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SOME REMARKS ON SIMPLE TOURNAMENTS

P. ERDŐS, E. FRIED, A . HAJNAL and E. C. MILNER 1)

1. Introduction

In this paper we shall prove some results about tournaments which we believe
to be interesting both from an algebraic and a set theoretic point of view . The defini-
tion of a simple tournament, the subject of our title, was motivated by questions
in algebra, but the results and the proofs we give are essentially set theoretical . We
assume that the reader is familiar with the current notations of set theory .

A tournament T = < T, -* > is a relational structure, where T is a non-empty set
and -4 is a trichotomous binary relation on T, i .e . for every pair x, yET exactly
one of the three relations

1) Research supported by NRC grant A5198 .

Presented by H. Lakser. Received May 18, 1971 . Acceptedfor publication in finalform May 1, 1972 .

x~Y,x= y, y-->x

holds. Here x -+y expresses the fact that (x, y) e --), . We shall also write b +- a if a ~ b .
It is well known that corresponding to any tournament T= (T, -+ )., there is an
algebraic structure T* = < T, v, A > in which v and A are idempotent binary opera-
tions which satisfy the condition

x, y c- T, x -+ y => x=xvy, y=xAy .

T* is a simple algebraic structure iff the tournament T is simple in accordance with
Definition 2 below .

Let T = < T, --* > be a tournament . For A, Bc T we write A -+ B iff a -* b for all
acA and be B . If xeT, we put T(x,- )={yeT:x-4y}, T(x,-+)={yeT :xE-y} . Thus
for any xeT, T=T(x,-+)u{x}uT(x,<-) and the summands are disjoint .

DEFINITION 1 . KcT is a convex subset of the tournament T if KO4 and for
every xET- K either Kc T (x, -> ) or Kc T (x, (-- ) .

It is clear that the whole set T is convex and so is any singleton {x} and we call
these the trivial convex subsets of T. We denote by C(T) the set of all non-trivial
convex subsets, i .e . XeC(T) iff X is convex, XoT and JXI > l .

DEFINITION 2. The tournament T is simple iff C(T)=0 .
The two-element tournament To is simple and the equational class determined by

T is the class of distributive lattices .
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The first existence result for simple tournaments was given in [1] where it was
shown that there are such tournaments having orders p k for prime p-=3 (mod 4)
and odd k. In [2] it was shown that any tournament T=<T,-+> can be embedded
in a simple tournament of order 2I TI + 1 and also, if ITI # 1, in a simple tournament
of order 2ITI+2 . This shows that there are simple tournaments having cardinality
m 04. It is easy to check (e.g . [2]) that there is no simple tournament of order 4 .

In §2 we give an elementary counting argument which shows that, for large n,
almost all tournaments of order n are simple . Our main result is the following theorem .

THEOREM 1 . Let TcT', IT'-TI =2#ITI . Then any tournament T=<T,--> > on
T can be extended to a simple tournament T'= < T', -> > on T' .

In general a tournament does not have a one-element simple extension . For
example, if ITI=2n+1 (n a positive integer) and --+ is a linear order on T, then
< T, --+ > cannot be embedded in a simple tournament of order I TI + 1 . However, we
do not know necessary and sufficient conditions for a tournament to have such a
one-point simple extension . 2) Our proof of Theorem 1 makes use of Theorems 2
and 3 below. These may not be essential, but the results are interesting in themselves .

THEOREM 2. (Straightening theorem) Suppose T = < T, -+ > is a tournament and
-~ is not a linear order of T. Then there is a linear order °+ of T such that C (T) # C (T')
where To =<T, 2+> .

The linear order -+ in Theorem 2 is not unique and it would be interesting to know
to what extent this order is characterized by T . Since the convex subsets of a linearly
ordered set are the intervals, an immediate corollary of Theorem 2 is the following .

COROLLARY. If To<T=, -+ > is a finite tournament, then IC(T)I < ( I2 I
) _ 1

and there is equality only if --+ is a linear order .

	

`

The rational numbers provide an example of a tournament of order co having
2' non-trivial convex subsets .

An important combinatorial concept for set systems (see [3], [4] and [5]) is the so-
called property B .

DEFINITION 3. A family of sets F is said to have property B (the Bernstein
property) iff there is a set B such that FnB 0 and B $ F for all Fc-F .

