampLES

Certain special cases of R(K, n, r) are already known. For instance:

Tueorem 5 Let P be a pair of poinis distance d apart. Then R(P, 2, 7)
is false, while R(P, 2, 3) is true.

Proof, We refer the reader to [4] and [2] for proofs. However, we
include the proof for R(P, 2, 3) since it consists only of Figure 1, to
which we shall refer later. In it there are seven points of which at most
two can simultaneously not be distance « apart.

Fiz. 1. All edges have length o

As promised in the introduction, we show that R(S,, 3. 2) is true,
where 5, is the equilateral triangle of side | (or equivalently of side d).

THEOREM 6. R(S,. 3, 2) is rrue.

Proaf. Let E* be 2-colored, say red and blue. Then choose any pair
of points distance | part and both the same color, say red (Theorem 3).
MNow either there is a third red point at distance | from both of these,
and we are done, or else there is an entire circle of blue points at distance 1
from both. This circle has radius +/3/2, Now choose any two points on
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the circle distunce | apart. If there is 4 third point at distance | from both
which is blue, we are done. Otherwise there is #n entire circle of red
points (in a plane perpendicular to the plane of the blue circle). If this
second alternative holds for each pair of peints on the blug circle distance 1
apart, then, as we move around the blue cirele, we obtain a whole family
of red circles which define n degenerate torus (no hole in the center, due
to sell intersection). The equatorial radius of this torus is (V2 - +/3)2.
Thus we can find three points on the equator mutually (V6 + 3)/4 = 1
apart. Moving symmetrically from these three points along the surface
of the torus toward the middle, we can find three points mutually 1 apart,
Since they are on the torus, all three are red, and the proof is complete.

We next consider the umit square €. . The argument used below was
suggested by 5, Burr.

TueorEM 7. R(C,, 6, 2) iy frue.

Proof. Consider the 15 points (X, , X, ...., X in E® defined by having
four entries equal to 0 and two entries equal to 1/4/2. These 15 points
can be represented by edges in the complete graph on 6 vertices, where
the edge between v, and ¢; corresponds to the peint with 1/vZ in the i
and j coordinates, | =i < j = 6. Any 2-coloring of E® determines, in
particular, a 2-coloring of the 15 points. This determines a 2-colaring
of the edges of the complete graph on & vertices.

It is well known that in any 2-colored complete 6-graph there exists
i monochromatic quadrilateral. That is, there must be four vertices,
Uy Ps, Uy, and g, for instance, such that the four edpes (pyny), (e,
(e}, and (o) all have the same color. But this means that the corre-
sponding points in £° all have the same color, 1/ vZ{1 10000}, 1/ +Z(01 1000),
1 /200001 100) 1/+/Z2(100100). Since these form the wvertices of a unit
square, the theorem is proved.

We note that R(C, , 2, 2) is false, as we see by coloring (x, ¥) according
to the parity of [ v]. Whether it is true for n = 3, 4, 5 is undecided,

THeorem B, If T is any set of three points, R(T, 3, 2) is rrue.

Proof. Let T be a triangle with sides a, &, and ¢ (where @ + b may
equal ¢ in the degenerate case), Let E¥ be 2-colored, say with red and blue,
Then by Theorem & we can find some equilateral monochromatic (say
red) triangle ABC of side a. Consider Figure 2 in the plane of ABC. The
triangles ABE, DBC, GFC, EFH, ACH, and DEG are all congruent,
Then, by chooesing the angle EBC properly. we can let them all be con-
gruent Lo the original triangle T,
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Now 4, B; and C are all red. Thus, if there are no monochromatic
triangles congruent to T, by considering triangles ABE, DBC, and ACH,
we see that £, D, and H are blue. Then triangle DEG forces @ to be red.
But triangles COFG and EFH force F 1o be bBlue and red, respectively, a
contradiction. Thus one of the six triangles must be monochromatic.

We note that for some triangles (e.g., S;) R(T, 2, 2) is false. In at least
one case, the 30°-60° right triangle, it is true, as we see below.

Tueorem 9. Let o = 0, and Jer Ty, Tu, Ty be any three triangles such
that Ty has a side of length d, Ty q side of length v3d, and T, a side of
lemgth 2d. Then for any 2-coloving of E®, there is a trigngle T which is
congruent fo one of Ty, Ty, T, and which is monochromatic,

Froaf. By the proof of Theorem 8 above, it is sufficient to show that
we must have a monochromatic equilateral triangle with one of the three
side lengths &, +/3d, 2d. Let F*® be colored red and blue, and let
u=d(l,0), v =d(1/2, +/3/2). By Theorem 5 we may assume (0, ()
and » are both red.

Suppose none of the three kinds of equilateral triangles occurs. Then ¢
and v — p must both be blue. This forces 2u to be red, which in turn
forces 2v to be blue. But then » + v can't be red or blue (because of
triangles (u, 2u, v -+ ¢) and (g, 20, u -+ 1)), a contradiction.

