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by a well-ordered index set. Since, for a given element g of G, only finitely many of
the exponents «,(g) will be non-zero, there will only be finitely many non-identity
factors in the right-hand side of (2) and so m is well-defined.

Case 2. The group G/Z is a torsion group.

This case is more difficult but may be reduced to the previous one by first de-
composing G /Z into its p-components and then considering, in each of these compo-
nents, a basic subgroup, which by definition is a direct product of cyclic groups
(Fuchs [1,p. 98]).

Case 3. Every element of Z has a unique square root.

Here we set m(g, h) = [g,h]* and it is not difficult to verify that this satisfies
conditions (i) to (iv). The ring so obtained is essentially the same as the one discussed
by Kaloujnine [2].

This case includes the case when Z has odd exponent.

Whether the conjecture is true in general remains an open question.
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RESEARCH PROBLEMS
EpITeD BY RicHArRD Guy

In this Departmen! the Monthly presents easily stated research problems dealing with notions
ordinarily encounzered in undergraduate mathematics, Eack problem should be accompanied
by relevant references (if any are known to the author) and by a brief description of known
partial results. Manuseripts should be sent to Richard Guy, Department of Mathematics,
Staristics, and Computing Science, The University of Calgary, Calgary 44, Alberta, Canada.

CROSSING NUMBER PROBLEMS

P. Erpds, Hungarian Academy of Science, and R. K. Guy, University of Calgary

A graph, G(V,E), is a set V of vertices and a subset E of the unordered pairs
of vertices, called edges. A drawing is a mapping of a graph into a surface. The
vertices go into distinct points, nodes. An edge and its incident vertices map into a
homeomorphic image of the closed interval [0, 1] with the relevant nodes as end-
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points and the interior, an arc, containing no node. A good drawing is one in which
no two arcs incident with a common node have a common point; and no two arcs
have more than one point in common. A common point of two arcs is a crossing.
An optimal drawing in a given surface is one which exhibits the least possible number
of crossings. Optimal drawings are good. This least number is the crossing number
of the graph for the surface. We denote the crossing number of G for the plane
(or sphere) by v(G).

Almost all questions that one can ask about crossing numbers remain unsolved.
For the complete graph, K,, with n vertices and all (3) possible edges, it has been
conjectured [7] that

@ w(K,) = [3n] [3(n - D][3(n - ] [3(n - 3)],

where brackets denote greatest integer not greater than. For n £ 10, this has been
verified [10]:

n12345678910

v(K..)‘000139183660

BlaZek and Koman [1] and others [e.g., 7, 12] have given constructions which show
that (1) is an upper bound. Kleitman’s result [15, and see below] for the complete
bipartite graph implies that for n sufficiently large,

2 WK, 2 gon(n=1)(n=2)(n-3).
This is a little better than the lower bound given in [9]. It is easy to see that v(K,)/n*

is non-decreasing and so tends to a limit (between 5 and §). A counting argu-
ment shows that if (1) is true for n odd, then it is also true for n + 1. Eggleton and

Fic. 1 Fic. 2
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Fig. 3

Guy [3] have also shown that for n odd, v(K,) and (}) have the same parity. Call
two drawings isomorphic when there is a one-to-one correspondence between the
nodes so that if any pair of arcs crosses, the corresponding pair also crosses. Optimal
drawings of K, for n = 5, 6, 7, 8 are shown in Figures 1, 2, 3, 4. For n = 5,6 these
are unique, but for n = 7 there are five which are non-isomorphic and for n = 8
there are three [10]. For n = 9 the number is about 200.

An attempt to put the theory of crossing numbers into algebraic form has been

made by Tutte [20].

Fic. 4
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If the arcs are restricted to be straight line-segments, we have the concept of
rectilinear crossing number, #(G), of a graph G. It is clear that #(G) = v(G). A
theorem of Fary [6, 19] may be stated: if a graph can be embedded in the plane,
then it can be so drawn using straight line segments. Hence v(G) = 0 implies #(G) = 0.
Forn £7and n =9, v(K,) = #X,). (Figure 3 can be realized with straight line
segments.) But Guy [10] has confirmed a conjecture of Harary and Hill [13] that
#(Kg) = 19, in contrast to v(Kg) = 18. It can also be shown that ¥(K,) > v(K,)
for n = 10. It is conjectured that #(K,,) = 63. Jensen [14] and independently
Eggleton have shown that ’

(3) #(K,) < [(7n* — 56n® + 128n? + 48n[(n—7)/3] + 108)/432]

and equality is conjectured. The fact that #(Ks) =1 gives an immediate proof of
Esther Klein’s result [5] that five points in the plane always include a convex quadri-
lateral. More generally, there is an exactecorrespondence between rectilinear cross-
ings and convex quadrilaterals, so the problem of determining the rectilinear
crossing number for the complete graph can be restated in the form: what is the
least number of convex quadrilaterals determined by » points in the plane? More
generally, one can ask for the least number of convex k-gons determined by n points
in the plane, for k > 4. As before, the ratio of this number to (;) tends to a
positive limit as n tends to infinity with k fixed.