THEOREM. 3 . For any tournament T, C (T) has property B .
Finally, in § 5, we shall prove the following two results .

2) This problem has now been solved . A tournament <T, -)- ) has a one-point simple extension
iff I Tj 0 3 and it is not a finite odd chain . This was first proved for finite tournaments by J . W. Moon
[8] and extended to arbitrary tournaments by three of us in [6] .
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THEOREM 4 . If a is any infinite cardinal, there are 2' pairwise non-isomorphic
simple tournaments of order a .

THEOREM 5 . The class of simple tournaments is not pseudo-elementary .

2 . A proof that almost all finite tournaments are simple

The number of tournaments on n points is 2(2) . The number of such tournaments
k

	

n-k
in which a fixed k-element set is convex is 2(2) x 2( 2 ) x 2" -k . Therefore, the number
of non-simple tournaments on n points is

Hence

3. Proof of Theorem 2

A triple {x, y, z} c T is called a circuit of the tournament T= < T, > if either
x -> y --> z -> x or x -+ z y -* x . Let d (T) denote the set of circuits of T . Thus -> is a
linear order iff d (T)=0 . For zeT, put d (T, z)={{x, y} : {x, y, z}ed (T)}, and for
{x, y}eT, put d (T, {x, y})={zeT :{x, y, z}ed (T)} . For any set Xc [T] 2 ={Y(-- T:
I YJ =2}, we denote by T (X) the tournament T ° _ ( T,°4 > obtained from T by revers-
ing the relation -), on the pairs belonging to X, i .e . for u, v c T u-24 v iff u->v and
{u, v} OX or u +- v and {u, v} e X.

LEMMA 1 . Let T =<T, -> > be a tournament, zeTandsuppose thatX=d (T, z) o .
If T'=T (X), then (i) d (T°)$d (T), (ü) d (T° , {x, y})=0 for {x, y}EX and (iii)
C(T);C(T°) .

Proof. Let Uo =T(z,U,=T(z,Then X={{a,b} : aeU0 AbCU,Aa+-b} .

Note that i = Uo u {z}u Ul and the relations °> and --> coincide on U o u {z} and
{z}u Ul ; also U,-2* U1 . It follows that if D is any circuit of T ° , then D c Uo or D c U,

N(n) \ »~ (n) 2(2)+(n2k)+(n-k)
k=2

N (n) n- 1 (n)

J
`

)

	

(n-k)(k- 1)
2(2

	

k=2 k 2

((2)
+

(n n
1» 2-n+2 +

k 3 (k)
2-2n+6

~n(n+1)2 n+1 + 2 n+6~o

as n->oc .

ALGEBRA UNIV .
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Hence C (T0) c C (T) and d (T0 , {x, Y})= 0 for {x, y} eX. This proves (i) and (ü) since
zed (T ; {x, y}) 5 1- 0.

Suppose Kc Tis convex in T. We will show that Kis also convex in T 0 . Let ucT- K.
Case (a) . Kn UO = O . Since -+ and coincide on {z} u Ul , it follows that if

u e {z} u Ul , then Kc TO (u, _'+) or Kc T° ( u, +2_) according as Kc T(u, -+) or Kc T
(u, 4-) . On the other hand, if ue Up , then K=TO (u,-+ ) . Thus K is convex in T0 .

Case (b) . Kr) U 1 = ~. A similar argument as in Case (a) shows K is convex in T 0 .
Case (c) . Kn U0 ~, Kn Ul 0 . Since UO -+ {z} --> Ul it follows that, in this case,

zeK. Suppose ucUo . Then u--+z implies that KcT(u,-->)cT0(u, -° )-) . Similarly, if
u e Ul , then K= T (u, 4-)=To (u, (-').Thus Ke C (T ° ) .

Since U0 u {z} and Ul u {z} are non-trivial convex sets inT O (but not in T) it follows
that C(T) # C(TO) .

Next we prove

LEMMA 2. Let T = < T, -+ > be a tournament and let XQ (o- < fir) be an increasing
sequence of subsets of [T] Z . Let TQ=<T,-°+>=T(X6)(u<~) and suppose that (i)
d (T,,)=)d (T,)(u<Q<O), (ü) d (T,,,{x, y})=O for {x, y}cXQ (v<~) and (iii) C jT )e
C (T,) (a< o < 0). Then, if X= UQ<,p Xa and T* =T (X), (i)' A (T Q ) ::) d (T*) (u < 0),
(ü)' d (T*, {x, y})=0 for {x, y} eX, (iii)' C(T 6)c C(T*) .