CoroLLary 100 Let T be a 30°-60° right triangle. Then R(T, 2, 2) is

true.
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The only triangle for which R(T, 2, 2) is known to be true is the 30°-60°
right triangle, and the only one for which it is known to be false is the
equilateral triangle. We conjecture that R(7, 2, 2) holds unless 7 is
eguilateral, and, moreaver, that any 2-coloring of £* with no monochro-
matic equilateral triangle of side  in fact has monochromatic equilateral
triangles of side o' forall ¢ = d.

Tueowem 11, Let L be the confiewration of points in E* given by
(—0, 00 (0,00 (1.0), and (1, 1). Then R(L, 3, 2) iz rrue.

Proof. Color £* red and blue, Then by Theorem & there are three
points;, 4, 8, €, in a line distance | apart and all the same color, say red.
Suppose there 1s no monochromatic L' congruent to L.

Consider the two ecireles of radius 1, € and € with centers 4 and C,
respectively, and perpendicular to the line 48C. Both cireles must be
completely blue, or else we have a red L', Now consider the circle Cy of
radius 1, centered at B and also perpendicular to ABC. This circle must
be entirely red, or together with two points on €, and one on C. we get
a blue L',

Let S be the sphere of radius +/Z centered at B, and let §' be the set
of points on § which are at most distance | from C, . 5 is just S truncated
by the planes of C, and C . All points of 8" must be blue. For each such
point s is. distance | from some point x on Cy . Let ¥ be the point on Cy
diamettically opposite x. Then yBx is perpendicular to sx, since sxB
is a right triangle. Thus sx By is congruent to L, and & must be blue:

Consider a point g in the plane of Cy and distance 2 from B. Then p
must be blue, or together with 8 and two points on Cy we pet a red L'
MNow consider a point ¢ on 5, in the plane of €y and distance 1 from p,
The line joining p and g meets 8 in another point r, which must be-distance
| from g, p, ¢, and r are all blue. Thus the circle of radius 1, center r and
perpendicular to the line pgr must be red, or we get a blue L', But this
is a contradiction since this circle meets 8, which is all blue.

3. ConNFIGURATIONS THAT ARE NOT RAMSEY

We recall that a configuration (set) K in Euclidean space is Ramsey if
for each rthére is an # for which R(K, n, r) is true, For instance, if X is
the equilateral triangle of side length |, then R(K, 2r, r) holds (since the
onit simplex in E£*" has 2¢ + | points, and thus any r-coloring yields
three points with the same color.)

We next consider a class of configurations which are not Ramsey. We
illustrate first with some special cases,
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Tueorem 12, Let L, denate the configuration of k collinear points
separated by wnit distance, Then R{Ly ,n, &), R(L,,n, 3), and R{Ls, n.2)
are false for all n,

Proof. For the case of L, let each x & E* be colored according to
the residue of [| x |*] (mod 4). Now suppose we have three pomts x, X | u
and x — w, where u has length . If all three have the same color, there
must be integers @y, @s, gz, 4n integer r, 0 =_r < 4, and numbers &, ,
0= <1 ¥=1,2,3 so that |x|*=4a Fr+ 8, |x—ul'=
dg, +r + 8, and |x 4 ul* =4ay +r + #,. This implies that
1 4+2x - n=dlay —a))+ s — th,and | —2x -u=d{ay, —a,) + 0 — ;.
Hence 4(a, + ay — 2ay) — 2 + (0, + #, — 28,) = 0, a contradiction since
&, < 1. Thus R(L, . n, 4) 15 false,

For the case of L, , we color the points x € £7 according to the residue
[2 |x1*] (mod 3). Suppose x +im, | = {4, a a unit vector, are the
same color. Let a; = |x + in | Then we have 2g, + 2o, = 4a, - 4,
and 2ag; -+ 2ay = 4a; - 4. Since all four points are the same color, if
we let f; be the fractional part of 2a;, 1 < i= 4, we get, by rediction
modulo 3 to reduced residues, f; + =2 + 1 and f; + £, =2/, + |,
Adding these, we get fi + f, =fu + fy -+ 2, an impossibility.

For the L, case we color the x in £" according to the parity of [| x [*/6].
Let x 4w, 1 =i = 6, be the same color, where u is a unit vector. Let
g = | x4 1< 7§ <<6, Then aps + @y = 2 4 113 for
i=23.435 and all [¢,] have the same parity. We claim that this is
mmpossible,

By replacing each a; by a; -+ (i — 4)[ay] + (3 — i)[a,], we may assume
la;] = [a,] = 0, and thus that each [a,] is an even integer. The identities

dy = 2‘13 — iy 1;3.
a; = 2a, —ag.+ 1/3,
iy = zﬂg — iy -+ I,'I3,
ty = 2a, —ay, + 1/3,
& +ay=ay+a,+2
are easily verified,

Using the first two equations, we find a, and a, are contained in the
interval (—2/3, 7/3). But [a.] and [g,] are even, so 4 and a. are in
Iy [2, 7/3). If a; =2, then

4= 2a,+a, =3a;+1 <4,

a contradiction. Hence a, £ [, similarly a; € 1. By a similar process we get
ayed and a;el But then 2= a; + a, + 2 = oy + 4; < 2, a contradiction.
We say that a configuration K ={v,, v, ..... %} of points in E* is
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spherical if it is imbeddable in the surface of a sphere, that is, if there is
a center x and a radius r so that |v, — x| =rforall v, e K

THeoREM 13. If K is not spherical, then K is not Ramsey.