The crossing number problem for the complete bipartite graph, K_ ,, on m +n
vertices, whose mn edges are just those which join one of the m vertices to one of the n,
first appeared as Turidn’s brick-factory problem. For some years it was thought
that Zarankiewicz [22] and Urbanik [21] had solved this, but a hiatus in the proof
was found independently by Ringel and Kainen [see 8] and the formula

4) (M wKn,) = [Em][Em-D][in][3(n-1)]

is still conjectural. It was established for min(m,n) = 3 by Zarankiewicz and a
counting argument again gives the result for each even number if it is known for
the preceding odd one. The best result is due to Kleitman [15] who established (4)
for min(m,n) < 6. The corresponding rectilinear problem may have the same solu-
tion (4), since Zarankiewicz’s construction uses only straight arcs (Figure 5).

For the l-skeleton of the n-cube, @Q,, whose vertices, the 2" binary n-tuples,
are joined by an edge just if their vectors differ in exactly one component, Eggleton
and Guy [4] announced that

5 . [+ 1.
5) ™ we)s 5 - [

but a gap has been found in the description of the construction, so this must also
remain a conjecture. We again conjecture equality in (5).
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@) ¥(K;4) = v(K,4) = 81.
Fic. §

More generally, let G(n, k) be a graph with n vertices and k edges. Denote by
g(n, k) the minimum of v(G) taken over all graphs G(n, k). Then we conjecture that

3

e, k? .k
! <g("’k)<n_2;

"2

(6) )

in fact, that if k/n — oo, then limg(n,k)/(k®/n?) exists. From Euler’s theorem,
g(n,3n—6) = 0, g(n,3n—5) = 1. The upper bound in (6) is trivial (with ¢, = 1/8),
for, let I be the least integer with /n > 2k and consider n/l copies of K;. The lower
bound would follow if we could prove that every drawing of a G(n, k) contains an arc
with at least c;k?/n? crossings. In this connexion we can ask the following question:
determine or estimate the smallest integer f(r) so that every drawing of a graph
G(n,f(r)) contains an arc with at least r crossings. Euler’s theorem implies that
f(1) = 3n — 5 and Eggleton and Guy [3] have shown that f(2) = 4n — 8 forn = 6,7
and 9, and 4n — 7 for n = 8 or n 2 10. This implies that

gn,k) =k-3n+6for3n—-6<ks min(‘,,,_g,(;)).

except that g(7,20) = 6 and ¢(9,28) = 8. But f(3) has not yet been determined.
Another related question is: which graphs G(n, k) have maximal v(G) and what
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is this maximum? We conjecture that the following graph has maximal v(G): take /

so that
! I+ 1
<
(2)=k<( 2 )

and the graph consists of K; with a vertex joined to k — (3) of its vertices (and n—I—1
isolated points).

These more general problems can also be posed in the rectilinear case. We can
also ask analogous questions for surfaces of higher genus; some results have been
obtained for the torus [11, 12], and for the projective plane and Klein bottle [16].

We are indebted to R. B. Eggleton for helpful discussions and suggestions, and
permission to reproduce his results.
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Florida State University, Tallahassee, FL 32306, Notes are usually limited to three printed pages.

A PROOF OF UNIQUENESS OF FACTORIZATION
IN THE GAUSSIAN INTEGERS

M. F. RucHTe aND R. W. RyDEN, Humboldt State College

Let K(i) denote the Gaussian Integers, K(i) = {a + bf| a, b are rational integers}.
It is well known that K(i) has the unique factorization property. Normally, one
shows that K(i) is a Euclidean domain and then uses the fact that every Euclidean
domain is a unique factorization domain. We give a direct proof that factorization
is unique in K(i) which parallels the proof for the rational integers as given in Niven
and Zuckerman (p. 15). We would like to express our appreciation to Professor
Ivan Niven for having raised for us the question of the existence of this type of proof.

LemMa 1. If z and w are two non-zero complex numbers such that |w| < | z
and |argz —argw| < /3, then |z —w|<|z|.

Proof. The triangle formed by the points 0, z, w in the complex plane has an
angle less than n/3 at the origin, so the side opposite, which is of length |z — w|,

cannot be the longest side. Further, since |[w| < |z[, weconclude that | z —w| < | z|.
If z is a complex number the associates of z are the numbers z, —z, iz, —iz.

Lemma 2. If z and w are complex numbers then there exists an associate w’
of w such that [argz —argw’| <m/3.

Proof. The associates of w are at right angles to one another; therefore, there
must be one of them in any given sector of angle 2n/3.

If ae K(i), & = a + bi, denote by N(z), the norm of «, the non-negative rational
integer a? + b*. Note that (1) N(«f) = N(«) - N(B), (2) if e is a unit (¢ = 1, — 1, i,
or —i) then N(¢) = 1, and (3) N(a) = |«|?.
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