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ABSTRACT

We solve here some problems arising from a work by Hechler [3]. We elimi-
nate extra set-theoretic axioms (MA, in fact) from existence theorems and deal
with the existence of disjoint sets.

Intrdouction

We deal with almost-disjoint families (denoted by K and L) of sets of natural
numbers, Usually the sets and the family are infinite. (For any two cardinals
Ny < N,, it is of interest to consider those families of subsets of N, such that
each member of the family has cardinality ¥, and the intersection of any two
distinct members of the family has cardinality less than ¥;. Our results generalize
to hold for such families with only small changes or additional requirements
(e.g., B <o or N, regular for Theorem 2.1).) We use Hechler’s notation. Two
remarks are in order:

1) non-2-separability of K is equivalent to the property (B) of K (see Miller
[5]and Erdés and Hajnal [1] concerning this property). Miller proved the exis-
tence of, what we called, the 2-separable family in a very “‘tricky”” way.

2) K is n-separable iff it does not have a colouring with n-colours (according
to the notations of Erdés and Hajnal [2]).

1. Existence of n-separable but not (7 + 1) — separable families

In [3], section 8, Hechler proves the existence of some almost-disjoint families
with separability properties, using the assumption that every infinite maximal
almost-disjoint family (< P(N)) has power 2%°. This follows from Martin’s axiom
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[4] but, by Hechler [6], its negation is consistent with ZFC. We shall eliminate
this assumption of [3], theorems 8.1 and 8.3.

THeOREM 1.1. There is a strongly n-separable (hence n*-separable), non-
(n + 1)-separable, and even non-(n + 1)-*separable, maximal almost-disjoint
family (for any n = 1).

ProoF. Let (A;,---,A,,,) be a partition of N into (n + 1) infinite sets. Let,
fori<n+1, L;={Fi:a <2} be an almost-disjoint family of (infinite)
subsets of A;. (Throughout this paper we shall use i,j,k,m, and n to denote
positive integers or variables ranging over positive integers. Thus i £ n may
always be thought of as meaning 1 < i < n.) Let {(D,}--,DI): o < 2%} be the
set of all partitions of N into n sets, each partition appearing 2™ times. For
each o <2™ and each i £ n+1,

. n
F,= U F,nD)
=1

Since F] is infinite, there exists a j = j(a, 1) such that F ; N D! is infinite. Since
for fixed « the function j(«, i) has n + 1 elements in its domain and only n in its
range, there exist i(o,1) <i(e,2) £ n4+1 such that j(m,i(x,1)) = j(x, i(z,2)
¥ j(x). Define G, = DI® n(Fi®Vy Fi=2),

Let K = {G,: «<2™}. K is a subfamily of the desired family. Clearly it is
an infinite almost-disjoint family of subsets of N. The partition (4,,---, 4,+;)
shows that K is not even (n + 1)-*separable, much less (n + 1)-separable because
each G, intersects at least two A;’s in an infinite set. On the other hand, as
G, < D, and each partition appears infinitely often, K is strongly n-separable.
Now, by [3] theorem 6.2, we may extend K to a maximal almost-disjoint family
which retains these properties.

TueoreMm 1.2. For each n> 1, there is an n-separable maximal almost-
disjoint family which is not strongly n-separable.

Proor. Let (A4,,:+, A,) be a partition of N into » infinite sets. For each i < n,
let I; = {F;: o < 2"} be an almost-disjoint family of infinite subsets of 4,. Let
(D}, -+-,D": 0 <@ < 2%} be the set of partitions of N into n sets. We define
for each & < 2™, a set G, = N, and then K = {F§, -+, Fp} U {G,: 0 < a < 2%}
is our family. The partition (4, ---, 4,) shows that K is not strongly n-separable;
whereas the G,’s show that it is n-separable.
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Let 0 <o <2%. As in Theorem 1.1, for each i £ n, there is a j = j(i, o)
such that | Fi N DJ| = N,. If there exists i<k <n such that j = j(i,)
= j(k,%), then set G, = D) N (F.NFY. Otherwise for each j < n, there is
an i(j,#) such that i = i(j,«)<>j = j(i,e). If there is a k < n such that
DEd Ay, oy, choose such a k and any x € D~ A4, and let G, =(DXU F,**) N {x}.
In the remaining case DY = A,,,, for all k so the partitions (D,,"+,D") and
(A,,, A,) are the same and we may let G, = F,. Clearly we obtain a family K
satisfying our conditions.