To prove this we require two lemmas.

Lemma 14, The set K = (¥ ,.... ¥} is nor spherieal if and only if there
exist scalars ¢ ..., cp not all O such that:

k

(1) ¥ v — vo) = 0,
f=l
l.:
(2) Yoedl vl — | =50

=1

Proof. (We use v;* to mean | v, %) Assume K is spherical, with center
w and radius r, and suppose (1) holds. Then

VW=V =—wP— (v — WP+ Ay —w) W =2 — )W,

and

3 &

¥oelrE— v = 2w - ¥ edvi — w).

=1 i=1
Hence (2} does not hold.

Now suppose K is not spherical. It is sufficient to assume that K i

a minimal non-spherical set. That is, all subsets are spherical. Since
every non-degenerate simplex is spherical, it follows that the vectors
Vi — ¥y, 1 =<7 =k, are linearly dependent, There exist ¢,, 1 =i =k,
not all 0, satisfying (1). Assume ¢, =0 and that {vq....ve,} i5 on a
sphere with center w and radios r. Then

.3 %
iEI eVt —wt) = E eillve — w)* — (v, w)']
[ fa=l

= alv — %) =0,

and (2) holds. This proves Lemma 14,

Lemma 15, Let oy ooy ey b beoreal mumbers, b £ 0. Then there exists
an integer r, and some r-coloring of the real mombers, such that the equation

k
(3) Loelx— %) =56 #0

=l

58zu/14/3-6



350 ERDS ET AL

has no selution x| xq ..., x, where all the x; have the same color (mono-
chromatic solution),

The proof of this lemma, which some may consider of greater interest
than Theorem 13, we defer until Section 4 below. Tt extends the funda-
mental work of R. Rado [6].

Proof of Theorem 13. Let K be a non-spherical set {v; ..., ¥,}, For an
arbitrary n we exhibit a coloring of E" avoiding any monechromatic set X*
congruent to K,

By Lemma 14, there are real numbers, ¢; , ¢4..... £, not all 0, such that
equations (1) and (2) of Lemma 14 hold. By Lemma |5 there is some
integer r and some r-coloring y of the real numbers such that equation (3)
of Lemma 15 has ne monochromatic solution, (That is, ¥ is a function
from the real numbers to {1, 2., r}, where the r colors, or classes, are
the ¥ j), | < j=r.) We now color E" by the coloring ¥* given by
¥*{v) = y(v®). Thus the colors form spherical “shells™ around the origin.

Now we observe that equations (1) and (2) remain valid if K is replaced
by any & + l-tuple of points congruent to K (using the same choice of ¢,).
For (1) is clearly invariant under any affine transformation and thus
certainly under isometries, while {2) is invariant under isometries fixing
the origin, since then the v,* remain unchanged. Furthermore, (2) remains
valid after translations as well, since if we translate by z we get

kE s R

E {',Ef'-"; Tt z}i — h'ﬂ + 2}9] = E rlu'hrl'3 = ?ﬂg} + P i E 1{"J{l‘lll' "n.:l

i=il i=1 i=1

B
= Y v — vf) = b
=1
Thus (1) and (2} both hold for any {v,',..., ¥,'} congruent to K.

In particular, if we have a monochromatic {v,’,..., ¥;'} congruent to K.
then letting x; = (v/)* — (v,B* we obtain a monochromatic solotion
Lo (3). contrary to the choice of the coloring y. This completes the proof
of Theorem 13 for finite sets. The case in which K is infinite is immediate
by considering an appropriate finite subset.

Theorem 13 establishes the necessity of a set being spherical if it is
to be Ramsey. The sufficiency of this condition remains undecided. The
sufficiency of a stronger condition is established in Section 5 below.
We note that the number of colors used depends on the ¢, , which in turn
depend on the configuration K. The dependence on the ¢; appears explicitly
in the proof of Theorem 16 (Lemma 15) below.

The coloring used in the proof of Theorem 13 wis spherical. That 15,
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any sphere centered at the origin has points of only one color. We might
ask whether other kinds of colorings could be used to show sets other
than non-spherical sets to be non-Ramsey. In particular, suppose § is
a “nmice” surface (closed, bounded, separating E" into two disconnected
regions) which is entirely visible from the ormgin, That is for each point
5 £ 8, the line segment joining the origin and s meets S only at s). Then £°
can be decomposed into “concentric” surfaces 5, = {as |s= 5. & a non-
negative real number. An S-coloring is a coloring which is constant on 8,
for each = We might hope that for some 8 an S-coloring could be used
to show some configuration to be non-Ramsey. Any such configuration
would, of course, not be imbeddable in any S,. However, any non-
degenerate simplex which is imbeddable in a sphere is also imbeddable
in some 5, if » is large enough, depending on the confipuration (see
Lesley O'Connor's thesis [5] for a discussion of this and related problems),
Thus no non-degenerate simplex can be shown to be non-Ramsey by
an S-coloring.