Proof. By definition, uw holds iff there is a < ~ such that u -~+ v for u S Q < ~. Hence
d (T*)= n d (TQ) and (i)' holds. If {x, y}eX and zed (T*, {x, y}) #0, then there is
a < ~ such that {x, y} e X6 and there is Q such that o < P < ~ and the relations L ,
coincide on {x, y, z}. This implies the contradiction zed (Te , {x, y,}) 0 and so (ü)'
holds. Finally, suppose Kc T is convex in To . Suppose u, v e K, w e T and u-*+w-*).v .
Then there is o such that a < Q < ~ and ug-+ w-~+v. By (iii) K is convex in Te and hence
weK. This proves that Kis convex in T* and hence (iii)' holds .

Proof of Theorem 2 . It follows from lemma 2 and Zorn's lemma that there is a
maximal set X0 e [ T] Z such that, if T° = T (X"),

(i) d (T) d (TO )
(ü) d (T 0 , {x, y}) _ 0 for {x, y} e X',
(iii) C(T)cC(To ) .

We claim that T ° _ < T, ) satisfies the requirements of Theorem 2 .
Suppose indirectly that T° is not a linear order, i .e ., J(TO)00. Then there is

z c T such that X= ,J (T O , z) 0 0 . Put T00 = TO (X) . Then by Lemma l , (a) d (T00) c
d (T), (b) d (T 00 , {x, y})=0 for {x, y}cX and (c) C(T 0)e C(T00 ) . Since ze d (T0 ,
{x,y}) 0 q5 for {x, y} e X, it follows from (ü) that X r-, X 0 = 0. Therefore, ifX'0 = X u XO ,
we have Too =T0(X)=T(X00). It follows from (a) and (c) that (i) and (iii) both
hold with T00 in place of T0 . If {x, y}cXO , then d (T00 , {x, y})(--d (T, {x, y})=0
by (a) and (ü). This, together with (b), shows that d (T 00 , {x,y})=0 for {x, y} eX 00
contradicting the assumed maximality of X0 . This proves that TO is a linear order of T.
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Since, by hypothesis, T is not a linear order, it follows from Lemma 1 that there is
T' such that C(T) # C(T') . Applying the above to T' instead of T, we obtain a linear
order T ° such that C(T) # QT') (-- C(T°) .

4. Proof of Theorem 3

If F' c F and F has property B, then so does F'. Therefore, in view of the straight-
ening theorem, it is sufficient to prove Theorem 3 under the assumption that T= < T, -
_<T, <> is a linearly ordered set. For a, bcT, we shall write [a, b] to denote the
closed interval {x e T : a < x < b v b < x < a{ . Since every non-trivial convex set of T
contains a proper interval [a, b] with a 0 b, it will be enough to prove that Co =
{[a, b] : a, be T A azAb} has property B. 3 )

We first show that the set C,={[a, b] :I [a, b] I =2} of two-element convex sets has
property B. Let - be the equivalence relation defined on T by putting x-y iff [a, b] is
finite. Then T is the disjoint union of equivalence classes (intervals) which are either
finite, or have order types co or co* or w*+co . If [a, b]eCl , then a, b are neighbouring
elements of one of these equivalence classes D and IDI > 1 . Consequently, to prove our
assertion, it will be enough to prove that if D is such an equivalence class, IDI > 1, then
the intervals of D have property B. On D define another equivalence relation I-I so
that x I --I y iff [x, y] is odd . This equivalence partitions D into two disjoint sets
BD u (D - BD ) and BD establishes property B for the intervals of D. The set B'= u BD ,
where the union extends over all - equivalence classes D with IDI > 1, shows that Cl
has property B.

Now let {I, : ~ < cp} be a well ordering of Co so that Cl is an initial segment, i .e .
C, = {I~ : S < cpo } for some cp o < cp. We are going to define elements x g, y, for ~ < cp by
transfinite induction as follows . Let ~ < 9 and suppose xr , y 5 have been defined for
C < ~ so that B, = {x,, : q < C} and Cc= {x,, : q < s} are disjoint for ~ < ~, and for C < ~

(o) if B,nL 0, then xs=xt wherer=min {i'<C :XT,eI},
(oo) ifCy nly 0, then ys =y,where ó=min{Q'<C :y,elJ .