Problem A. Does there exist a completely separable family (without assum-
ing MA, as in [3], theorem 8.2)?

Problem B. For any m,n = 2, does there exist an m-n-separable but not
strongly m-n-separable almost-disjoint family? (For definition see [3], p. 415.)

Problem C. For any m,n = 2 does there exist a strongly m-n-separable,
non-m-(n + 1)-separable almost-disjoint family?

Problem D. Let m = 1. Does there exist am almost-disjoint family K,
which is m-n-separable for every n, but is not (m + 1)-2-separable?

Problem E. Does there exist a fully-Ramsay, not completely separable
almost-disjoint family (see [3] p. 419)? The answer is no since if S is fully-Ramsey,
2S = {{2n: ne A}: Ae S} is a counter-example.

RemarRK. In Erdss and Hajnal [1], it was noted that Miller’s [ 5] construction
gives somewhat more than almost-disjointness, i.e., foreach Ae K and xe N-4,
the set A N( U {B; xeBeK}) is finite; with small additions our proofs can
give this too. Notice that CH(2™ = N,) implies MA.

2. On disjoint sets in 2-separable almost-disjoint families

In [3], theorem 4.1, Hechler proved that any strongly 2-separable almost
disjoint family contains an infinite disjoint subfamily. For 2-separability he has
some weaker results (theorems 4.3 and 8.4). We shall prove that every such family
has two disjoint sets, but (assuming MA)) not necessarily three.

TueoreM 2.1. If K is an almost-disjoint 2-separable family of infinite sets,
then it contains two disjoint sets.

REMARK. We need the “‘infinite sets’’. For example
K,={d:Ac {1,,2n+1| A = n + 1}.

ProOF. Suppose there are no two disjoint sets in K. Let A€ K. We now
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define by induction on n a family {B,} < K — {A} of distinct sets and a colouring
of the points of UJ_, B; by red and blue, such that each set B,, contains only
blue points except for one red point y,,€B,, N A4, and each set B,,,, contains
only red points except for one blue point y,,,, € By,+1 N A. Suppose By, -, B,_;
have already been defined, together with the associated colouring. We shall define
B, assuming, without loss of generality, that n is even. Choose blue points
x;eB; foreachi £n—1.Let C={x:1<ign—-1}u U'Z} (ANB). Since
K is almost disjoint, C is finite. (C,N—C) is a 2-partition of N, but since
C is finite, no subset of it belongs to K. Hence there is a set De K such that
D = (N—C). By assumption D and A4 are not disjoint, so choose any point
y,eAND. Then y,¢C, and as y,ed, we have y,¢ UjZiB;. Let
D, = (UIZ{B;UD) — {x,"**,Xu_ 1, Vu} - As x;€B,, we have B, & D,, and as
y.€D, we also have D & D,. If for any other set X e K, we have X < D4,
then either X N B; (for some i) or X N D is infinite—a contradiction.

Thus no member of K is contained in D, . As K is 2-separable, thereis a B, K,
such that B, < (N—D,). By assumption B, "D 0, but by the definition of
D, and B, we have (B,ND) < {y,}. Hence y,e B,. Similarly

B, A (L_J:B‘) = Trpsaends

So all the points of B, which are coloured, are coloured blue. Thus since
v.¢ UTZ1 B,, it is not coloured. So we can colour y, red and each x € B, — {y,}
blue. After we finish colouring U ,_,B,, we can complete the colouring
arbitrarily.

Now we have a partition of N into two sets—the red points and the blue
points. Then one of them, say the set of red points, contains an X e K. Now
by assumption, for each n, X N B, # &f. But if n is even, B, has only one red
point y, so y,e X. Hence X N4 2 {y,|, n even} which is infinite—a contra-
diction.

THEOREM 2.2. Assuming Martin’s axiom, there is an (infinite) almost-disjoint
2-separable family of (infinite) subsets of N, containing no three disjoint sets.

Proof. Let {(D,,D2):o < o <2} be the set of partitions of N into two sets
such that OeDi.