4. Exrension oF Rapo's ReEsuiTs oN MoONOCHROMATIC
SOLUTIONS OF NON-HOMOGENEOUS EQUATIONS

Our object here is to prove Lemma 15 above., Actually, we prove a
somewhat stronger result that will be useful later in Section 6 to get a
generalization of Theorem 13.

THEOREM 16. Let oy, €y ooy €5, D25 0 be elements of a field F. Then
there exists a finite coloring y of F so that

&
(4) Y oedxi—x) =05

ol
has no solution x,, X, X, X'ss Xa o X' €F with  x(x) = x(x/),
l=i=sk

Proof. Following Rado, we observe that it is sufficient to prove this
theorem for the field F, = I{¢; ..., ¢), where IT is the prime field of F.
To see this choose a Hamel basis B with b e B for F over £ and assume
that we have a coloring y of Fy, for which Theorem 16 holds when
Xeaxi €F. 1 =i=k and b is replaced by 1. Now color xeF by
¥*(x) = y(x), where x = xfr 4 - is the B-expansion of x.

Then

k
Z clxy — x/) =4 with  y*(x) = y*x)
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leads o

k

Y edxi —x/) =1 with xix;) = x(x;)

iw]l

a contradiction. We can therefore prove the theorem by proving it first
for prime fields, then for pure transcendental extensions, and then for
finite extensions.

Case 0. F =11, the prime field.  This case is essentially given by Rado,
If {1 is finite, we color all elements with distinct colors so that y(x,) = y(x,)
implies x; = x,', and (4) has no solution with y¥{x) = x(x).

If I = @, the rational numbers, assume without loss of pgenerality
that the ¢, and b are integers. Lr:t p be a prime not dividing b, and let M
be an integer satisfying M = l;-i | & |. Now let ¥ be a coloring ol the
rationals given by w(x) = y(x") if and only if [¥] = [x'] (mod p) and
[M{x}] = [M{x"}], where [x] is the integer part of x and {x} is the frac-
tional part. Thus y is an Mp-coloring,

Now il ¥(x,) = »(a") and

b B

i = E elxy — X)) = Z edlx] — ') 4 z edixd — =D

f=1 d=l

then the first sum on the right is an integer divisible by p which differs
from & by at least 1, since & is not divisible by p. The second sum satisfies

& i
|L | | Mixt — Mixy'}
%, edted — )= -
2 g o _ Talal
S ATM M '
a contradiction. This completes Case (.
Case 1. Purely trancendental extensions. That is, we assume that

the thearem holds for the field F and show that it also holds for F(y),
where v is transcendental over F. Multiplying by a suitable polynomial
we can assume that all ¢, and b are in F[ »]. We may also assume b(0) += 0;
for, if F is infinite, we may replace y be ¥ — a and #(0) by Ba) for any
a  F if necessary; if F is finite, we first make a finite extension F' of F
{for which the theorem haolds trivially) such that & y) does not vanish
identically on F', and again replace ¥ by 3 —a.
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Now let m = max; -, deg ¢,( ) and write ¢; = ¥ ¢,;%. For each
x; . x/ = F(») we have Laurent series expansions

¥e = yALY) + Y agy,
o

X = yAAF) + ¥ auy,

Jald

where the sums on the right have only a finite number of non-zero terms,
aj;, a = F, Al y) and A,(y) are in F(y), and 440) and A;'(0) are in F.
Comparing the constant terms on both sides of (4) gives

E Y. eulay — aj) = b{0) #0,

fmml e}

By hypothesis we can find a coloring y of F so that this has no solu-
tions with ylay) = ylay), 1 =ik, 0=<j=m If we now color
x = yA(¥) + B g a;y by the “product color” y*{x) = (y(a@g},.., (&)
(that is, x*(x) = x™(&") if and only if y(a;) = x{a,"} for all f =0, 1,..., m),
then there is no solution of (4) in F(y) with ¥ *(x) = x* =), 1 =i =1k,

Case 2. Finite extensions. We now assume that the theorem holds
for £ and prove it for a finite extension L of F. Let [L : F] =4, and let
@y oy oy bea basis for L over F. We can then write:

4
£y = E Cigtidy o
el

i

Xi= ¥ Guto,
de=]
i

F Lt (™ "
Xy = L yaty o
A=l

i
b == Z b,g'f-IJ‘irq bj_ Z=i{)
Gazl
and

4
Qi = Z Auﬂ'ﬂ“’v L] "hurJ'p € -F-
=l
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Comparing coefficients of e, , in (4) we obtain
E d i
E E Y Aamcilag — @) = by # 0.
1=l a=1 =1