We have to define x s , y, so that B,+1=B,u{x,} and C,+i=C~u{y,} are disjoint
and so that (o), (oo) hold for ~=~ . Let B' be the set defined in the preceding
paragraph which establishes property B for the set Ci . We distinguish two cases (i)
~ < tpo , (ü) cpo < ~. In case (i) we simply put x, and y 4 as the unique elements of
B' r) I, and I,- B' respectively. It is easy to see that (o) and (oo) hold for C _ ~ in this
case. Now suppose (ű) ~ > cp, We first show that I,- C 4 0 : Suppose this is false, i .e .
that I, C, . Let ye , y Q be the two elements of I, having minimal suffices . If [y,, y.] c- C,
then [ye , yJ =I,, for some ~ < cp o < ~ and so x a,= y e or y Q contrary to the assumption
that B, n C,= 0 . Hence there is r such that max (o, u) < ,r < 6, yte [y e , yJ and, by the

3) F. Hausdorff j7, Satz, X .] proved this in the case when < T, < > is dense .
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assumed minimality of Q and o , y= =Ay,, for a < max (Q, Q) . Therefore, by assumption
(oo) yQ0I, and yQOI, . Therefore, I, c [ye , yQ] and x,eh-C~eI~ #C, . This proves that
I4-C400. If I nB, o then we put x~=xz where A=min{Z<~ :x,eI~j . On the
other hand, if I,nB,=0, then we choose an arbitrary x,el~-C,. Clearly (o) holds
with this definition for x, . A similar argument shows that I,-B,+1 -A0 and then y,
can be chosen so that B,+1 n C~+1 =0 and (oo) holds. This defines the x,, y, for
< co and the set B= {x4 : ~ < <p} establishes the property B for C(T) .
Remark . We mention that the proof of Theorem 3 can be carried out without

appealing to the straightening theorem. If, instead of intervals, we consider the convex
subsets of an arbitrary tournament which are generated by two elements, essentially the
same proof works but the argument is slightly more involved .

5. Proof of Theorem 1

We may assume ITj>2 . Let T'=Tv{x, y), where xoy and x, yo T. We extend
the relation -> to T' as follows .

By Theorem 3 there is a set B=T which establishes property B for C(T) . In the
special case that n C(T) 0, then we assume that B= {u} where ue n C(T) . We define
-~ on [T']2 - [T] 2 by putting (i) {x} -> B-> { y}, {x} E- T-B F-- {y} and (ü) x -> y .

Let KeC(T') . If {x, y} <-- K, then (i) implies that Bc K, T-B=Kand hence K= T',
a contradiction. Therefore, I {x, y} n KI 51 . Suppose IKn Tj > 2 . Then Kn Te C (T)
and hence KnTnB 0 and KnTn(T-B) 0 . By (i) T-B->{x}->B, B--+{y}-*
T-B and so {x, y} c K, a contradiction . Therefore, we can assume that K= {x, v}
or {y, v} for some v e T. If v eT- B, then by (i) and (ü) v -E x -> y -+ v so that both
x, yeK, a contradiction. Therefore, we can suppose that veB . Assume that there is
DcC(T) such that v0 D . There are acDnB and bcD-B . If K= {x, v}, then the con-
vexity of K implies a v E- b, and if K= {y, v}, then a --+ v -+ b . In either case this con-
tradicts the assumption that v0D. It follows that there is no such D and hence
n C(T) 0, i .e . B={u} and u=v . The convexity of K implies that {u} E-T- {u} if
K= {x, u} and {u} -+ T - {u} ifK= {y, u} . Since I Tj > 2, this implies that T- {u} e QT)
contrary to fact that B(={u}) meets every member of C(T) .

6. Proofs of Theorems 4 and 5

Proof of Theorem 4. It is well known that there are order types _,= tp (X~, < )
for ~ < 2' such that IX~ I = a and

(i) °~ O-Fjor ~ rl
(ü) tp(X,-X)=8, for XcX,, jXj<w .

