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1 . Introduction

Given an infinite set E, call a function f a set mapping (on E) if f maps E
into g (E) (the set of all subsets of E) and is such that x if(x) for any x E E. Cal l
two elements x and y of E independent (with respect to f) if x 4 f (y) and y 4f (x) :
Say that a subset X of E is free (with respect to .f) if any two elements of X are

independendent . S. RUZlEVICZ [12] conjectured and A . HAJNAL [5] proved the fol-
lowing : if there is a cardinal ,u < IE~ (this latter donetes the cardinality of the set E)
such that f(x)I < p holds for any x E E, then there is a free set Xg E of cardinallity
AEI . A well-known example shows that the weaker assumption l f (x) I < 1E! does not
even guarantee the existence of an independent couple . Still, one can weaken th e
cardinality assumption on f (x) while ensuring the existence of a large free set by
imposing structural restrictions on the range of f. Before we discuss these restricti-
ons, we need a short review o f

Notations and terminology . We work within ZFC, i . e . Zermelo-Fraenkel set
theory with the Axiom of Choice . We use the usual notations of set theory, although
there is one point to be stressed : c always denotes strict inclusion, i . e .

xcy- x_Sy & x � y .

As mentioned above, lxi is the cardinallity, and gl(x) is the set of all subsets, of the
set x ; dom(g) denotes the domain and range (g) the range of the function g . The
definition of the full inverse image f-1(x) of a set X under the set mapping fwill be
given in Definition 3 . 3 .

An ordinal is the set of its predecessors, and cardinals are identified with their
initial ordinals . A cardinal It is inaccessible if it is a regular cardinal such that for
every cardinal v<µ we have 2 v <lt . Finally, the weak cardinal power iv! , is defined
as Ug ,v lC ll
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By Martin's Axiom we mean, as usual, Proposition A in [10, p .. 150] (cf. also
[16]), i .e . the following proposition :

For any notion C of forcing that satisfies the countable antichain conditio n
(often called countable chain condition), and for any set F of cardinality <2a°
of dense open subsets of C, there exists an F-generic filter .

As is well known, this proposition is consistent with ZFC+ 2 s° > tZ t , provided
ZFC itself is consistent (see [16]) . Furthermore, it is to be noted that Martin's Axiom
implies the regularity of 2 sá (see [10, Corollary 2 on p . 164]) .

The following concept plays a key role in the discussions below .

Definition 1 . 1 . Given an ordinal i, we say that the set S satisfies the 17 -

chain condition (with respect to inclusion) if there is no sequence (sa : a<u> of element s
of S such that sa c s' whenever a< JO< 11 .

2 . Assumptions on the set mapping and result s

Throughout this paper x will denote a regular cardinal and we shall assum e
that E= x ; this amounts to the same as assuming that the cardinality of E is x .
We shall consider a subset S of g'(x) satisfying one of the two conditions below.
These are the conditions we shall usually impose upon the set mapping f wit h
S= range (f) .

(A) Every element of S has cardinality <x, and for each subset F of x, the se t
{s (1 F: s E S I satisfies the x-chain condition (see Definition 1 . 1) .

The other condition is apparently weaker :

(B) Every element of S has cardinality <x, and, moreover, for any T<x and any
decomposition x= Ua<=Ea of x into mutually disjoint sets Ea of cardinality x ,
there is an ordinal y « and a set F Ey of cardinality x such that the
set {s (1 F: s. E S} satisfies the x-chain condition .
As we mentioned just before, it is clear that (A) implies (B) . But the convers e

is not true :

Lemma 2 . 1 . (B) does not imply (A) .

Proof. Split x into two disjoint sets, each of cardinality x : X= { a ;a<x} and
Y= {ria :a<x}. Take

S = {{ a} u {rl a : a < a } :x < x} .