By hypothesis, we can find a coloring y of F so that this has ne su]ulmn
with ylaia) = ylah 1 ==k, 1 = 8 < d. Ifwe coloreachx = E,,_, oy
by the product coloring ¥ *(x) = (y{a),.... ¥(aa)), as above in Case 1,
then we see that (4) can have no solution in L with ¥*(x,) = ¥*(x,") for
all i. This completes Case 2 and the proof of Theorem 16. We note that
in both Cases | and 2 the number of colors was dependent on the degrees
ol the ¢; (over the appropriate field). In Case 0, where IT = @, the number
of colors depended on the magnitudes of the ¢, and the prime divisors

of b.

It is natural to ask whether Theorem 16 can be extended to expressions
in which the linear forms on the left-hand side of (4) are replaced by a
homogeneous form of higher degree. This question is settled negatively
below.

Tueorem 17. {f @ is colored with &k colors then the eguation
(x, —»xe — ) =1 always has solutions with cofor x, = colory,
(f=1,2

Proof. By wvan der Waerden's Theorem [9] there is an arithmetic
progression with k! {2k < 1)* elements all of which are colored alike so
x; — ¥p = dn has monochromatic solutions with n =1, 2,..., k! (2k + 1)*
for some == 0.

Now consider the numbers

1 | 1
die 4 1) " dke) (k4 2) "7 dR) (28 + 1)

two of them, say

1 PR e |
Fik+n 0 BEEERTH

Xy =
have the same color and

J—1i |
u’ Kk + ik +j) dn’

Ag —

where m << k) (2K + 107
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By the proofl of Theorem 16 we see that in Theorem 13 the number of
colors needed to color E" and to aveid a monochromatic K congruent
to K depends on the number theoretic properties of the distances between
points of K. In certain special cases, however. we can obtain an upper
bound on the number of colors depending only on the number of points
in K. The following is essentially the iteration of Case 1 in Theorem 16,
followed by an application of Case 0.

ComroLrary I8, I K ={vy ... v} iy a minimal non-spherical set (all
subsets are spherical), and the constants ¢, in (1) and (2) of Lemma 14 are
sweh that ey, efty .., eyfey are algebraically independent over Q, then
every E" has a coloving (in spherical shells) with (2k)Y* colors so that there
is no monochromatic K" congrient to K in E*.

Proof. Tt suffices to show that there is a (2k)*-coloring of R, the real
numbers; so that equation (3) has no real solutions x;, , x; ..., ¥ which
are monochromatic,

As in the proot of Theorem 16, Case 1, we may assume that & == (.
Thus we may assume b=1, ¢, =1, and ¢&...., ¢, are algebraically
independent transcendentals. Proceeding as in Case | we expand the x,
in Laurent series in oy

Xe= v+ @ply" + Guty + ap + d,_16e +
so that comparing the constant terms in (3) we get
(@ — Gop) + ay — dy) + elagy — Gua) + ~ + ey — oo} = 1.
Expanding the a,; Laurent series in ¢, we get

- =2 —1 - o
Gy = = = ey +— Gply -+ Qi + Siq0 T+

and
(Bpn — o) + (Basg — Gonp) + (@ — Gom) + -+ + Cel@rop — Fope) = L.
Repeating this process we finally get

(23500 — Bog i) T+ (Faggeiog — Bogieiag) = (Tangs-0. — Fonag--0)

+ o @y — Fpoeear) = 1y

where the a, . ; are rational numbers.
Now we color the rationals with 2k colors as follows: Two rationals a
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and & have the same color if and only if [¢] = [@'] (mod 2) and
[k{a}] = [k{a’}]. It is then clear that the equation in the a; ..., above has
no monochromatic solution, since the left side would equal an even
integer plus & fractions each less than 1/ in absolute value.

The product coloring

¥ = (ylas.- ok ¥ Gag-0)sees ¥(Es0-))

has (2k)* colors and yields no monochromatic solution to (3).
For three collinear points we have a slightly better result.

CoroLrary 19, If K ={v,, vy, ¥a}, where (vy — vy) + olvg —vg) =0
aind & Q (the rationals), then for every E" there is a spherical coloring
with 16 eolors avoiding monochromatic sets congruent to K.

Proof. If « is transcendental, we can apply the previous corollary,
obtaining 4* = 16 colors. If « is algebraic, as in the proof in Theorem 11,
it suffices to 16-color the reals, R, so that

(0 —xy) Foalag —x) =820 (5)

has no monochromatic real solution. As above, we may assume b = 1.
It is sufficient to l6-color (Xw), as in the proof of Theorem 16. Assume
the minimal polynomial of « is

X™ — g X" — Gy gx™F — o— ity € Qx].
Setting x; = }:'_."_'; xyo' and equating constant terms in (5) yields
(X310 — Xoo) + GefXang — Xgna) = L. (6)

Now define ylc) = [2¢] (mod 4). Then the product coloring
¥ = (xlxe)s x(@eX; ) is a l6-coloring of Ofx). If x*(xg) = x*(x,) =
1*(xy), then x4 — Xy = 2K + & K an integer, and 0 < e < J2, and
@y(Xsn1 — Xona) =2L + 8 L an integer and 0 <& < 1/2. This
contradicts (6), completing the proof.

