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by a well-ordered index set . Since, for a given element g of G, only finitely many of
the exponents a,(g) will be non-zero, there will only be finitely many non-identity
factors in the right-hand side of (2) and so m is well-defined .

Case 2 . The group G/Z is a torsion group .
This case is more difficult but may be reduced to the previous one by first de-

composing G/Z into its p-components and then considering, in each of these compo-
nents, a basic subgroup, which by definition is a direct product of cyclic groups
(Fuchs [1,p. 98]) .

Case 3 . Every element of Z has a unique square root .
Here we set m(g, h) = [g,h]4 and it is not difficult to verify that this satisfies

conditions (i) to (iv) . The ring so obtained is essentially the same as the one discussed
by Kaloujnine [2] .

This case includes the case when Z has odd exponent .
Whether the conjecture is true in general remains an open question .
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RESEARCH PROBLEMS

EDITED BY RICHARD Guy

In this Department the monthly presents easily stated research problems dealing with notions
ordinarily encountered in undergraduate mathematics . Each problem shoi,•ld be accompanied
óy relevant references (if any are known to the author) and by a brief description of known
partial results. Manuscripts should be sent to Richard Guy, Department of Mathematics,
Statistics, and Computing Science, The University of Calgary, Calgary 44, Alberta, Canada .

CROSSING NUMBER PROBLEMS

P . EPDÖs, Hungarian Academy of Science, and R . K. Guy, University of Calgary

A graph, G V, E1, is a set V of vertices and a subset E of the unordered pairs
of vertices, called edges . A drawing is a mappine of a graph into a surface . The
vertices go into distinct points, nodes . An edge and its incident vertices map into a
bomeomorphic image of the closed interval rO, 1] with the relevant nodes as end-
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points and the interior, an are, containing no node . A good drawing is one in which
no two arcs incident with a common node have a common point ; and no two arcs
have more than one point in common . A common point of two arcs is a crossing .
An optimal drawing in a given surface is one which exhibits the least possible number
of crossings. Optimal drawings are good . This least number is the crossing number
of the graph for the surface . We denote the crossing number of G for the plane
(or sphere) by v(G) .

Almost all questions that one can ask about crossing numbers remain unsolved .
For the complete graph, K,,, with n vertices and all (2) possible edges, it has been
conjectured [7] that

(1)

	

(?)

	

v(K„) _ [In] [J(n - 1)] [ (n - 2)] [J(n - 3)],

where brackets denote greatest integer not greater than . For n :!- 10, this has been
verified [10] :

(2)

n

v(K„)

Fio. 1

2 3 4 5 6 7 8 9 10

0 0 0 1 3 9 18 36 60

Blalek and Koman [1] and others [e.g ., 7,12] have given constructions which show
that (1) is an upper bound . Kleítman's result [15, and see below] for the complete
bipartite graph implies that for n sufficiently large,

v(K„) z g-0n(n-1)(n-2)(n-3) .

This is a little better than the lower bound given in [9] . It is easy to see that v(K„)/n 4
is non-decreasing and so tends to a limit (between ó and e) . A counting argu-i
ment shows that if (1) is true for n odd, then it is also true for n + 1 . Eggleton and

no. 2
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FIO . 3

Guy [3] have also shown that for n odd, v(K„) and (4) have the same parity . Call
two drawings isomorphic when there is a one-to-one correspondence between the
nodes so that if any pair of arcs crosses, the corresponding pair also crosses . Optimal
drawings of K„ for n = 5, 6, 7, 8 are shown in Figures 1, 2, 3, 4 . For n = 5,6 these
are unique, but for n = 7 there are five which are non-isomorphic and for n = 8
there are three [l0] . For n = 9 the number is about 200.

An attempt to put the theory of crossing numbers into algebraic form has been
made by Tutte [20] .

Fia . 4

[January
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If the arcs are restricted to be straight line-segments, we have the concept of
rectilinear crossing number, P(G), of a graph G . It is clear that P(G) z v(G) . A
theorem of Fáry [6, 19] may be stated : if a graph can be embedded in the plane,
then it can be so drawn using straight line segments . Hence v(G) = 0 implies P(G) = 0 .
For n 5 7 and n = 9, v(K") = P(K") . (Figure 3 can be realized with straight line
segments.) But Guy [10] has confirmed a conjecture of Harary and Hill [13] that
P(Ka ) = 19, in contrast to v(K S) = 18 . It can also be shown that P(K") > v(K")
for n z 10 . It is conjectured that P(K 10 ) = 63 . Jensen [14] and independently
Eggleton have shown that

(3) P(K") S [(7n' - 56n3 +

	

128n2 + 48nr(n-7)/3] + 108)/432]

and equality is conjectured . The fact that f(KS) = 1 gives an immediate proof of
Esther Klein's result [5] that five points in the plane always include a convex quadri-
lateral . More generally, there is an exact ., correspondence between rectilinear cross-
ings and convex quadrilaterals, so the problem of determining the rectilinear
crossing number for the complete graph can be restated in the form : what is the
least number of convex quadrilaterals determined by n points in the plane? More
generally, one can ask for the least numbe( of convex k-gons determined by n points
in the plane, for k > 4 . As before, the ratio of this number to Q) tends to a
positive limit as n tends to infinity with k fixed .