Then it is easy to check that (B) holds but (A) does not . In fact, as for (A), the se t
Is (1 Y : s E S I does not satisfy the x-chain condition . As for (B), take a sequence
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of sets as described, and take a y < T such that Ey n X = x ; then (B) i s
fulfilled with F = Ey n X. The proof is complete .

The following condition is an alternative form of (B) . The slight change is that
here Ua<zEa need only be "almost equal" to x, and we do not require that the set s
E,, have cardinality x :

(B') Every element of S has cardinality <x, and, moreover, for any T<x and an y
sequence of mutually disjoint subsets Ea , a«, of x such tha t

Ix—U.,E«l < r

there is an ordinal y <-r and a set F g Ey of cardinality x such that the set
{s n F: s E S} satisfies the x-chain condition .

Next we prove

Lemma 2. 2. (B) and (B') are equivalent .

Proof. It is clear that (B') implies (B) . We show that the converse is also true .
To this end assume that (B) holds and, furthermore, let (Ea :a<r) be such a sequenc e
as is described in (B') . We may suppose that all the sets E,, have cardinality x, as
those of cardinality <x can simply be omitted . Assume first tha t

(*)

	

~ x_ U«<~ Ea1 H

holds . Take mutually disjoint sets Eá such that x= U T Ea and such that Ea E:
and ~Eá—E2 I hold for any a<r. By (B) there is a y<x and an F' E.; of car-
dinality x such that {s n F' :sE S} satisfies the x-chain condition . It is then clea r
that the conclusion of (B') holds with F = F' n E . This establishes the desire d
result in case (*) holds . If this is not the case, then start with splitting an arbitrary
one of the sets Ea into Ix— Ua«Eat mutually disjoint sets of cardinality x ; then
(*) will hold, and the argument above can be used. The proof is complete .

We shall prove that (B) implies the existence of a countably infinite free set .
This has essentially been proved by G . FODOR and A. MÁTÉ [3, Theorem 2 on p . 4] ,
although under slightly stronger assumptions (condition (B) of that paper require s
somewhat more than condition (B) of ours) . If x is inaccessible and weakly compact ,
then (B) implies the existence of a free set of cardinality x . (A cardinal is weakly
compact if it is not strongly incompact ; for the definition see [6, p . 312] or [14, Defini-
tion 1 . 11 on p . 61] ; cf. also Theorem 1 .13 in [14, p . 62] .) Not even (A) implies, how-
ever, the existence of a free set of cardinality x in the following cases (in cases (i)
and (ii) we actually prove somewhat more) : (i) for some cardinal 2, x=1 ±= 2y ;
(ii) x=2sá and Martin's Axiom holds (see at the end of the Introduction) ; and (iii )
there exists a Souslin x-tree (the definition of Souslin tree is given in the next section) .
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A theorem of R . B. JENSEN [8, p . 292] says that, assuming the Axiom of Constructi -
bility (see [4]), there exists a Souslin x-tree if and only if x is not weakly compact . .
So, this last result in case (iii) and the result mentioned just before imply that, under -
the assumption of the Axiom of Constructibility, (A) (or (B)) implies the existenc e
of a free set of cardinality x if and only if x is weakly compact (in the constructible .
universe every weakly compact cardinal is inaccessible — see [6, Theorems 2 and
3 on pp . 315—316]) . Finally we mention that the results and problems of this paper
are related to Problem 73 in [1, p . 46] . P . ERDŐS and A . HAJNAL have recently solved .
this problem affirmatively. Their proof has not yet been published, only an an-
nouncement was made in [2, p . 16] .

3 . Existence of "large" free sets

The aim of this section is to establish those of our results which confirm tha t
condition (B) described in the preceding section implies the existence of large fre e
sets . The basic tool of these proofs is trees, so here we recall a few concepts concern -
ing them (we refer to [7] as an excellent expository paper on trees ; references to other
sources are given there) .