We observed at the begimning of Section 3 that if ® = | then 4 colors
suffice, Tt remains open whether in fact there is some r such that r colors
suffice for all «, rational or irrational. More generally, it is unknown
whether for any & there is a number r of colors depending only on & such
that r colors suffice to prevent a monochromatic K for any non-Ramsey K
with & + 1 points.
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5. CoNFIGURATIONS THAT ARE RAMSEY

We observed at the beginning of Section 3 the obvious fact that the
equilateral triangle is Ramsey. Similarly, if K is a regular simplex of
k —+ 1 points, then R(K, kr, r) always holds, and thus K is Ramsey, These
and the configurations derived from them by the theorems below are
the only ones that are presently known to be Ramsey.

If K, CE" K,C E™ we define K, x K;in E™*™ to be the set of points

{0y e e e P L (i ) € 8 S0 o ) B KGR

THeorem 20, If K, and K, are Ramsey, then so is K, = K,

Proaf. By the compactness principlé (Proposition 4 in Section 1), for
any integer ¢ there is an integer #, and a finite set T'C £™ such that every
r-coloring of T yields a monochromatic X' congruentto K, . Let | T| = 1.
Similarly, for K, there is some s, and some finite set § in £™ such that
every r'-coloring of S yields a monochromatic K,' congruent to K, .

Consider the set 7" x §in E™t", Let T x § be r-colored by x. Now
define a coloring x* on § by letting y*(u) = y*(0’}), u, v’ £ 8, il and only
if y(v = w) = y(v x o) for all ve T. This is an r'-coloring of 5. Hence
there is some K, congruent to K; in 8§ on which ¥* is constant, Let
u, € K,'. Define a coloring ** on T by y**(v) = ¥({v > w). This is an
r-coloring of T". Hence there is a K," monochromatic and congruent to K, .
But then ¥ is monochromatic on K," x K, since, by choice of y*,
y remains constant as we vary the points in Ky, and, by the choice of
¥¥*, ¥ remains constant as we vary the points of K,'. This completes the
prool. We obtain a {probably very weak) bound on the size of n for which
RIK, ® K;,n,r) holds, Namely, if R(K, ,n,,r) and R(K., ns, r™) hold,
then R(K; = K., n; + nmg,r) holds.

We use Theorem 14 to obtain a class of Ramsey configurations. We
say that a brick in £" is any set congruent Lo a set

B= G ivx) | sy =0, arpmm =01 <l a)

That is, B is the set of vertices of a rectangular parallelepiped.

COROLLARY 21. Any brick is Ramsey.

Proof, Since the sets K; = {0, a;} are simplices, this is a direct result
of iterating Theorem 20, as B =K, x K, % -+ x K, . The bounds
obtained from Theorem 20 on the dimension as a function of the number
of colors are colossal. However, better and more explicit bounds are
obtained in Part 11 of this paper (to appear).
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CoroLLary 22, Any subset of the verrices of a brick is Ramsey.

We remark that the proof of Theorem 20 does not necessarily yield
the best bounds for the dimension required for the Ramsey property to
hold. For example, the argument in Theorem 20 gives & bound of n = 10
for R(Cy,n, 2), in contrast to n = 6 from Theorem 7. Similarly, for any
rectangle, Theorem 20 gives n = 10, whereas a similar but more careful
argument will yield n = 8. In particular, we could have replaced n, — 8
in Theorem 20 (for this case) with . = 6, since the monochromatic
edge of the triangle T (needed to assure the existence of 4 monochromatic
pair with given distance) can occur only in 6 different ways,

The regular unit simplex of & points is itself a subset of a brick, namely,
in the cube in E* with side length 1/v/2. Let an /-dual of a simplex of n
points be the sel obtained by taking the centroids of each of the (%)
Lpoint subsimplices. The l-dual is the simplex itself, and the (n — 1)
dual is the usual dual. We see then that any /-dual of a regular simplex
is Ramsey (by Theorem 1 [Ramsey’s]). Among the sets obtained this way
is the regular octahedron, the 2-dual of the tetrahedron. We can realize
the [duals of regular simplices as subsets of bricks as well. For taking the
regular simplex of n points to be, for instance, {(1, 0,..., 0, (0, 1, 0,.... 0....,
(0..... 0, 1)}, the points of the [-dual are all points (x;, %z ,..., X} where
all but / of the x, are 0, and these ! are equal to 1/+/]. These are clearly
vertices of a cube of side 1/+/1.