We shall define by induction on « a family of (infinite) sets G, = N such that
1) N minus any finite union of G,’s is infinite.
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2) B <u« implies Gy N G, is finite or G; = G,.

3) G,=D!or G, cD,?

4) If B<a, G, # Gy, then either 0eG, < D,' orG, NGy # & .
Define G,, n < ®, so that {G,: n <w } is an almost-disjoint family of subsets
of N with intersection {0} and union N.

Suppose we have defined G; for every f < «, and we want to define G,.

Case I. There exist n,f, <--<pB,<a, such that D}!<* U, G,.
(4 <* B iff A — B is finite).

If for some f<a we have G; < D, let G, = G,. Clearly the conditions
are satisfied. Otherwise, for each G, ¢ {G,,: i < n}, condition 2 guarantees that
Gy M D! is finite and hence G, N D is infinite. By [3] theorem 9.2, there is a set
A < D?whichis almost disjoint to every Gy M D}, and | G, N DZ| = Ry=| G, N 4]
>0and ANG, # Ffor 1 i = n. Define G, = 4; clearly all conditions are
satisfied.

Case Il. not case I.

By [3]. section 9.2, we can find 4 < D, such that 4 is infinite and 4 N G, finite
for every f<a. Let G, = Ay {0}. The family K = {G,: @ < 2™} satisfies
all conditions except maximality. By [3], theorem 2.3, there is a L > K which
satisfies them all if we add O to every Ael — K.

Problem F. Can Martin’s axiom be eliminated from the proof?

RemARk. Clearly in Theorem 2.1, the “‘almost-disjoint™ assumption was
necessary (e.g., any ultrafilter over N is 2-separable, but it contains no two dis-
joint sets.) It is natural to ask whether the *‘almost-disjoint™ hypothesis can be
replaced by a weaker one. A natural candidate is given by:

DeriniTioN 2.1. A family of sets is independent if for no n and distinct
A,B;,-, B, in the family, 4 = U, B;.

If we replace A< UB; by AS* UB,(=A4— UB, is finite) we get the notion
of *-independent. When considering a *-independent family, it is natural to ask
as to whether or not it contains an almost-disjoint subfamily.

THeorREM 2.3. Assuming Martin’s axiom, there is an *-independent (in-
finite) strongly 2*-separable family K of (infinite) subsets of N, in which there
are no two *-disjoint sets (i.e., A # Be K = A N B is infinite).

Proor. Let {(D},D?): « <2"}} be the set of partition of N into two, each
appearing 2%° times. We define by induction on «, infinite sets G, < N such that:
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2) B <« implies G; N G, is infinite

3) {G;: B < a} is *-independent.

Suppose Gy, f < o, has been defined. Then clearly by 3) {G;: f < a} is a *-in-
dependent family.

If for some B <a, G, =* D, or G; <* D}, let G, = G,;. Otherwise for each
B <a, Gy N D? is infinite. By 1), without loss of generality, for no n<w,
BB, <u, D2=* UT_,G,,. Let L be the Boolean algebra generated by
{Gs\D}: <o} Then | L| <2™. Hence by Martin’s axiom (see [3], theorem
9.2) we can find G, = D? such that Ae L, A infinite > G, "4 and A — G, are
infinite. So it is easy to verify that the induction hypothesis is satisfied.
K = {G,: « < 2%} is the set we want.

1) for no n,B,- B <o, NE* UL, G,

Problem G. Does every independent 2-separable family of infinite subsets
of N contain two disjoint members?

Problem G was solved affirmatively by Hajnal, McKenzie and Shelah, inde-
pendently.

THEOEREM 2.4. In every independent 2-separable family of infinite subsets
of N, there are two disjoint sets.

SKETCHED PROOF. Suppose K is a counterexample. Let
K, ={A:AeK, A< U {B:BeK, B # A}};

K, is also an independent 2-separable family. Define inductively B,€ K, , x,€ B,,
and a colouring of U ., B, by red and blue such that: x, is the only red or blue
point of B,; and for each xe B, there is m < such that x = x,. Suppose
x;,B; i < n, and the colouring of U ,., B, are defined. Let x, be the first number
in U,.,B;— {x;:i <n}, and, without loss of generality, x, is blue. We want
to find B, and a colouring. Choose from each B;, i <n, x,¢ B;, a red point z;.
Let D, = U;.,B,—{z:i} —{x,} and D, = N—D,. For no BeK, is B< D,
so there is a B, € K such that B, < D,. Colour B, — {x,} by red.