A partially ordered set (T, -<) is called a tree if for any x E T the set of predeces-
sors of x, pr(x)= pr(x, (T, -< ))= {y E T : y-< x} is wellordered by (we assume
that -< is irreflexive) . We sometimes write T instead of (T, -A subset linearly
ordered by -< of T is called a chain (of or in T), a maximal chain a branch, and, .
furthermore, a (not necessarily proper) lower segment of a branch is said to be a
path . An antichain is a set of elements mutually incomparable in -< of T. For any
x E T, o(x)= o(x, (T, -< )) denotes the order type of pr(x), and for any ordina l
a the set {x E T: o(x)= a.} is called the ath level of T. The length of a tree T i s
U {a+1 : the ath level of T is not empty} . An a-tree is a tree with length a .

Assume t is a cardinal . An Aronszajn µ-tree is a It-tree such that each chai n
and each level has cardinality <It . A Souslin pt-tree is a y-tree such that each chai n
and antichain has cardinality < pt . µ is said to have the Tree Property if there exists .
no Aronszajn ,u-tree . It is well known that, assuming ,t is inaccessible, u has the tree
property if and only if {c is weakly compact (for a proof, see e .g . [14, Theorem 1 . 1 3
on p . 62]) . We need some further notions :

Definition 3 . 1 . A tree (T', -<') is called a loose end-extension of another
one, (T, -), if TT', the restriction of -<' to T equals -<, and, furthermore, ever y
branch of T' includes a branch of T as a lower segment.

Assume now that we are given a regular cardinal x and a set mapping f on x .

The following concepts depend on and f, although the terms introduced will not
stress this explicitly :
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Definition 3. 2 . A tree (T, -<) such that Tg x is called free if each of it s
branches is a free set (with respect to f) .

Now, for a tree (T, -) and for a path p of T denote by ims(p, T) the set of
immediate successors in -< of p . (Note that the empty set is also a path . )

Definition 3. 3 . A free tree T is called regular if for every nonmaximal pat h
p of T we have Iims(p, T)I<x and

n{f- ' WI) : E ims(p , T )} = 0 ,

.f -'(x)
aef

{ < x :X n .f() � 0}

	

(X C x) .

An important consequence of this definition is given by the next lemma. (We
need this lemma only for p= 0, but it does not require any extra effort to establis h
it for any p . )

Lemma 3 . 4 . Assume T is a regular free tree and p is a path in T . Then, with b
running over all branches of T, we have

fl{f 1 (b—p) : pSb}=0.

Proof. Given any <x, we are going to show that does not belong to the
.above intersection . To this end, consider those path p ' in T for which p gp ' and

.f- 1 (p ' - p ) .

Note that p itself is such a path, and, by Zorn's lemma, there is a path that is maxima l
among those having this property . Assume that p' is already such a maximal one.
If p' is a branch, then we are ready . If not, then let al Eims(p', T) be such that

f-1 (0}) (there is such an I) by the regularity of T) . Then

.f-1(pá{vi}—p) ,

which contradicts the maximality of p ' . The proof is complete .
Say that a regular free tree T is less than another one, T', if T' is a loose end -

,extension of T. It follows easily from Zorn's lemma that, under this partial ordering ,
there is a maximal regular free tree (note that the empty tree is a regular free tree ,
and so is the union of a linearly ordered set of regular free trees) . Our key result
in this section says that a maximal regular free tree cannot be too small provided
condition (B) (see the preceding section) holds for S= range (f) :

Theorem 3 . 5 . Assume condition (B) holds for S=range (f ) . Let (T, -< ) be
,a regular free tree having less than x branches and such that IT! x. Then T has a
proper loose end-extension that is also a regular free tree .

where
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For the proof we need a simple lemma, which occurs in [3] and [11] . It is im-
portant for this lemma that we assumed x to be a regular cardinal .

Lemma 3. 6 . Let H be a set such that each of its elements has cardinality < x

and such that 1UHx, and assume that H satisfies the x-chain condition (with re-
spect to inclusion) . Then there is a subset X of cardinality x of UH such that X h
holds for any h E H.