Some simplices are not realizable us subsets of bricks. For instance,
any simplex such that three points in it determine a triangle containing
an obtuse angle cannot be so realized. One can ask whether having all
angles non-obtuse is sufficient for a simplex to be imbeddable in a brick.
In the case of the tetrahedron, we can answer the question in the affirma-
tive, but for the 5-point simplex the answer is negative,

The condition that no angle be obtuse is equivalent to the following
property: For any three vertices v, , vy, i the distances between them
s, iy, dyy satisly dfy + d3, — df, =0, the triangle inequality for the
squares of the sides. For the case of five points, the following set of
distances are the distances of a simplex which cannot be imbedded in
3 brick: ‘dp=dg=d= V3 dy—dy=du=ds=du—dy=1,
dy; = 2/v/3. We can see this by observing that, since bricks are spherical,
any imbedding of the simplex in a brick would determine a center ¥
equidistant from all points of the simplex. This is clearly impossible.

THEoREM 23, Ler oy, | =i <j=4 be six distances satisfving
diy + dfy, = dfy, for each i, j. k. Then there is a 6-dimensional brick such
that a subser of four of its vertices realize these six distances,
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Proof. Let vy, vy, vy, vy be the vertices we are going to choose, and
let them first be vertices of a 7-dimensional brick as follows:

t = (0,0,0,0,0,0,0) vy = (0, 0,0, a4, a5, a5, a),
vy = (0, ay, ay, 0,0, a; , 45), gy =gy, 0,a;,0,8,0 )
They are vertices of an @, ¥ ay % -~ x a, brick. What we must show is

that we can choose the @, nonnegative with one a; being 0. We have six
equations, one for each edge of the tetrahedron:

B s 8 3
dis = a” + a® + a8 + a;’,

- T— A" 2
18— @y + dy + 4y + dy,

diy = @' + a5 + a + a,
diy = &' + 63" + a5’ + &,

dy = 6" + &y + a + a,

dy = a" + @' + a,° + a5
MNow considering the three equations corresponding to the edges of a

triangular face, say the 12-, 23-, 13-edges, we can solve for certain pair-
wise sums of the a For instance, from the 1, 2, 3 triangle we get

dyy 1 iy — db
at + a;t = 23 | 21: e
diy + diy — oy
alz + @t = T 53 1 '
g
af + at = “'rfu"‘djn ey y

4

These are all nonnegative by the condition on the @} (non-obtuse). Doing
this for each of the four faces, we eventually get nonnegative solutions
for each pair a,® + a,® where ie {3, 5, 6}, j={l,2, 4, 7}.

MNow choose the smallest a® +a® say a® + a®. Looking at the
equations for g + & with i = 3 or j = 1 we see that there is a unique
selution with &, = 0 and a; = 0 for all j. Since the other equations must
be consistent with these six, they are also satisfied. Thus we have solved
for ay, dy ..., @; s0 that the given tetrahedron is a subset of the vertices
of an a, x = x a; brick,
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We showed in Section 3 that for a configuration to be Ramsey it is
necessary that it be spherical. In this section we see that a sufficient
condition is that it be a subset of a brick. It is an open question whether
either of these conditions is both necessary and sufficient. In particular,
the simplest configuration which the Ramsey property is undecided is
three points forming an obtuse triangle. (If they form an nonm-obtuse
triangle, it is Ramsey by Theorem 23, and if they are collinear it is not
Ramsey by Theorem 13.)

We point out one more relation between bricks and spheres. We say
that a configuration is sphere-Ramsey if for each r there is an integer n
and a real number o such that every r-coloring of a sphere § of dimension
at least n and radius at least o yields a monochromatic configuration
K"C 8 congruent to &

THeEOREM 24.  Every brick iv sphere-Ramsey.

Proaf. The proof is just like that for Theorem 20 and Corollary 21,

We first observe that a sphere of radius at least Vie/2(k + 1) and dimen-
sion at least &£ 4 1 containg the & - 1 vertices of a regular unit simplex.
Letting k = r and d = a Vk/2(k + 1) we see that the theorem is true
for the one-dimensional brick of length a.

If &, is the {(m — 1)-sphere of radius o, , and §,, is the (s — |)-sphere
of radius d,, ; then §, » 8§, 15 contaimed in the (m +n — 1)sphere of
radius Vd,.“ + d:*, Using this fact we can argue exactly as in the proof
of Thearem 14 to show that, if K, is sphere-Ramsey and K, is sphere-
Ramsey, then K, x K, is sphere-Ramsey. This shows, then, that all
bricks are sphere-Ramsey.