For example, one such construction is to put (p (0) = w (p (1) = w* + w and -7 (f) _
1,, <a rp (f (v)) for f 02 .
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By Theorem 1, for each < 2", there is a simple tournament T,= < T~, ) such that
JT4 -X~1=2, X,cT~ and -~+ is an extension of <,. Suppose q is an isomorphic
mapping off, onto T,r . Then 0 is an order preserving mapping from X, -P onto X,r - Q
where P= fir -1 (T,r -X,1 ), Q = ~ (T~-X~) . It follows from (i) and (ü) that ~=q .

Proof of Theorem 5 . We first give some definitions and prove a lemma . Let T=
<T-*> be a tournament and let X(-- T. We put K'(T, X)={ucT :ucXvv--+ u-4w
for some v, wcX} . Now put KO (T, X)=X, Kn+I (T, X)=K' (T, Kn (T, X)) for n <co .
Then K(T, X) = Un< w Kn (T, X) is the convex hull of Xin T .

LEMMA 3 . There is a sequence of tournaments Tn = < Tn , > and pairs {a n , bn } c -
T.1' for n < w so that :

(i) Tn is simple,
(ü) Tn is a subtournament of T n for m < n,

(iii) Kn+1 (Tn, {a0, bo}) = Tn,
(iv) there is cn e Tn - Kn (Tn , {a o , b o } ) .
Proof. Let T o = ( T,, -'-+ >, where To = {a,, b o , c o } and ao b o -°4c o°>ao . Clearly (i)

(i)-(iv) hold for n=0. Assume that T n has been defined so that (i)-(iv) hold. Put
Tn+ , =Tn v {an , b,,{, where an , b n are distinct elements not in Tn . Define an extension
" + of to Tn+1 by putting

n+1

	

n+1

	

n+1
"n+1 -- - ). bn+ 1, an+ 1

	

)' Cn -+ bn+ 1
(O)

"+
1

	

n+1

	

1
{an+1}

	

Tn - {Cn}

	

{bn+1J .

We will show that Tn+1 = < Tn+1, n+)" i satisfies (i)-(iv) with n+ 1 in place ofn .
The conditions (o) relate Tn+, to T„ in exactly the same way that the conditions (i)

and (ü) in the proof of Theorem 1 relates T' to T if we put B={cn }, Considering that
C(Tn)=0 by (i), the set B= {c,) does establish (vacuously) the property B for C(T,,) .
Consequently, as in the proof of Theorem 1, Tn+, is simple . (ü) holds trivially with
n+ 1 in place of n since Tn+, is an extension of Tn . Now assume that X=Tn -{cn} and
ucK' (T.+1, X)-X. Then there are v, wcX such that v"±;un+ w and hence a #an+1,
u =A b ., 1 by (o) . Using this remark and (iv) it follows by induction on i that

K; (Tn+1, {ao, b o }) = K; (Tn , {a o , bo}) for i ,< n + 1 .

Since an +,, bn+,eK'(Tn+1, Tn ) by (o), and since Kn+1 (Tn+v {ao, bo}) = Kn+1 (Tn,
{a o , b o})=Tn , it follows that (iii) holds with n+1 in place of n . Now put cn+l = an+1 .
Then en +, 0Tn=Kn+, (Tn, {ao, bo1) = Kn+, (Tn+1, {a o , b o}) and so (iv) holds for Tn+I
as well . This proves that the Tn defined for n <w satisfy the requirements of the lemma .

In order to prove Theorem 5 it is sufficient to show that a reduced product of simple
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tournaments is not neccessarily simple . Let T„ (n < (o) be tournaments satisfying
Lemma 3 and let U be a nontrivial ultrafilter on co . Consider the tournament T=H„, w

T„IU=<T,-). > . Let a=(ao , . . ., a,, . . .), b=(bo , . . ., bo , . . .) and c=(co , . . ., c,,, . . .)ET.
Then a 0b. By Los' theorem [q], for t < co and any x= (x o , . . ., x,,, . . . )ET, xEK, (T,
{a, b}) iff {ica) :xj cK,(T j , {ao , b o}))cU. By (iv) of Lemma 3, c„OK„(T,,, {a o, b,})
K, (T,,, {a,, b,}) for n >, t and hence c~ K, (T, {a, b}) for any t < w . This shows that

K(T, {a, b}) is a non-trivial convex set in T and so T is not simple .
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