The crossing number problem for the complete bipartite graph, K,",", on m + n
vertices, whose mn edges are just those which join one of the m vertices to one of the n,
first appeared as Turin's brick-factory problem . For some years it was thought
that Zarankiewicz [22] and Urbaník [21] had solved this, but a hiatus in the proof
was found independently by Ringel and Kainen [see 8] and the formula

(4)

	

(?)

	

v(K," . ") _ [Jm] [J(m - 1)] [in] [I(n -1)]

is still conjectural . It was established for min(m, n) = 3 by Zarankiewicz and a
counting argument again gives the result for each even number if it is known for
the preceding odd one. The best result is due to Kleitman [15] who established (4)
for min(m, n) _< 6 . The corresponding rectilinear problem may have the same solu-
tion (4), since Zarankiewicz's construction uses only straight arcs (Figure 5) .

For the 1-skeleton of the n-cube, Q", whose vertices, the 2" binary n-tuples,
are joined by an edge just if their vectors differ in exactly one component, Eggleton
and Guy [4] announced that

(5)

		

M

	

v(Q")

	

324"
- [n z	 2 2"-2

".)

but a gap has been found in the description of the construction, so this must also
remain a conjecture. We again conjecture equality in (5) .
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v(K7 ,7 ) = v(K7 ,7 ) = 81 .

FIG. 5

[January

More generally, let G(n, k) be a graph with n vertices and k edges . Denote by
g(n, k) the minimum of v(G) taken over all graphs G(n, k) . Then we conjecture that

(6)

	

(?)

	

`n23 < g(n, k) < n2

3

in fact, that if k/n -+ oo , then lim g(n, k)/(k 3/n 2 ) exists. From Euler's theorem,
g(n,3n-6) = 0, g(n,3n-5) = 1 . The upper bound in (6) is trivial (with c 2 = 1/8),
for, let 1 be the least integer with In > 2k and consider n/1 copies of K 1 . The lower
bound would follow if we could prove that every drawing of a G(n, k) contains an arc
with at least c 3 k2/n 2 crossings . In this connexion we can ask the following question :
determine or estimate the smallest integer f(r) so that every drawing of a graph
G(n,f(r)) contains an arc with at least r crossings . Euler's theorem implies that
f(1) = 3n - 5 and Eggleton and Guy [3] have shown thatf(2) = 4n - 8 for n = 6,7
and 9, and 4n - 7 for n = 8 or n z 10 . This implies that

g(n, k) = k - 3n + 6 for 3n-6 :5 k -5 min (4n - 8, ( n2 ) ,

except that g(7,20) = 6 and g(9,28) = 8 . But f(3) has not yet been determined .
Another related question is : which graphs G(n, k) have maximal v(G) and what
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is this maximum? We conjecture that the following graph has maximal v(G) : take 1

so that
(2)

< k < ~! 2
11~

and the graph consists of Kt with a vertex joined to k - (2) of its vertices (and n -I-1
isolated points) .

These more general problems can also be posed in the rectilinear case . We can
also ask analogous questions for surfaces of higher genus ; some results have been
obtained for the torus [11, 12], and for the projective plane and Klein bottle [16] .

We are indebted to R. B . Eggleton for helpful discussions and suggestions, and
permission to reproduce his results .
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CLASSROOM NOTES

EDITED BY ROBERT GILMER

Manuscripts for this Department should be sent to Robert Gilmer, Department of Mathematics,
Florida State University, Tallahassee, FL 32306 . Notes are usually limited to three primed pages.

A PROOF OF UNIQUENESS OF FACTORIZATION
IN THE GAUSSIAN INTEGERS

M. F. RUCHTF Arra R. W. RYDEN, Humboldt State College

Let K(i) denote the Gaussian Integers, K(i) _ {a + bi I a, b are rational integers} .
It is well known that K(i) has the unique factorization property . Normally, one
shows that K(i) is a Euclidean domain and then uses the fact that every Euclidean
domain is a unique factorization domain. We give a direct proof that factorization
is unique in K(i) which parallels the proof for the rational integers as given in Niven
and Zuckerman (p . 15) . We would like to express our appreciation to Professor
Ivan Niven for having raised for us the question of the existence of this type of proof .

LEMMA 1 . If z and w are two non-zero complex numbers such that I wI <= I z
and I arg z- arg w I< 7r/3, then I z- w I< I z I .

Proof. The triangle formed by the points 0, z, w in the complex plane has an
angle less than n/3 at the origin, so the side opposite, which is of length I z - w I,
cannot be the longest side . Further, since I w I < I z j , we conclude that I z - w I < I z I .

If z is a complex number the associates of z are the numbers z, -z, iz, -iz .

LEMMA 2. If z and w are complex numbers then there exists an associate w'

of w such that I argz - argw'I < rr/3 .

Proof. The associates of w are at right angles to one another ; therefore, there
must be one of them in any given sector of angle 27r/3 .

If a e K(i), a = a + bi, denote by N(a), the norm of a, the non-negative rational
integer a 2 + b 2 . Note that (1) N(aff) = N(a) • N(fl), (2) if a is a unit (e = 1, -1, i,

or - i) then N(e) = 1 , and (3) N(a) = I a 1 2 .
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