6. GENERALIZATIONS: -RAMSEY CONFIGURATIONS

A set K in E™ is -Ramsey if for every r there s an W, depending only
on r, { and K, such that every r-coloring of EV¥ yields a set X' congruent
to S such that the points of K are colored with at most | colors. We see
that the previous notion of Ramsey is just 1 Ramsey by this definition.
Theorem 13 can now be peneralized as follows:

TreoreMm 25. If K cannor be imbedded in | — 1 concentric spheres,
then K is not m-Ramsey for m < L

We use two lemmas, a4 in the proof of Theorem 13,
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LemMa 26, Léf Xg 0.0 Xp ) ¥ioes ¥ B2 (RO necessarily distinet) points
of E*. Then there exists a point ac EY such that |1x; —a| =|y; —al,
| =i =1 ifand enly if for all scalars ¢y , €y y.nn € With 2,_, cix, —y) =20
e .Fmr,’e E:_,l elx? — vy =0

Proof. Assume that there exists anain £" sothat | x; —a| = |y; —a |
fori = 1, 2,...; &. Then

L]

0=Yedlx;—alf—|yu—aP

Fuzf
I ]
= ¥ efx? — ¥ —2a- Y elxy — ¥

=1 ]

Thus 2:4 edx® — ¥y = 0 whenever Z:,.] cilx; — ¥y =0,

Conversely, the existence of a point ae E" with |x; —a| =|y, —a|,
i=l,o., fy 15 equivaleni to the consistency of the set of equations
2Ax, —y)-a=x2 —y5 1 <i=[ where the variables are the coordi-

nates of a, This system s consistent if and only if every lingar combination
annihilating the lefi-hand side also annihilates the right-hand side, That is

¥iop €dx, — ¥,) = 0 implies ¥_; eix? — y2) = 0.

Lemma 27, Ler K ={X; ... X, ¥y s Yot De g set af 21 not neces-
sarily distinct poimts of E" so J'hﬂ'! there exists no point @< E" with
|x, —a|= |y, —a|forall i | =< i< [ Then there is a number r = r(K)
of colors so that every E* can be r- -calored such that Sfor every K' congruent
to K in E® the colors of x;' and y," are not ail the same, { =1, 2,..., .

Proof. According to Lﬂmma 20 there exist constants ¢, ..., ¢; 50 that
Z:___.L c,(x; —¥) = 0and ZH eix?® — v = b 0. Now by Th:nr:m 16
Ehere Bm-ts i hmu: coloring ¥ of the reals so that the equation
Zi_l il — =} has no solution with xln) = ¥le), 1 =i= 1
Thus, if we use the spherical coloring g*{x} = y(x%), the equaftion
E:_, ciix2 — ¥4 =b has no solutions with’ ¥xA) =xy®, 1| i</
(or y*(x;) = x*(y,) for all 7).

Proof of Theorem 25. Assume for a finite K that for every sphere-
coloring of E" there exists a set K' congruent to K colored inm =/ — |
colors. Each such coloring gives a partition P of K in the disjoint union
Ky K-k, =K with the K, congruent to distinct K;' each of
which is monochromatie.

For each finite K there is only a finite number M of such partitions P,
If for each P'there is a spherical coloring y. of £* that prevents the exis-
tence of a set K' congruent to K with each K, monochromatic, then,
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psing the product coloring y = (Xe, oo Xe ) We get a finite coloring of
E" preventing any K" congruent to K with fewer than / colors.

Now, by assumption, the sets K, ..... K,, do not lie on the union of m
concentric spheres. Therefore, for each | K, | = | we can label the points
of K, 45 % ¥ s Ya,, and there can be no point a so that
| % —a|=|yy —a|forallpais x,, ¥y, 1 ==kl <i==m

By Lemma 27 it is possible to color E" with a finite spherical coloring y
in such a way that for no K’ congruent to K do we have y(x,") = y(¥},)
forall 7, f. In other words, not all K;' can be monochromatic. This proves
Theorem 25 for finite K. The infinite case follows immediately.

THEOREM 28, If K=K, = Ky % - x K, and for exch i, 1 <=1,
K, is finite and I-Ramsey, then K is Ly -~ |, Romsey.

Proof. We clearly need only to prove this for ¢ =2, So let K, be
{=Ramsey, i = 1.2, By the compactness argument (Proposition 4 in
Section 1), for any r we can find finite sets 4, and A, such that whenever
Ay is rilgolored it contains an f-chromatic K,' congruent to K, . and
whenever 4, is ri-colored it contiins an f-chromatic K;' congruent
o K; .

MNow A, % A, is contained in some E", for n large enough. Any
r-coloring y of E* induces the r-coloring y of 4, x A, . Each of the points
x £ A, can be associated with the | 4, |-tuple of colors determined by the
xix % ¥}, ye 4y, This is, then, an ri*l-coloring y* of 4,. Now, by
choice of A, , there is K,' C 4, such that y* has only /, different values
on K.

Now define a coloring x** on A, by letting y**(y) = y**(y") if and
only if y(x x< ¥} =x(x x ¥) for all xe K;". This is an r¥il-coloring
of 4, and thus there is a K, congruent to K, such that y**(y) has at
most J, different values for vy & K,'.

By definition of the colorings y* and y** we see that y(x x y) takes
only I/, distinct values on K’ = K. This establishes the theorem.

Among the open guestions that remain are whether Theorem 28 is
valid if K is infinite, Also, generalizing from the / = | case, it is undecided
whether any set which is in the union of / concentric spheres must be
ERamsey.
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