Proof. H can be considered as a set partially ordered by inclusion . By a well-
known theorem of F . Hausdorff, there is a maximal linearly ordered subset of H,
say K. By another of his theorems, there is a wellordered subset M of K that is cofina l
to K. As H satisfies the x-chain condition, we must have 1MI<x . Now take an arbi-
trary element t of UH— UM, and put X = UMU ft l . It is clear that this set satisfie s
the requirements of the lemma .

Now we establish the announced theorem .

Proof of Theorem 3 . 5 . Let (b,, :a<r) (r<x) be an enumeration of the
branches in T, and put

G a = x — f 1 (b a)

E« = G,——Up,Go

	

(a<T) ,

M= Tu U{.fO : E T } .

and

where .

It follows from Lemma 3 .4 with p=0 that Ux<T Ea = x—M. It is clear that here
IM1 <x, as we assumed both T <x and I fO <x for any <x (this latter as a .
part of (B)) . So, in view of (B') (which holds by its equivalence to (B), as establishe d
in Lemma 2 . 2) we can see that there exists an ordinal y« and a set FCEy of car-
dinality x such that

{f( )nF:x}

satisfies the x-chain condition . So, by the lemma just proved, there is a set X F"
of cardinality <x such that X fO (1 F holds for any <x, i .e . such that

{f-'({S}) :SEX} = 0 .

Make the set T' = T U X a tree by stipulating that T' is a loose end-extension of T "

such that X=ims (b y , T') . It is clear that these stipulations define T' as a tree un -
ambiguously, and, moreover, that T' is a regular free tree . This completes the proof.

As we mentioned above, there exists a maximal regular free tree . By the theo-
rem just proved, such a tree either must have cardinality x or it must have at leas t
x branches . In either case, it cannot have only very short branches ; as a branch
is a free set, we can thus establish the existence of a large free set . We first prove.
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Theorem 3. 7 . Assume that µ<x is a cardinal such that vµ<x holds for any

cardinal v<x . Then any maximal regular free tree has a branch of cardinality

Proof. Take a maximal regular free tree T, and assume that each branch o f
T has cardinality µ. Then, in view of Theorem 3 . 5 ., T must have at least x branche s
(indeed, if T has less than x branches, then we also have : !TJ~the sum of the car-
dinalities of all branches of T<x) . Let be the least ordinal such that the tree
T wi has at least x branches (T l>7 is, by definition, obtained from T by omitting each
of its elements in or above the rith level) . Then each level in T Sri has cardinality <x.
In fact, let a<ri . Then Tea must have less than x branches by the minimality of il .

Since for any path p of T we have lims (p, T) I<x (this is stipulated in the definition
of a regular free tree), we can conclude from here by the regularity of x that the at h
level in T has cardinality <x.

So there is a cardinal v <x such that each level in T Sri has cardinality v.
Therefore, noting that each branch in T i has cardinality <µ, the number of branche s
in T ij is at most

U{vl 1 . át1 &

	

It}

	

vw<x,

which is a contradiction, proving the theorem .

From this theorem we can immediately conclud e

Theorem 3 . 8 . Assume that x is an infinite regular cardinal and condition (B )
holds with S= range(f) . Then

(i) there exists a free set of cardinality

	

;
(ii) if pc is a cardinal x such that for every cardinal v<x we have v~<x, the n

there exists a free set of cardinality y ;
(iii) if x is inaccessible and weakly compact, then there exists a free set of car-

dinality x.