By the 2-separability there is a set Be K, disjoint to one colour, e.g., red.
Hence if x, is blue, B N B, < {x,} so BN B, = {x,} and x,eB. So B contains
all the blue x,. Let x,, be red. Then B, — B = {x,}, but B,€K,, so we have
B'eK, B' # B, and x,eB’. Hence B,, < Bu B’—a contradiction.

We can pose instead:
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Conjecture G*.

1) For every n there is a 2-separable family K of infinite subsets of N, with
no two disjoint members, such that for distinct B, 4, -, 4,€K, B & UA4,.

2) Thesame as 1) with B & * U, ., 4,.

For n =1, 1) was proved by Lovan (private communication) and Shelah
independently.

A variant of Lovan’s construction is: let us partition N into the infinite sets
X, A4, n<w Let {T,:a<2% = {T:T c U4, |TNA4,| =1}, X = {x,:n}
u{)}, and K = {4,U {3}: n<o}u{Lu {}:a<2™u {4,U LU {x.}:
n,m< N, a<2¥®y {X}.

Shelah’s construction defines an increasing sequence of families K,, such that
xedeK,> (N—-A)u{x}eKk,.

3. Families of finite sets

There are also related finite problems. Let n, m be natural numbers. A family
Sis called an (n,m)-family if 4 €S implies [A[ = n, and for distinct A,Be S,
we have |A ﬁB, < m. The question is to find f(n, m) according to:

DEerINITION, 3.1. f(n,m) is defined to be the maximal number f such that
every 2-separable (n, m)-family has in it f pairwise disjoint members.
For simplicity we restrict ourselves to m = 1.

Conjecture H. f(n,1) Z 2?"~9 for any ¢ >0 n big enough, (or at least
Fo,1) = 2.

However it is not hard to see that for n sufficiently large we have f(n,1) = 2
(and, in fact, much larger).

Suppose there are no two disjoint sets in a 2-separable (n, 1)-family S. Choose
xoeAoeSand let V= U{4:4€S}. Let B, = U{A4:x,e64€S}, and con-
sider the partition [By — {xo}, (V — Bo)U {x0}]. If some CeS is a subset of
(V — By)u {xo}, then C & B,. Hence x,¢C so C< V— B, and therefore
C,Ay,eS are disjoint—a contradiction. Hence there is a CeS such that
C < By — {x,}. For each 4 if x,e6AeS, CNAz &; but for any distinct
A, Ay€5, xg€d;, x,€4,, CNA; NA,= as |4, N4,| <1. Hence
A, NA; = {xo} but xo¢C. As IC[ = n, clearly
|{A:xoeAeS}I <n. If xoed,;eS, xoeAd,eS, A # A, then for every
Xo # X1 €Ay, X # X, EA,, there is at most one Ce S such that x,¢C, x;€C
and x, e C. Hence |S| < n+(m—1)>.
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But we could have chosen x, belonging to at least two members of S; other-
wise S is a family of pairwise disjoint sets, and, if n >1, is not necessarily 2-sep-
arable.

Now we shall show that the 2-separability of S implies | S| = 2"*! (in fact
[S] 2 2"(1 +2/n)"" by Schmidt [8] and for n = 4 Prevling (private commu-
nication) has shown ]S] >13). We do it by a probabilistic argument. Suppose
we randomly partition V into two parts such that each element of }' has equal
probability of falling into either part and that the choices are made independently.
The probability of a set A € S being totally in one part is2~-"-2)_ But ifI R et
the probability that at least one set of S will be totally in one part is at most
|S|-27""Y <1, so S cannot be 2-separable.

Thus we have shown that 2""' £ S <n+(n—17%. But n+@m—-1)* = 2"*
implies n < 6, so we have therefore shown that n = 6 implies f(n,1) = 2.

Erdos [7] shows that there is a family S such that AeS = |4 |=n, S is
2-separable and | S| < cn®2",

Conjecture I. For every n, m(n) = cn where m(n) is the largest m for which
f(n,m)> 1. (But m(n) = cnflogn can be proved.)
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