Proof. (ii) directly follows from the preceding theorem . We establish (iii) .
As x is inaccessible in this case, the assumptions of the preceding theorem hold fo r

any cardinal i- ; so a maximal regular free tree T must have length x . As
!fins (p, T)H<x holds for any path p in T (cf. Definition 3 . 3 .), it follows from the
inaccessibility of x that for any a<x the ath level in T has cardinality <x. As x

has the tree property (cf. e .g . [14, Theorem 1 . 13 on p . 62] ; note that although not
mentioned there, this is also true in case x= — see [9]), T must have a branc h
of cardinality x . This being a free set, (iii) is proved . Finally, in case x>o (i) fol-

lows from (ii), and in case x=

	

it follows from (iii) (there is no harm in considerin g

lzo inaccessible) . The proof is complete.
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4. Nonexistence of "too large" free set s

In many cases we can prove that condition (B) (and even the stronger conditio n
(A)) does not ensure the existence of a free set of cardinality x . But we cannot prove
even in the simplest case that there is a cardinal p< x such that (B) does not imply
the existence of a free set of cardinality R . We start with the simpl e

Theorem 4. 1 . Assume that x is a regular ca rdinal such that there exists a
Souslin x-tree . Then condition (A) with S= range(f) does not imply the existence of
.a free set of ca rdinality x .

Proof. Assume (x,

	

is a Souslin x-tree, and for any '<x pu t

.f( ) = {a <

	

a - } (= pr(.)) .

A subset of x is free with respect to this f exactly if it is an antichain in (x, -<) ; s o
there is no free set of cardinality x . We are going to show that S= range(f) satisfies
condition (A) . Assume the contrary, and let F be a subset of x and (ca :a<x) a se-
quence of ordinals <x such tha t

.Í(5a) n Fc .f (Q) n F

holds for any a</~<x (c indicates strict inclusion) . Then it is easy to see that

U < K (.f G.) n F)

is a chain of cardinality x of (x, -<) . This contradicts the fact that the latter is a
Souslin x-tree . The proof is complete .

Next we show that, under the assumption of the Generalized Continuu m
Hypothesis, condition (A) does not guarantee the existence of a free set of cardinality

if x is a successor cardinal . Actually, we prove more :

Theorem 4. 2 . Assume x and A are infinite cardinals such that x=2' and either
(i) x= 2 ±- , or (ii) A= 1 o and Martin's Axiom holds . Then there is a set S g. (x) of
cardinality x satisfying condition (A) of Section 2 such that for any set S ' S of car-
dinality x we have 1x—~JS' < A .

An obvious consequence of this i s

Corollary 4 . 3 . Assume that either (i) or (ii) of the preceding theorem holds .
Then condition (A) with S= range (f) does not imply the existence of a free set of ca r-
dinality x .

For the proof of the above theorem we need the followin g

Lemma 4 . 4 . Assume that either (i) or (ii) of the preceding theorem holds . Let
<x be an ordinal and (A 4 :á<yi) a sequence of sets of cardinality A. Then there is
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a set Bn g U4<,, A 4 such that Bn meets each A 4 , r <rl, but does not include any of
them .

Proof. Ad (i) . This case, due to F . BERNSTEIN, is well known and simple . We
may assume that al ; indeed, if this is not the case, the we can rearrange the se-
quence (A 4 : c <rl) . Now define x 4 and y 4 by transfinite recursion so that x 4 Oy 4 and

x4,Y4 A 4 — { xa, y a : a< }

	

( < ;j) ,

and take Bn = {x 4:<rl}.

Ad (ii) . Put

C = H (Uh<n As, 2) ,

that is, let C be the set of all functions with values 0 or 1 the domains of which are
finite subsets of U4<nA4 . Consider C as partially ordered by inclusion ; then, as i s
well known, C is a notion of forcing satisfying the countable antichain conditio n
(often called countable chain condition ; cf. [13, Lemma 10. 3 on p. 372] -- Shoen-
field's terminology differs from ours, so that in order to agree with it we should
order C by reverse inclusion) . The set

D4= (pEC : ]x, y E A 4 [x, y E dom (p) & p(x)=0 & p(y)=1] }

is dense open for any 5<rl ; so, by Martin's Axiom, there exists a {D; :<rl} generi c
filter G. The set

Bn= {x E dom (UG) : (UG) (x)=1 }

satisfies our requirements (note that UG is a function the domain of which is in-
cluded in U 4 ,,A 4) . The lemma is proved.

Proof of Theorem 4 . 2. We deal with cases (i) and (ii) simultaneously.

Let (As : < x) be an enumeration of all subsets of cardinality 2 of x, and for each

rl<x define Al as described in the lemma just proved . Put S= {Bn :r<<x}. We show
that S satisfies (A) . It is clear that each element of S has cardinality <x ; assume
that the rest of (A) does not hold, and let F be a subset of x such that {Bn (1 F:'7 <x}
does not satisfy the x-chain condition. Then it is easy to see that there exists a se t

x of cardinality x such that

B,nFcBR n F

holds for any a, /3E1 with a <R, Then for any a El with la f1 11 m 2 we obviously
have Ba (1 F1 m 2; so, for some <x, we have A 4 g Ba n F. Pick an 11E1 with

rl > u, s . Then A 4 Bn , which contradicts the assumption Ag c B~ (1 F c Bn f1 F.
Thus we have shown that S satisfies (A) .

Now take any subset S' of cardinality x of S . We are about to show tha t
Ix—i,jS' ' < 2 . Assume the contrary ; then there exists a <x such that A 4

	

x— (J S' .

A
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Take a Bn E S ' with ij > Then A 4 n Bn ~ 0, which is a contradiction . The theorem
is proved .

We conclude this paper by pointing out a few problems . As mentioned in
Section 2, our discussion is complete as far as the existence of free sets of cardinality
x is concerned in case we assume the Axiom of Constructibility. But without such
an assumption many problems remain open. The simples-sounding one i s

Problem 1 . Assume x = t• l and 2'0> 1 . Does then (A) or (B) with S=
=range (f) imply the existence of a free set of cardinality x ?

One may try to solve this problem even under the assumption of Martin' s
Axiom ; the answer is unknown to us . Nothing is known about the nonexistence o f
free sets of a cardinality less than x . E.g . one might as k

Problem 2. Assume x=2 0>1n 1 , and assume that Martin's Axiom holds .
Does then (A) or (B) with S= range (f) imply the existence of a free set of an un -
countable cardinality ?

It is a well-known result of R . M. SOLOVAY that it is consistent relatively to the
existence of a measurable cardinal that 2° be real-valued measurable (see [15 ,
Theorem 2 and Proposition 1 on pp . 398—399] ; cf. also the remark on p . 67 in

[14]) . The fact that a real-valued measurable cardinal always has the tree property
(see [14, Theorem 1 . 16 on p . 67]) makes the following problem interesting :

Problem 3. Assume that x= 2sá, and, furthermore, that x is real-valued meas-
urable . Does then (A) or (B) with S= range (f) imply the existence of a free set o f
cardinality x ?

Added in proof. When the paper had already been in print, we obtained th e

following results, which go a long way in settling Problems 1—3 . For an ordinal

ay, denote by (A n) the assertion that for the set mapping f: x--g(x) we have ~ f(a)d x

whenever a < x, and, for each subset F of x, the set f f(a) n F : a < x} satisfies th e

n-chain condition . Then the following propositions are consistent relatively to ZFC :
(i) 2 H o = x = anything reasonable, (A wl) holds for f, and there is no free set of car-
dinality (ii) 2 a o = x is real-valued measurable, (A,,,,) holds for f, and there is n o

free set of cardinality The following propositions are theorems of ZFC : (iii) I f
x = 2 0 = t,k 2 and Martin's Axiom holds, then there is anf satisfying (A.+ 1 ) (in fact ,
V',

	

q <
w2 - - fO nf(rl)l < tko]) such that there is no free set of cardinality

; (iv) If x = íl+ = 2' and cf (2) > co, then there is an f satisfying (A x) such that ther e

is no free set of order type 2+ w ; (v) Ifx = íl + = 2' and 2 is regular, then there is a n

f such that (A A + 1) holds (in fact, v , z1[á <n — lfO n ,f(rl)l <2) and there is n o

free set of cardinality x .
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